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On Optimal Downlink Coverage in Poisson Cellular
Networks with Power Density Constraints
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Abstract—This paper studies downlink coverage maximization
for cellular networks in which base station (BS) locations are
modeled using a spatial Poisson point process, considering three
different coverage models, and under constraints on transmit
power, BS density and transmit power density. Firstly, the
coverage optimization problem is solved analytically for the first
coverage model that focuses on noise-limited communication by
ignoring interference and random fading effects. This model
provides useful insights into the significance of bounded path loss
models to obtain meaningful solutions for this problem. The other
two coverage models are based on the users’ received signal-to-
interference-plus-noise-ratio (SINR) from their associated BSs.
For these models, it is shown that the coverage optimization
problem can be reduced to a constrained single dimensional
optimization problem without any loss of optimality. The related
solutions can be obtained with limited computational complexity
by resorting to a numerical search over a compact subset
of candidate values. Bounds on the optimum BS density are
also provided to further truncate the search space. All results
are derived for general bounded path loss models. Specific
applications are also illustrated to provide further design insights
and to highlight the importance of using bounded path loss
models for coverage analysis.

Index Terms—Cellular networks, coverage, optimization, Pois-
son point process, stochastic geometry.

I. INTRODUCTION

A. Background and Motivation

LOCATION modeling for base stations (BS) is of prime
importance for coverage optimization in cellular network

analysis and planning. Conventionally, BS locations were
considered to be fixed when abstracting their locations for
analytical purposes. These techniques included grid based
modeling methods such as the well known hexagonal grid
model [1], [2]. However, in most cases, these models lacked
analytical tractability, leading to complex system level simula-
tions. Therefore, as an alternative, there has been a continued
and increasing research interest in using stochastic geometric
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based approaches to model BS locations in wireless networks
[3], [4]. Unlike grid based models, these techniques consider
BS locations as randomly drawn from a spatial stochastic
process, with Poisson point processes (PPP) being the most
widespread ones [5]. These models are capable of statistically
emulating complex heterogeneous networks of today in which
BSs are irregularly deployed based on the customer density
and network traffic. In this paper, we study coverage maxi-
mization for the downlink of such a Poisson cellular network
having constraints on the BS transmit power and BS density.

Using stochastic geometry to analyze and design wireless
communication networks has been a key area of research in
the past decade, e.g., see [3], [5] and the references therein for
an overview of work in this area. To name a few, some recent
previous work includes analysis of downlink coverage for in-
terfering networks [6]–[8], heterogeneous networks consisting
of macro, pico and femto cells [7]–[10], modeling the uplink
coverage [11], multiple access interference modeling [12]–
[14], multi-antenna networks [9], [15], cooperative networks
[16], [17], and random power control [18]. Out of these works,
[6] and [7] are the most related ones to this paper as they focus
on obtaining expressions for downlink coverage probabilities
in interfering Poisson cellular networks.

In this paper, the BS locations are modeled using a homoge-
nous spatial PPP of intensity λ. The signal received by a user is
impaired by both path loss and fading. Different from [6] and
[7], which consider the classical power-law, i.e., g(r) = r−α

for α > 2, to characterize the location dependent path loss
values of the mobile users, the coverage analysis in this paper
is performed for general bounded path loss models that satisfy
some mild conditions. We show that using bounded path loss
models reveals some underlying important dynamics of the
tradeoff between power and BS density, which were otherwise
hidden under unbounded power law models. In particular, we
show that the density-invariance property of outage probability
obtained in [6] and [7] is primarily due to the unbounded
nature of the path loss model used in these previous works.
Hence, the coverage analysis in this paper mainly focuses on
bounded path loss models, which are more accurate for small
scale transmitter-receiver separations and asymptotically decay
as a power-law at large distances.

Another major contribution of this paper is the derivation of
coverage maximizing transmit power and BS density values
under power density constraints by using coverage probability
expressions obtained through stochastic geometry. This is
an under-explored research problem in the literature, but an
important one with an increasing interest on future green
wireless networks. In [19], Cao et al. focused on minimizing
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the BS density of a cellular network operating in an interfer-
ence limited regime under a probabilistic quality of service
constraint on the rate of a generic user. In this paper, different
from [19], the transmit power per BS P and the BS density
λ function as two main levers to increase or decrease the
network coverage probability. We focus on maximizing the
network coverage probability under three separate constraints.
In particular, we set finite individual constraints on P and
λ, i.e., P ≤ Pmax and λ ≤ λmax. However, since the BSs
are modeled as a PPP with an infinite number of BSs in the
network, the value of P on its own does not constitute a fair
and meaningful metric about the network power expenditure,
which is an important performance criterion. Therefore, we
also set finite constraints on Pλ (i.e., Pλ ≤ ρ), which can
be interpreted as the average transmit power per unit area or
the power density. This quantity is also called the average
network power consumption [20]. Due to the constraint on
the multiplication of P and λ, there is an obvious tradeoff
between our design parameters because an upwards increase
in one variable leads to a corresponding downwards decrease
in the other. Under these constraints, we investigate how
λ and P can be set optimally to maximize the downlink
network coverage probability for cellular wireless networks.
Our contributions are explained in more detail in the following
subsection together with the organization of the paper.

B. Contributions and the Organization of the Paper

In Section II, we first introduce the system model, formally
define three coverage models, and then formulate the coverage
maximization problem for general path loss models. The three
coverage models differ from each other depending on the
metric used to decide whether a user is in coverage or not. The
first model is simple as it neglects interference and random
fading effects, and decides on coverage by considering the
received unfaded signal-to-noise-ratio (SNR). That is, it as-
sumes that there exists a perfect scheduling scheme among the
BSs eliminating interference from nearby transmitters, and we
focus on an almost deterministic model of wireless networks
with the only randomness remaining in BS locations. The
other two coverage models are based on the received signal-to-
interference-plus-noise-ratio (SINR). In the first SINR-based
coverage model, we say a user is covered if the received SINR
from its nearest BS is above a given threshold value τ . In the
second SINR-based coverage model, we say a user is covered
if the maximum received SINR is above τ .

