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Frequency-Correlation Analysis of PMD Emulators
With Symmetric Polarization Scrambling
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Abstract—The authors investigate the artificial frequency corre-
lation induced by polarization scrambled statistical polarization-
mode-dispersion emulators. A simple model is derived that
accurately predicts the average frequency correlation when the
scrambling is symmetric. It is shown that the nature of the
symmetry affects the emulator performance, and that increas-
ingly, isotropic scrambling gives lower correlation. The derived
model shows a good agreement with Monte Carlo simulation and
experiment.

Index Terms—Autocorrelation function (ACF), emulation,
optical communication, polarization mode dispersion (PMD).

I. INTRODUCTION

POLARIZATION mode dispersion (PMD) is a key source
of signal degradation impeding the upgrade of optical links

to transmission rates of > 10 Gb/s. While fiber with ultralow
PMD (≤ 0.04 ps/

√
km) is commercially available for laying

new long-haul high-speed links, previously installed legacy
fibers may have much larger PMD coefficients and require
active PMD compensation [1]. Therefore, characterizing the
effects of PMD in a system, as well as testing PMD-mitigation
strategies, remains an active area of research.

Statistical PMD emulators [2] play an important role in PMD
analysis. Along with deterministic-PMD sources [3], they allow
systematic PMD to be efficiently inserted in a link testbed. Ide-
ally, emulators should accurately reproduce the statistics of the
PMD that a signal would see on a real link, as well as have good
stability and repeatability. However, one consideration often
overlooked is how well they reproduce the joint-PMD statistics
across an entire spectrum of wavelength-division-multiplexing
(WDM) channels. Currently, most statistical emulators are con-
structed by concatenating a relatively small number of strongly
birefringent elements and randomly varying the mode coupling
between them to generate an ensemble of different PMD states,
typically by tuning the birefringent phase of the elements [4]
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Fig. 1. Schematic illustration of a statistical PMD emulator composed of
static-DGD elements separated by randomly driven PCs.

or rotating the polarization state between them [2], [5], [6]
(see Fig. 1). A drawback of this design is that the PMD
emulated for different channels tends to be correlated due to the
discrete structure of the device. Artificial frequency correlation
between channels affects the joint-channel-outage probabili-
ties [7], while correlation within the bandwidth of a single
channel can also affect the higher order PMD statistics [2].
Combined, these two effects compromise the use of these PMD
emulators for WDM system analysis.

Despite their importance, to date, there has been little
published analysis of the impact of artificial cross-channel
correlation effects. Related research has instead focused on
the single-channel correlation present on fiber links, which
has implications for: PMD-induced-pulse distortion [8], [9];
spectrally estimating the mean different group delay (DGD) of
a link [10]; and the statistical relationships between different
order PMD quantities. One known method to reduce the
additional correlation induced by emulators is to increase
the number of elements so that each has a smaller individual
contribution to the net PMD [11]. However, this is not always
practical when size and cost constraints are considered.

Previously, we reported on the interchannel-correlation prop-
erties of an emulator design in which the polarization control
was provided by rotating the birefringent elements [12]. We
presented a simple formula that described the average corre-
lation induced by this emulator design as a weighted sum of
the square of the DGDs imparted by each of its constituent
elements. The correlation depended upon the relative magni-
tude and ordering of the section DGDs, both of which can be
tailored during the design process. The accuracy of the formula
was verified with numerical modeling.

In this paper, we extend our previous result and provide a
detailed derivation of a more complete model for the correla-
tion of statistical PMD emulators with symmetric polarization
scrambling. We show that average correlation depends on the
implementation of the polarization controllers (PCs), and that,
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better performance is achieved by increasingly isotropic scram-
bling. This leads to a possible tradeoff between some simpler
PC implementations, such as rotatable connectors [5], and more
complicated near-isotropic PC arrangements [13]–[15]. The
latter, while having less frequency correlation, may be more
susceptible to instability since they are typically constructed by
cascading multiple birefringent elements.

II. STATISTICAL PMD EMULATORS

The class of polarization-scrambled PMD emulators we
consider is shown schematically in Fig. 1. The emulators are
composed of N -static DGD elements placed in series, with
N − 1 randomly driven PCs positioned between them. For this
analysis, we need to consider the PMD vector of each DGD
element Ωk = τkr̂k [16], where τk is the kth element’s DGD,
and r̂k is the principal state of polarization (PSP) and the cor-
responding Müller matrices Mk that describe the polarization
rotations induced by each element’s birefringence. The PCs are
represented by their rotation matrices Ck only, as the PMD they
contribute is negligible. The matrices C and M have the general
rotational form eζ(q̂×), where the rotation is through an angle
ζ counterclockwise about the unit Stokes vector q̂ [17]. The
PCs can be configured to have any arbitrary ζ and q̂, while the
rotation due to the DGD element has ζ = ωτ , and q̂ = r̂, where
r̂ corresponds to the fast birefringence axis of the element.