The downlink coverage probability analysis is given in
Section III. We obtain expressions for the coverage probability
for a generic user in the network, considering each of the
coverage models and general path loss models. In particular,
we show that the coverage probability is a strictly increasing
function of P . Then, we use the derived coverage probability
expressions to obtain solutions for the optimization problem
of interest in Section IV. We particularly discuss how the
optimization problem can be reduced to a constrained single
dimensional optimization problem over λ without any loss
of optimality, which simplifies the analysis. In particular, this
allows us to perform a numerical search over a compact
subset of candidate λ values on the Pλ = ρ curve to find
the optimum λ and P with limited computational complexity,

regardless of the coverage and path loss models. For the SNR-
based coverage model, we solve the downlink coverage max-
imization problem analytically, and obtain closed form results
for specific path loss models. The derived solutions indicate
why the bounded nature of the path loss model is important
to provide revealing insights about the downlink coverage
maximization problem. In contrast to the SNR-based coverage
model, obtaining analytical expressions for the optimal values
of λ and P for the SINR-based coverage models is relatively
more complex, and we resort to a numerical search over a
truncated set of candidate λ values on the Pλ = ρ curve.
We further prune off the search space by providing tighter
bounds on λ that can be utilized to increase the computational
efficiency of the numerical search in cases where λmax is
large.

Finally, we apply the derived results in Sections III and IV
to a specific bounded path loss model in Section V. After
obtaining expressions for the coverage probability for this
particular path loss model, we first illustrate how the coverage
behaves with different system parameters and the constraints.
In particular, we show that the coverage probability first
increases with λ up to a threshold value λ� since increasing
the density of the BSs decreases the average distance between
a user and its associated BS. However, after λ�, increasing
the BS density further will increase wireless multiple-access
interference more dominantly and deteriorate the coverage
probability. On the other hand, if the path loss model is un-
bounded, the coverage probability is strictly increasing with λ.
This behavior is a manifestation of the unrealistic singularity
at 0 in this path loss model. Due to such a singularity, a user
can progressively achieve higher channel power gains without
any bound by getting closer and closer to a BS, irrespective
of the interference. Therefore, maximizing the BS density in
the network maximizes the coverage simultaneously. Also,
we show that the density-invariance property of the outage
probability established in [6] and [7] can only be expected to
hold in sparse wireless networks.

Then, we illustrate how the maximum coverage probability
behaves with the power density constraint ρ. This curve can be
considered as the Pareto optimal boundary between the power
density constraint and the coverage probability. For a particular
ρ, any power density-coverage probability pair below the curve
is achievable, but suboptimal, whereas the power density-
coverage probability pairs above the curve cannot be achieved.
In addition, we also illustrate how the coverage maximizing
λ and P values change when the constraint on power density
is relaxed. In particular, we show that although the coverage
can be improved indefinitely by increasing P , it becomes
interference limited and cannot be improved indefinitely by
increasing λ. Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM SETUP

We consider a cellular network with BSs located according
to a homogenous spatial PPP Φ of intensity λ. Each BS
has a single transmit antenna with a transmit power of P .
Mobile users are equipped with single receive antennas, and
are located according to an arbitrary configuration over the
plane. We assume that there exists a test user located at the
origin, and we focus on the coverage probability of this user.
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This assumption does not limit the generality of our results
due to the Slivnyak’s theorem [3]–[5].

Consider a BS located at point x ∈ Φ. The path loss
value between the BS at x and the test user at the origin is
given by g(‖x‖), where ‖ · ‖ represents the Euclidean norm.
The path loss model is general in the sense that g can be
any function that is continuous, positive, non-increasing, and
g(r) = O (r−α) as r grows large for some α > 2. The additive
noise is assumed to be Gaussian with zero mean and unit
variance. In this setting, SNRx = Pg(‖x‖) represents the
received unfaded SNR at the test user from a BS located at
x ∈ Φ.

We are interested in the coverage of the test user. To this
end, we formally define three coverage models that differ from
each other depending on the metric considered when deciding
whether a user is in coverage or not. The first coverage model,
which we call the SNR-based coverage model (SBCM),
considers SNRx to be the decision metric for coverage. We
formally define the SBCM as follows.

Definition 1: We say that a user is covered according to
the SBCM if the received unfaded SNR from its nearest BS
is above a given threshold value τ , i.e., SNRx� > τ , where
x� is the location of the nearest BS.
In this simple coverage model, we neglect interference when
making a decision on coverage. This amounts to assuming
that there exists a perfect scheduler distributing all available
communication resources (e.g., frequency blocks, time slots
and etc.) among the BSs such that concurrent transmissions
take place without causing interference to each other. In
a more practical sense, it is enough to only consider the
communication resources available to the nearby BSs around
the test user since the interference coming from the distant
BSs will be negligible. Further, we also neglect random fading
effects, i.e., we focus on an almost deterministic model of
wireless networks, with the only randomness remaining in BS
locations.

Next, we focus on networks with interference and fading.
The random variable hx ∼ exp(1) represents the independent
and identically distributed (i.i.d.) random Rayleigh fading
coefficient for x ∈ Φ. Therefore, the received instantaneous
SINR at the test user from a BS at point x is given by

SINRx =
Phxg(‖x‖)

1 +
∑

y∈Φ\{x} Phyg(‖y‖) . (1)

The other two coverage models consider the received SINR
for determining whether a user is covered or not, and differ
from each other depending on the rules for user-BS asso-
ciation. In the first SINR-based coverage model, the users
connect to their nearest BSs for data communication, and
therefore we consider the SINR from the nearest BS to be the
decision metric when deciding whether a user is in coverage
or not. We call this the Nearest BS Coverage Model (NBCM),
and formally define it as follows.

Definition 2: We say that a user is covered according to the
NBCM if the received SINR from its nearest BS is above a
given threshold value τ , i.e., SINRx� > τ , where x� is the
location of the nearest BS.

On the other hand, the second SINR-based coverage model
considers the maximum received SINR to be the decision
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Fig. 1. Graphical representation of the solution to the optimization problem.

metric when deciding whether a user is in coverage or not.
We call it the Best BS Coverage Model (BBCM), and formally
define it as follows.

Definition 3: We say that a user is covered according to
the BBCM if the maximum received SINR is above a given
threshold value τ , i.e., maxx∈Φ SINRx > τ .

For the SBCM, it is not hard to see that the BS providing
the largest received unfaded SNR turns out to be the nearest
BS geographically. Therefore, the user-BS association will be
the same.

Let CS(P, λ) = Pr {SNRx� > τ}, CN (P, λ) =
Pr {SINRx� > τ} and CB(P, λ) = Pr {maxx∈Φ SINRx > τ}
be coverage probabilities for the SBCM, NBCM and BBCM,
respectively. We are interested in maximizing the coverage
probability under constraints on the BS transmit power and
the BS density. In particular, we set finite constraints on
P and λ. In the analysis, we refer to them as individual
constraints on P and λ. Further, we set finite constraints
on the Pλ product, which is a design parameter having the
power density interpretation since it represents the average
transmit power per unit area. We analyze how to set λ and P
optimally to maximize the network coverage probability such
that these constraints are not violated. The resulting coverage
maximization problem can be written as

maximize
P,λ

Ci(P, λ)

subject to Pλ ≤ ρ
0 ≤ P ≤ Pmax

0 ≤ λ ≤ λmax

, (2)

where i ∈ {S,N,B}.
The behavior of Ci (P, λ) and a graphical overview of the

structure of candidate solutions to the optimization problem
in (2) are illustrated in Fig. 1 through a schematic sketch that
roughly illustrates the behavior of the coverage probability.
Pλ = ρ represents a hyperbola in the P − λ plane (i.e.,
the green dashed line in Fig. 1, where we have set ρ = 1).
Hence, the shaded region, which is the domain enclosed by
the hyperbola, and the lines P = Pmax, P = 0, λ = λmax, and
λ = 0, represents the feasible set of pairs for this optimization
problem. The pair providing the highest coverage probability
gives us the optimal BS density λ� and the optimal power P �.
That is, if we plot the contours of Ci(P, λ) (the solid lines in
the figure) in the P−λ plane, we need to find the contour curve
having the highest value and intersecting with the feasible
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region. For this particular example, coverage probabilities of
0.3 and 0.45 can be achieved, but they are sub-optimal since
we can find a (λ�, P �) pair in the feasible set that also lies
on the higher Ci(P, λ) = 0.6 contour. Any probability greater
than 0.6 cannot be achieved because those contours fall outside
of the feasible set, e.g., Ci(P, λ) = 0.8. Hence, it turns
out that 0.6 is the maximum achievable coverage probability
for this example. It is interesting to note that the Pλ = ρ
curve will shift to the right when ρ is increased. Therefore,
if ρ ≥ Pmaxλmax, the feasible region will be the rectangle
enclosed by P = Pmax, P = 0, λ = λmax, and λ = 0, which
implies that the optimization problem will be independent of
ρ for this scenario. In the remaining parts of the paper, we will
focus on solving the optimization problem in (2) by making
use of the guiding principles explained above.

III. COVERAGE PROBABILITY CALCULATIONS

In this section, we will focus on the coverage models
defined in the previous section, and we will obtain expressions
for the coverage probability of a test user at the origin by using
key tools from stochastic geometry. The coverage probability
expressions will be derived for general path loss models, and
these expressions will be instrumental in solving the coverage
optimization problem posed in (2). We will start with the
simple but insightful coverage model given in Definition 1. In
addition to being insightful, this simplified model allows us to
analytically solve the optimization problem in (2), which will
be presented in Section IV.

A. The SNR-based Coverage Model (SBCM)

The coverage probability expression for the SBCM is for-
mally stated in the following lemma.

Lemma 1: For the SBCM, the coverage probability of a
user is given by

CS(P, λ) = 1− e−λπ(g−1( τ
P ))

2

, (3)

where g−1(x) = inf {r : g(r) ≤ x}.
Proof: See Appendix A.

B. The Nearest BS Coverage Model (NBCM)

The coverage probability expression for the NBCM is
formally stated in the following lemma.

Lemma 2: For the NBCM, the coverage probability of a
user is given by

CN (P, λ) = πλ

∫ ∞

0

exp (−q1(P, λ, r))dr, (4)

where q1(P, λ, r) = q2(P, λ,
√
r) + λπr, and

q2(P, λ, r) =
τ

Pg(r)
+ λ

∫ ∞

r2

πτg(
√
v)

g(r) + τg(
√
v)

dv.

Moreover, if the distance to the nearest BS ‖x�‖ is given,
the coverage probability is given by CN (P, λ| ‖x�‖) =
exp (−q2(P, λ, ‖x�‖)).

Proof: See Appendix A.
We note that, as a by-product of Lemma 2, we obtain the

coverage probability expression for the special case of the
NBCM, in which the distance to the nearest BS is given.

Although this special case of the NBCM is not very much
helpful in solving the optimization problem of interest in
this paper, it can still be used to obtain coverage probability
expressions for network models where the distance between
the user and its associated BS is fixed. For example, we can
use this result to study coverage (using general bounded path
loss models) in an ad hoc network where the transmitter-
receiver pairs are modeled using the well known Poisson
bipolar model (PBM) [4], [21], [22].

C. The Best BS Coverage Model (BBCM)

In this coverage model, a user is said to be covered if the
maximum of received SINRs from all the BSs is above τ ,
where τ > 1. The assumption of τ > 1 makes the analysis
more tractable because it ensures that only one BS will provide
an SINR value above the threshold [7]. This assumption is also
common in most existing works that consider the maximum
SINR value as a decision variable for scheduling [23]–[25].
Under this assumption, the coverage probability expression for
the BBCM is obtained in the following lemma.

Lemma 3: For the BBCM, the coverage probability of a
user is given by

CB(P, λ) = πλ

∫ ∞

0

exp (−q3(P, λ, r))dr, (5)

where

q3(P, λ, r) =
τ

Pg(
√
r)

+ λ

∫ ∞

0

πτg(
√
v)

g(
√
r) + τg(

√
v)

dv.

Proof: See Appendix A.
It is not hard to see that the coverage expressions obtained

in Lemmas 1, 2 and 3 are all strictly increasing functions
of P . This is obvious for the SBCM since increasing the
transmit power increases the received unfaded SNR. Even for
the SINR-based models, increasing the transmit power reduces
the effect of noise on the SINR, which can be written as

SINRx =
hxg(‖x‖)

1
P +

∑
y∈Φ\{x} hyg(‖y‖)

.

The above expression clearly shows that increasing P de-
creases the term related to the background noise in the
denominator, thus increasing the SINR regardless of the noise
power. It can be also seen that the SINR expression will be
independent of P irrespective of the path loss model if the
noise power is zero (interference limited networks). This leads
to the conclusion of coverage probability being independent of
P .1 Similar observations were made in [6] and [7]. However,
as shown in the remaining parts of the paper, the behavior of
the coverage probability with respect to λ will depend on the
path loss model, and considering bounded path loss models
will provide different design insights than the ones presented
in [6] and [7].

Next, by using the coverage expressions presented in this
section, we will focus on finding the coverage maximizing
power P � and BS density λ� that solve the optimization
problem posed in (2).

1Note that the coverage probability expressions in Lemmas 2 and 3 can be
easily extended for an interference limited network by setting 1

P
= 0.
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IV. COVERAGE MAXIMIZING P AND λ

The main purpose of this section is to obtain coverage
maximizing (P, λ) pairs by solving the optimization problem
given in (2) for general bounded path loss models. We will
start by recasting the optimization problem in (2) using an
equivalent format, which will facilitate the analysis. In particu-
lar, we combine the first and second constraints to obtain a new
constraint P ≤ min

{
Pmax,

ρ
λ

}
, and rewrite the optimization

problem as follows.

maximize
P,λ

Ci(P, λ)

subject to 0 ≤ P ≤ min
{
Pmax,

ρ
λ

}
0 ≤ λ ≤ λmax

, (6)

where i ∈ {S,N,B}.
As discussed in the previous section, the coverage prob-

ability expressions obtained in Lemmas 1, 2 and 3 are all
strictly increasing functions of P . Therefore, any P � solving
(6) must achieve the power constraint with equality. Substi-
tuting P = min

{
Pmax,

ρ
λ

}
in the objective function reduces

the problem to a one dimensional constrained optimization
problem without any loss of optimality. By making use of
these properties, we will now focus on obtaining the coverage
maximizing (P, λ) pairs. We will start with the SBCM.

A. The SNR-based Coverage Model (SBCM)

In the SBCM, CS(P, λ) is a strictly increasing function
of λ as well (see Lemma 1). Therefore, the solution to the
optimization problem will be trivial if λmaxPmax ≤ ρ. As
explained with regards to Fig. 1, the optimization problem will
be independent of ρ for this scenario, and the coverage can be
maximized by setting λ = λmax and P = Pmax. Therefore,
it is enough to only consider the case λmaxPmax > ρ for the
SBCM. In this case, we can trace for λ� and P � on the Pλ = ρ

curve, considering λ ∈
[

ρ
Pmax

, λmax

]
or P ∈

[
ρ

λmax
, Pmax

]
.

We first obtain a solution to the optimization problem of
interest for the well known unbounded path loss model g(r) =
r−α, which is stated in the next theorem.

Theorem 1: If g(r) = r−α for α > 2, λ� = λmax and
P � = ρ

λmax
solve the optimization problem in (2).

Proof: See Appendix B.
Theorem 1 shows that if g(r) = r−α, we end up having

trivial and perhaps counter intuitive solutions to the optimiza-
tion problem posed in (2), i.e., the coverage probability can
be maximized by maximizing the BS density in the network
regardless of τ and α. If the individual constraints on P and
λ are relaxed, i.e., Pmax = ∞ and λmax = ∞, CS(P, λ) is
asymptotically maximized when λ → ∞ and P → 0. This
behavior is a manifestation of the unrealistic singularity at 0
in this path loss model, and can be expected to arise with
any unbounded path loss model2. Further discussion on these
flawed conclusions will be provided in Section V.

To avoid such solutions, we have assumed that the path loss
model is bounded above by a constant g0. This assumption
automatically imposes a lower limit on the feasible set of
transmit powers as P ≥ τ

g0
. If P < τ

g0
, the coverage

2The main focus of this paper is on the general bounded path loss models,
and hence we do not discuss general unbounded path loss models any further.

probability is zero, i.e., see Definition 1. Hence, the bounded
model itself imposes an implicit upper bound on the optimal
λ values, thus we have λ ∈

[
ρ

Pmax
,min

{
λmax,

ρg0

τ

}]
. This

observation implies that a numerical search can be performed
over a compact subset of candidate λ values on the Pλ = ρ
curve to find the optimum λ and P with limited computational
complexity.

In the next theorem, we show that if the path loss function
satisfies some sufficient conditions in addition to the ones
stated in Section II, we can further truncate the search space,
and we can obtain analytical expressions for coverage maxi-
mizing λ and P values. For the clarity of presentation, we will
only focus on the most interesting cases, i.e., we will assume
Pmaxλmax > ρ and λmax < ρg0

τ . Note that the assumption
on λmax will not affect the optimization problem since the
coverage probability is zero for all λ ≥ ρg0

τ . We present the
coverage results for this case through the following theorem

Theorem 2: Let g(r) be bounded from above, twice contin-
uously differentiable, and satisfies 3 (g′(r))2 ≥ 2g(r)g′′(r) for

all r ∈
[
g−1

(
τλmax

ρ

)
, g−1

(
τ

Pmax

)]
. If there exists a solution

r� to r + 2g(r)
g′(r) = 0 such that λ� = ρ

τ g(r
�) ∈ [ ρ

Pmax
, λmax],

then it is unique, and λ� maximizes the coverage probability.
Otherwise, λ� = ρ

Pmax
or λ� = λmax. Further, the coverage

probability maximizing power P � is given by ρ
λ� .

Proof: See Appendix B.
The sufficient conditions given in Theorem 2 are in fact

satisfied by many frequently used bounded path loss models,
and an example is provided in Section V. Next, we will
consider the SINR based coverage models.

B. The SINR-based Coverage Models

Obtaining coverage maximizing P and λ pairs for the
SINR based models is relatively more difficult due to the
complexity of the coverage probability expressions. Therefore,
we will first modify the coverage probability expressions
obtained in the previous section such that they represent the
objective function of the optimization problem of interest more
compactly, through the following lemma.

Lemma 4: Let j ∈ {1, 3}, λ ∈ [0, λmax], and q̄j be as given
below.

q̄j (λ, r) =

{
qj (Pmax, λ, r) if λ ≤ ρ

Pmax

qj
(
ρ
λ , λ, r

)
if λ ≥ ρ

Pmax

.

On the curve P = min
{
Pmax,

ρ
λ

}
, let also CN (λ) and

CB (λ) be coverage probabilities as a function of λ corre-
sponding to those obtained in Lemmas 2 and 3, respectively.
Then, it is enough to replace qj with q̄j , j = 1 and 3, to obtain
CN (λ) and CB (λ), respectively.

We skip the proof since it is straightforward. According to
this lemma, if ρ ≤ Pmaxλmax, there exists λ̄ = ρ

Pmax
∈

(0, λmax] such that P = Pmax for λ ≤ λ̄, and P = ρ
λ for

λ ≥ λ̄. Therefore, for this case, CN (λ) and CB (λ) can be
visualized as a concatenation of two functions with a gluing
point at ρ

Pmax
. Also, if ρ > Pmaxλmax, it is not hard to see

that P � = Pmax. However, unlike the SBCM, the value of λ�

is not straightforward to obtain even for this particular case.
Now, we will focus on using the coverage probability

expressions obtained in Lemma 4 to obtain the coverage
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maximizing transmit power and BS density for the SINR-
based coverage models. Obtaining analytical expressions for
λ� and P � for these two models, as we did for the SBCM,
is rather complex. This because formally characterizing the
behavior of CN (λ) and CB(λ) with respect to λ is difficult due
to the presence of the integral over the variable representing
the distance. This means the behavior of the objective function
will depend on the path loss model. Moreover, the objective
function is a product of a strictly increasing (i.e., the πλ term
in front of the integral) linear function and a strictly decreasing
(i.e., the integral term) convex function of λ. Therefore, we
need to study the behavior of the product of two convex
functions. The behavior of the resulting product function
cannot be generalized [26]. However, since λ is bounded by
λmax, a numerical search can be performed over the compact
subset of candidate λ values, to find the optimum λ with
limited computational complexity.

In the next theorem, we provide further upper bounds on
λ� that can be used effectively in cases where λmax is large to
further decrease the time of the numerical search for finding
λ� and P �.

Theorem 3: Let λ� and P � be the optimal BS density and
the optimal transmit power maximizing coverage probability
subject to Pλ ≤ ρ, λ ≤ λmax and P ≤ Pmax, respectively,
for both NBCM and BBCM. Then, for Pmaxλmax < ρ, P � =
Pmax and λ� ∈ [0, λmax]. For Pmaxλmax ≥ ρ,

λ� ∈
{[

0,min
{
ρg0

τ , λmax

}]
if Pmax ≥ τ

g0[
0, ρ

Pmax

]
if Pmax ≤ τ

g0

,

and P � = ρ
λ� .

Proof: See Appendix B.

According to Theorem 3, the numerical search for optimiz-
ing coverage probability can be further truncated depending on
the conditions given in the theorem. How large λmax should be
to truncate the search space is relative to Pmax and ρ values.
If λmax ≥ ρ

Pmax
, a truncation of the search space is possible.

Otherwise, λmax is already small (relative to Pmax and ρ),
and we should search over [0, λmax] to find λ�. The tightness
of these bounds will depend on the path loss model and the
selection of λmax. It may be possible to obtain tighter bounds
if the analysis is performed for a specific path loss model.
The theorem will also be useful in cases where the individual
constraints on λ and P are relaxed. In this case, the numerical
search for optimizing coverage probability can be performed
just over λ ∈ [

0, ρg0

τ

]
, thus still providing a compact subset

of candidate λ values to perform the numerical search. In the
next section, we will apply these results to a specific bounded
path loss model to provide further insights.

Before proceeding with numerical examples, we note that
the special case of the NBCM in which the distance to the
nearest BS is fixed provides useful insights when the objective
function does not strictly decrease with λ. For example, we can
consider maximizing the average number of users covered per
unit area with the same set of constraints as in (2). For a given
distance, the problem can be solved by solving the equivalent
optimization problem of maximizing λCN (P, λ| ‖x�‖) [27].

V. APPLICATIONS AND NUMERICAL EVALUATIONS

The results obtained in Sections III and IV are applicable to
any bounded path loss model that satisfies the conditions given
in Section II. Therefore, they can be applied to most bounded
path loss models found in the literature including path loss
models that are not continuously differentiable. For example,
g(r) can be g(r) = max(r0, r)

−α, where r0 is a constant that
accounts for a near-field zone around each BS up to a certain
distance. In this section, we will apply our results to the path
loss model g(r) = (1 + rα)−1 for α > 2 [12], [13], [28], to
provide further insights. For this model, g0 = 1.

We will start with the SBCM, and will provide an ap-
plication of the results in Theorem 2 through the following
corollary.

Corollary 1: For the path loss model taking the form of
g(r) = (1 + rα)

−1 for α > 2, λ� = ρ
τ

(
α−2
α

)
maximizes the

coverage probability if λ� ∈ [ ρ
Pmax

, λmax]. Otherwise, λ� =
ρ

Pmax
or λ� = λmax. P � is given by ρ

λ� .
Proof: See Appendix C.

Next, we focus on the SINR-based models, and obtain
coverage probability expressions considering this specific path
loss model.

Corollary 2: For the path loss model taking the form of
g(r) = (1 + rα)−1 for α > 2, q1 and q3 in Lemmas 2 and 3
can be further simplified as

q1(P, λ, r) =
τ
(
1 + r

α
2

)
P

+
2πτ

(
1 + r

α
2

)
λ

(α− 2) r
α
2 −1

×GHF

(
1, 1− 2

α
; 2− 2

α
;−τ − (1 + τ)

r
α
2

)
+ λπr,

q3(P, λ, r) =
τ
(
1 + rα/2

)
P

+
2π2 csc

(
2π
α

)
τ
(
1 + rα/2

)
λ

α
[
τ
(
1 + rα/2

)
+ 1

]1−2/α
,

respectively, where GHF(·) represents the Gauss hypergeo-
metric function [29].

Proof: See Appendix C.
We first present how the coverage probability behaves with

λ under constraints on λ, P and Pλ. We do not focus on
the SNR-based coverage model for the numerical evaluations
since its behavior, and the solutions to (2), can be fully
characterized analytically when applied to this specific path
loss model, as shown in Corollary 1. Figure 2 illustrates the
behavior of the coverage probability considering the SINR-
based coverage models, and for ρ = 1, α = 4, τ = 1.1,
λmax = 1.25, and Pmax = 2. We have Pmaxλmax ≥ ρ.
Therefore, as discussed in Lemma 4, the gluing point is
at ρ

Pmax
= 0.5. We can observe that for both NBCM and

BBCM, the coverage maximizing λ is between zero and
ρ
τ , which is in accordance with Theorem 3. The coverage
probability first increases with λ up to λ� since increasing
the density of the BSs decreases the average distance between
a user and its associated BS. However, after λ�, increasing the
density further will increase interference more dominantly and
deteriorate the coverage probability. For this set of parameters
and the selected path loss model, the coverage probability
seems to be quasi-concave over λ. Therefore, in this specific
instance, a common root finding algorithm can be used on
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Fig. 2. Behavior of coverage probability with λ, where ρ = 1, α = 4,
τ = 1.1, λmax = 1.25 and Pmax = 2.

the first derivative of the coverage probability to find λ�.3

Our bounds can be used to increase the efficiency of such a
root finding procedure as well. Also, as expected, we observe
that CB(λ

�) ≥ CN (λ�). Simulation results are also provided
to validate the coverage probability expressions obtained in
Corollary 2.

Furthermore, Fig. 2 depicts the behavior of the coverage
probability of the BBCM if an unbounded path loss model,
g(r) = r−α, is used for the coverage analysis (denoted by
CB,ubg(λ) in the figure). Similar to the result presented for
the SBCM in Theorem 1, the coverage probability is strictly
increasing with λ for the SINR-based models. As mentioned
before, this behavior is a manifestation of the unrealistic sin-
gularity at 0 in this path loss model. Due to such a singularity,
a user can progressively achieve higher channel power gains
without any bound by getting closer and closer to a BS,
irrespective of the interference. Therefore, maximizing the BS
density in the network maximizes the coverage simultaneously,
i.e., when λ tends to λmax as discussed in Theorem 1. It is also
interesting to consider how the coverage probability behaves
with λ in an interference limited network. Rather surprisingly,
[6] and [7] showed that the coverage probability is independent
of λ in interference limited networks, which can be called the
density-invariance property of outage probability. However,
this seems to be another manifestation of the aforementioned
singularity. When increasing λ, the unbounded channel gains

3In implementation, special consideration should be given to the point
ρ

Pmax
since the function is not differentiable at this point.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ρ

O
pt

im
al

C
ov

er
ag

e
P

ro
ba

bi
lit

y

 

 

BBCM: Pmax = 5, α = 5

BBCM: Pmax = 10, α = 3

BBCM: Pmax = 5, α = 3

NBCM: Pmax = 5, α = 3

Fig. 3. The boundary between feasible and infeasible power density-coverage
probability pairs for given BS density and power constraints, where τ = 1.1
and λmax = 1.
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Fig. 4. The behavior of λ� with the power density constraint ρ, where
τ = 1.1, λmax = 1 and Pmax = 10.

cause an increase in the strength of the useful signal to fully
cancel out the increased interference power, which leads to
such an invariance property. With a bounded path loss model,
this invariance property can be expected to hold only for
small values of λ since typical distances between transmitters
and receivers in scarce wireless networks are usually large
and both bounded and unbounded path loss models behave
similarly for such large distances. How small the values of
λ for this density invariance property to hold depends on
the particular choice of the bounded path loss model. Figure
2(b), which is presented to illustrate the behavior of the
coverage probability for small values of λ, clearly shows this
phenomenon, and also shows that the threshold value after
which the density-invariance property does not hold is rather
small. Therefore, the density-invariance property of outage
probability can only be expected to arise in sparse networks.

Figure 3 illustrates the change of maximum achievable
coverage probability as a function of ρ for the SINR-based
models. The curves, in particular, represent the boundaries
between feasible and infeasible power density-coverage prob-
ability pairs for this particular path loss model. We have
set τ = 1.1 and λmax = 1. Consider one of the curves
in the figure and a given power density constraint ρ̄. For
this power constraint, any power density-coverage probability
pair below the curve can be achieved, whereas the power
density-coverage probability pairs above the curve cannot be
achieved. However, although being achievable, a pair strictly
below the curve is sub-optimal in the sense that we can
achieve a higher coverage probability while maintaining the
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same power density constraint ρ̄, or we can achieve the same
coverage probability with ρ < ρ̄. Therefore, these curves can
be considered as the Pareto optimal boundary between the
power density constraint and the coverage probability for the
system in consideration.

We can also clearly observe that the coverage probability
is constant after a certain value of ρ in Fig. 3. Hence, the
coverage optimization problem becomes independent of ρ
after this particular value of ρ. It is interesting to note that the
maximum achievable coverage probabilities increase with α,
which is rather counter-intuitive at first glance. In the current
setting, the signals are impaired by interference. Increasing α
decreases both the received power and the interference, result-
ing in an upwards shift in the optimum coverage probability
curves. However, when ρ is small, we can observe that the
coverage probabilities decrease with α. This is because at
low ρ, the SINR is noise dominated. Increasing α decreases
the received power, thus reducing the SINR and the coverage
probability.

Figure 4 illustrates the behavior of λ� and P � with the
power density constraint ρ for the BBCM. The curves for
the NBCM are similar, and therefore skipped to eliminate
repetition. The plot contains two y-axis, with the one on the
left representing the values for λ�, and the one on the right
representing the values for P �. We will use the α = 3 curves
for the explanations below, and we have τ = 1.1, λmax = 1
and Pmax = 10. We can observe that both λ� and P � increase
nonlinearly with ρ up to λ� = ρ

Pmax
, which is the point

where P � reaches the limit Pmax. When ρ is further increased,
λ� increases linearly with ρ with a slope of 1

Pmax
, and then

becomes independent of ρ. Note that the value of ρ at which
λ� becomes independent of ρ, and the value of ρ at which
the optimal coverage probability becomes independent of ρ,
which is illustrated in Fig. 3, coincide. It is interesting to note
that unlike the SBCM case, λ� becomes independent of ρ
before ρ exceeds Pmaxλmax. This is because, for the SBCM,
the coverage was a strictly increasing function of both λ and
P as shown in Lemma 1. For this particular scenario on the
other hand, it is a strictly increasing function of P , but not
over λ as shown in Fig. 2. This observation has the important
ramification that, after some value of ρ, there is no benefit of
increasing λ excessively for the purposes of coverage maxi-
mization, because interference in the network also increases
with denser BS deployment. The system would do better by
increasing P instead, but in this particular case, it has already
fully utilized the power resources. These explanations can also
be used to deduce the behavior of λ� and P � if λmax is set at
a very small value, i.e., λ� reaches λmax before P � reaches
Pmax (plots are not provided to avoid repetition). For this case,
λ� and P � will increase nonlinearly with ρ up to λ� = λmax,
after which λ� will become independent of ρ. However, since
the coverage is strictly increasing with P , P � will increase
linearly with ρ with a slope of 1

λmax
until it reaches Pmax.

Finally, Fig. 4 shows that λ� increases with α. This is because
both interference and transmitted signal power decay more
rapidly at higher values of α.

The behavior of λ� with ρ can also be explained with
further insights by using the behavior of CB(λ). We set
τ = 1.1, α = 3, λmax = 1 and Pmax = 10 in Fig. 5.
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Fig. 5. The behavior of coverage probability with λ for different power
density constraints ρ, where τ = 1.1, α = 3, λmax = 1 and Pmax = 10.

As explained in Lemma 4, the behavior of CB(λ) can be
visualized as the concatenation of two functions with a gluing
point at ρ

Pmax
, i.e., CB(λ) � CB(Pmax, λ) if λ ≤ ρ

Pmax
, and

CB(λ) � CB(
ρ
λ , λ) if λ > ρ

Pmax
. In Fig. 5(a), we illustrate

the behavior of CB(
ρ
λ , λ) with λ for three different values of

ρ, and the behavior of CB(Pmax, λ), which is independent of
ρ. For a particular value of ρ, the gluing point, i.e., λ = ρ

Pmax
,

is the intersection point of CB(
ρ
λ , λ) and CB(Pmax, λ). The

resulting CB(λ) curves are presented in Fig. 5(b). For an
example, if ρ = 0.1, CB(λ) will be represented by the red

CB(Pmax, λ) line in Fig. 5(a) for values of λ ∈
[
0, 0.1

Pmax

]
,

and will be represented by the blue dashed line elsewhere, as
shown in Fig. 5(b). Let λ1 be the value of λ that maximizes
CB(Pmax, λ), and let λ2(ρ) be the value of λ that maximizes
CB(

ρ
λ , λ). Now let us focus on the behavior of CB(λ). As

shown in Fig. 5(a) for ρ = 0.1 case, when ρ is small, λ2(ρ)
will be the coverage maximizing λ, which increases with ρ.
This behavior can be observed for all values of ρ that satisfy

ρ
Pmax

≤ λ2(ρ). However, if λ2(ρ) ≤ ρ
Pmax

≤ λ1, we have
λ� = ρ

Pmax
, as shown in the figure for ρ = 0.4. Therefore, λ�

increases linearly with ρ within this interval, which can also
be observed in Fig. 4. When λ1 ≤ ρ

Pmax
, λ� = λ1 as shown

in the figure for ρ = 1. Therefore, λ� will be independent of
ρ for all ρ > Pmaxλ1.

VI. CONCLUSIONS

In this paper, we have studied the coverage probability
maximization problem for Poisson cellular networks, under
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constraints on the transmit power P , BS density λ, and power
density Pλ. We have considered three coverage models that
differ from each other depending on the metric used to decide
whether a user is in coverage or not. The first model is based
on the received unfaded SNR at a user, and the other two
models that have different user-BS association rules are based
on the users’ received instantaneous SINR. We have obtained
coverage probability expressions using stochastic geometry for
each of these models. Firstly, we have solved the optimization
problem analytically considering the SNR-based coverage
model, where interference and random fading effects are
neglected. In particular, we have shown that using unbounded
path loss models to characterize the location dependent path
loss values of the users will lead to trivial solutions. We have
then focused on the SINR-based coverage models, considering
general bounded path loss models. To this end, we have
shown how the optimization problem can be reduced to a
constrained single dimensional optimization problem over λ
without any loss of optimality, and we have resorted to a
numerical search over a compact subset of candidate λ values
to find the optimum λ. We have further truncated the search
space by providing more tighter bounds on λ. Finally, we
have applied the derived results to a specific bounded path
loss model to obtain further insights. In particular, we have
illustrated how the coverage probability behaves for different
system parameters and the constraints, and how the coverage
maximizing λ and P values change when the constraint
on power density is relaxed. The plots show that although
the coverage can be improved indefinitely by increasing P ,
the coverage becomes interference limited and it cannot be
improved indefinitely by increasing λ. On the other hand, if the
path loss model is unbounded, the coverage probability can be
improved indefinitely by increasing λ, which is a manifestation
of the unrealistic singularity at 0 in this path loss model.
We have also illustrated the Pareto optimal boundary between
the power density constraint and the coverage probability for
given λmax and Pmax. Any power density-coverage probability
pair below the curve is achievable, but suboptimal, whereas
any power density-coverage probability pair above the curve
cannot be achieved.

APPENDIX A
COVERAGE PROBABILITY CALCULATIONS

A. SBCM: Proof of Lemma 1

We have

CS(P, λ) = Pr {Pg(‖x�‖) > τ} = Pr
{
‖x�‖ ≤ g−1

( τ

P

)}
since g is non-increasing. Also, since the BS locations are
modeled as a PPP, the cumulative distribution function (CDF)
of ‖x�‖ can be written as

F‖x�‖(r) = 1− e−λπr2

, (7)

by using the null probability for PPPs [4]. Therefore,

Pr
{‖x�‖ ≤ g−1

(
τ
P

)}
= 1 − e−λπ(g−1( τ

P ))
2

, which com-
pletes the proof.

B. NBCM: Proof of Lemma 2

We will first consider the distance to the nearest
BS to be given. Then, we have CN (P, λ| ‖x�‖) =

Pr
{

Phx�g(‖x�‖)
1+I > τ

∣∣∣ ‖x�‖
}

, where I represents the interfer-
ence term in (1). By conditioning on I , and by using the fact
that fading gains are unit exponential distributed,

CN (P, λ| ‖x�‖) = EI

[
Pr

{
hx� >

τ(1 + I)

Pg(‖x�‖)
∣∣∣∣ I, ‖x�‖

}]

= e
−τ

Pg(‖x�‖)EI

[
e

−τI
Pg(‖x�‖)

]
. (8)

Since fading gains are i.i.d. and independent of Φ, we have

EI

[
e

−τI
Pg(‖x�‖)

]
= EΦ

⎡
⎣ ∏
y∈Φ\{x�}

Eh

[
e

−τhg(‖y‖)
g(‖x�‖)

]⎤⎦

= EΦ

⎡
⎣ ∏
y∈Φ\{x�}

g(‖x�‖)
g(‖x�‖) + τg(‖y‖)

⎤
⎦ .

We note that Φ′ = Φ \ {x�} is a PPP on R
2 \B (0, ‖x�‖),

where B (0, r) represents a disk centered at the origin with
radius r. By using the probability generating functional for
PPPs,

EI

[
e

−τI
Pg(‖x�‖)

]
= e

−λ
∫
R2\B(0,‖x�‖)

(
1− g(‖x�‖)

g(‖x�‖)+τg(‖y‖)

)
dy
.

By changing the coordinates from cartesian to polar and eval-
uating the resulting integration over the area of the interfering
BSs, we have

EI

[
e

−τI
Pg(‖x�‖)

]
= exp

(
−λ

∫ ∞

‖x�‖

2πτtg(t)

g(‖x�‖) + τg(t)
dt

)
.

Using the final expression obtained for EI

[
e

−τI
Pg(‖x�‖)

]
in (8)

with a change of variables t2 = v gives us CN (P, λ| ‖x�‖) =
exp (−q2(P, λ, ‖x�‖)).

Then, we have

CN (P, λ) =

∫ ∞

0

CN (P, λ|t)dF‖x�‖(t)

= 2λπ

∫ ∞

0

t exp
(−λπt2 − q2 (P, λ, t)

)
dt.

A change of variables t2 = r completes the proof.

C. BBCM: Proof of Lemma 3

Since τ > 1, we have

CB(P, λ) =
∑
x∈Φ

Pr {SINRx > τ} = E

[∑
x∈Φ

1{SINRx>τ}

]
.

Then, by using Campbell-Mecke Theorem [4],

CB(P, λ) = λ

∫
R2

Pr

{
Phxg(‖x‖)

1 + I
> τ

}
dx,

where I represents the interference term in (1). Making a
coordinate change from cartesian to polar, and by using
Lemma 2, we can write

CB(P, λ) = 2πλ

∫ ∞

0

Pr

{
Phxg(r)

1 + I
> τ

∣∣∣∣ ‖x‖ = r

}
rdr

= 2πλ

∫ ∞

0

e
−τ

Pg(r) EI

[
e

−τI
Pg(r)

]
rdr.
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Evaluation of EI

[
e

−τI
Pg(r)

]
is similar to what we have done in

the proof of Lemma 2, with the only difference being in the
limits of the integration because the interfering BSs can now
be located anywhere in the plane, i.e., the integration is from
0 to ∞, which completes the proof.

APPENDIX B
SOLUTIONS TO THE OPTIMIZATION PROBLEM

A. SBCM with an Unbounded Path Loss Model: Proof of
Theorem 1

From Lemma 1, we have

CS(λ) = 1− e−π( ρ
τ )

2
α λ1− 2

α

for P = ρ
λ . This is clearly a strictly increasing function of

λ since α > 2. Therefore, coverage is maximized by setting
λ = λmax and P = ρ

λmax
, which completes the proof.

B. SBCM with a Bounded Path Loss Models: Proof of Theo-
rem 2

Since we are tracing values on the Pλ = ρ curve, P = ρ
λ

and
CS(λ) � CS(

ρ

λ
, λ) = 1− e−λπ(g−1( τλ

ρ ))
2

.

Let f(λ) = λ
(
g−1

(
τλ
ρ

))2

. Maximizing CS(λ) is equivalent

to maximizing f(λ). By differentiating f(λ) with respect to

λ, we get f ′(λ) = g−1
(

τλ
ρ

)
q(λ), where

q(λ) = g−1

(
τλ

ρ

)
+

2λτ

ρg′
(
g−1

(
τλ
ρ

)) .
Let g−1

(
τλ
ρ

)
= r. Since λ ∈

[
ρ

Pmax
, λmax

]
, we have r ∈[

g−1
(

τλmax

ρ

)
, g−1

(
τ

Pmax

)]
. Therefore, if a solution r� to

q(r) = r+ 2g(r)
g′(r) = 0 exists, λ� = ρ

τ g(r
�) gives us the critical

values of λ that maximize f(λ).
Now, by differentiating q(λ) with respect to λ,

q′(λ) =
τ

ρg′
(
g−1

(
τλ
ρ

))
⎡
⎢⎣3− 2λτ

ρ

g′′
(
g−1

(
τλ
ρ

))
(
g′
(
g−1

(
τλ
ρ

)))2

⎤
⎥⎦ .

(9)

The term in the parenthesis in (9) can be replaced by
t(r) = 3 − 2g(r) g

′′(r)
g′(r) . We have t(r) ≥ 0 since 3 (g′(r))2 ≥

2g(r)g′′(r) for all r in the region of interest. Therefore,
q′(λ) ≤ 0, implying that q(λ) is strictly decreasing with λ

for λ ∈
[

ρ
Pmax

, λmax

]
.

Now, we will consider three different cases. Firstly, if
q( ρ

Pmax
) ≤ 0, q(λ) ≤ 0 for all λ ∈

[
ρ

Pmax
, λmax

]
. Thus,

λ = ρ
Pmax

maximizes f(λ). Secondly, if q(λmax) ≥ 0,

q(λ) ≥ 0 for all λ ∈
[

ρ
Pmax

, λmax

]
. Thus, λ = λmax

maximizes f(λ). Finally, if q( ρ
Pmax

) ≥ 0 and q(λmax) ≤ 0,
then there exists a unique critical value λ� = ρ

τ g(r
�) that

makes q(λ�) = 0, and thus maximizes f(λ).

C. NBCM and BBCM: Proof of Theorem 3

We will only give the proof for the NBCM. The proof for
the BBCM follows from similar lines, and hence, is omitted.
Directly from the constraints in (2), we have λ� ∈ [0, λmax]
for Pmaxλmax < ρ, and P � = Pmax since the coverage
probability is strictly increasing with P .

Now we will consider Pmaxλmax ≥ ρ, which leads to a
tradeoff between P and λ. We will first study the behavior
of the objective function on the curve P = ρ

λ . For this case,
CN (λ) takes the form of

CN (λ) = πλ

∫ ∞

0

exp

(
−λ

(
q̃(r) +

τ

ρg(
√
r)

))
dr,

where q̃(r) is a positive function of r. By differentiating with
respect to λ, we have

C′
N (λ) = π

∫ ∞

0

e
−λ

(
q̃(r)+ τ

ρg(
√

r)

) [
1− λτ

ρg(
√
r)

− λq̃(r)

]
dr,

which is strictly negative if λτ
ρg0

≥ 1. Therefore, CN (λ) is
strictly decreasing for all λ ≥ ρg0

τ .
If Pmaxλmax ≥ ρ, we have P = ρ

λ for all λ ≥ ρ
Pmax

. We
have already shown that the coverage probability on the curve
P = ρ

λ is strictly decreasing for all λ ≥ ρg0

τ . Therefore, if
ρ

Pmax
≥ ρg0

τ , we have λ� ∈
[
0, ρ

Pmax

]
. Similarly, if ρ

Pmax
≤

ρg0

τ , we have λ� ∈ [
0,min

{
ρg0

τ , λmax

}]
, which completes

the proof.

APPENDIX C
APPLICATIONS TO SPECIFIC PATH LOSS MODELS

A. SBCM: Proof of Corollary 1

The proof is a direct application of the results ob-
tained in Theorem 2. To start with, g(r) = (1 + rα)

−1

is twice continuously differentiable, and bounded above by
one. We have g′(r) = −αrα−1 (g(r))

2, and g′′(r) =

− g′(r)
r [2αrαg(r) − (α− 1)]. Therefore,

3− 2
g(r)g′′(r)

(g′(r))2
= 1− 2

α
+

1

rα

(
2− 2

α

)
> 0.

A unique solution to r + 2g(r)
g′(r) = 0 exists, and it can be

simplified as r� =
(

2
α−2

) 1
α

. Thus, λ� = ρ
τ g(r

�) = ρ
τ

(
α−2
α

)
if λ� ∈

[
ρ

Pmax
, λmax

]
.

B. NBCM and BBCM: Proof of Corollary 2

For g(r) = (1 + rα)
−1, from Lemma 2, we have

q2(P, λ, r) =
τ (1 + rα)

P
+

λπτ (1 + rα)

∫ ∞

r2

1

1 + v
α
2 + τ (1 + rα)

dv.

A variable change v
α
2 = t gives us

q2(P, λ, r) =
τ (1 + rα)

P
+ λπτ (1 + rα)

2

αβ1

∫ ∞

rα

t
2
α−1

1 + t
β1

dt,

where β1 = τ (1 + rα) + 1. Simplifying the integration using
the table of integrals leads to the required expression for q1
[29].
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Similarly, by using Lemma 3 and the same variable change,
we have

q3(P, λ, r) =
τ
(
1 + r

α
2

)
P

+ λπτ
(
1 + r

α
2

) 2

αβ2

∫ ∞

0

t
2
α−1

1 + t
β2

dt,

where β2 = τ
(
1 + r

α
2

)
+1. Simplifying the integration using

the table of integrals completes the proof.
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