As the most general case, we consider the PCs by their statis-
tical properties. Each PC is characterized by a rotation matrix
C. It is a property of such matrices that their columns are the
vectors resulting from rotating the Cartesian basis vectors ŝj =
(1 0 0), (0 1 0), and (0 0 1), respectively, for j = 1, 2, 3 [18].
Hence, the matrix elements cij are the Cartesian components

cij = fi(φj , θj) =




cosφj sin θj , i = 1
sinφj sin θj , i = 2
cos θj , i = 3

(1)

where φj ∈ [0, 2π] and θj ∈ [0, π] are the angular spherical
coordinates for the rotation of the jth basis vector, illustrated
in Fig. 2. We denote the corresponding probability densities for
the coordinates by p(φj) and p(θj).

We define a symmetric PC as one that rotates any incident
Stokes vector so that its output is symmetrically distributed on
the Poincaré sphere. We will show that limiting ourselves to
the class of emulators in which the polarization scrambling is
symmetric leads to simplifications in the frequency correlation
of the device. Using linear superposition, the symmetry condi-
tion reduces to the requirement that each of the Cartesian basis
vectors has a symmetric output distribution when incident to
the PC scrambler. This indicates that p(φj) must be an even

Fig. 2. PCs are characterized by the rotations they apply to Cartesian basis
vectors. The rotated unit basis vector is represented by its angular spherical
coordinates (φ ∈ [0, 2π], θ ∈ [0, π]), where the colatitude coordinate θ is
subtended from the s3 axis on the Poincaré sphere.

function about π over the interval [0, 2π] for each j, and p(θj)
must be even about π/2 over [0, π].

Lastly, the relationship between the net PMD of an emulator
and its constituent elements is known and referred to as the first-
order PMD concatenation law [17]. At the output of the link, it
is given by

Ωout
net(ω, ξ) = ΩN (r̂N ) +

N−1∑
k=1

KN
k (ω, ξ)Ω(r̂k) (2)

where the net vector is the sum of the local PMD vectors
rotated into the reference frame of the last element. The matrix
KN

k (ω, ξ), shown in (3) at the bottom of the page, where I is the
identity matrix, is the product of element and PC rotations due
to successive elements, that is, those with indices greater than k.
For example, K4

1 = M4C3M3C2M2C1. The parameter ξ ∈
S represents a polarization scrambling configuration from the
set S of all possible configurations and is itself parameterized
by the PC variables ζi and q̂i for k ≤ i ≤ N .

III. BACKGROUND AUTOCORRELATION (BAC)

The discrete structure of concatenated section emulators
introduces artificial correlation into the frequency response
of the PMD vector. This is in contrast to the situation on a
long-fiber link, where the output PMD vector is isotropically
distributed on the Poincaré sphere with frequency [19]. As
there is no preferred orientation for the vector, the average
frequency correlation is zero. However, when an emulator has

KN
k (ω, ξ(ζk, . . . , ζN−1, q̂k, . . . , q̂N−1)) =




N−k−1∏
i=0

MN−i(ω, r̂N−i)CN−i−1(ζN−i−1, q̂N−i−1), if 1 ≤ k ≤ N − 1

I, if k = N

(3)
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comparatively few elements, the PMD vector is biased so that
it is no longer a zero mean process.

The frequency response is quantified by the autocorrelation
function (ACF) of the net PMD vector

Rout
Ω (∆ω) =

〈
Ωout(ω0 + ∆ω, ξ) · Ωout(ω0, ξ)

〉
ξ

〈Ωout(ω0, ξ) · Ωout(ω0, ξ)〉ξ
(4)

where ∆ω is an offset from a fixed-optical frequency ω0. The
ensemble expectation is with respect to the polarization scram-
bling configurations. As the PCs are assumed to be controlled
independently, the expectation is separable so that

〈·〉ξ = 〈·〉ζ1,q̂1〈·〉ζ2,q̂2 · · · 〈·〉ζN−1,q̂N−1 . (5)

In the ideal case, where the concatenation of the local PMD
vectors closely approximates a Brownian motion [16], the ACF
is characterized by a central peak that rapidly and smoothly
asymptotes to zero, and has a bandwidth inversely proportional
to the mean DGD. The artificial correlation of an emulator
manifests as a combination of both nonzero vertical offset in
the ACF referred to as the BAC and as oscillatory components.
For accurate PMD emulation, the BAC should be low and the
oscillatory components damped [2]. Using standard autocorre-
lation results [20], it can be shown that the BAC is equal to the
ratio of the average squared length of the mean PMD vector to
its mean-squared length

BACout =
〈Eω{Ω(ω, ξ)} · Eω{Ω(ω, ξ)}〉ξ

〈Eω {Ω(ω, ξ) · Ω(ω, ξ)}〉ξ
= 1− 〈σ2〉

〈τ2〉 (6)

where σ2 = E∆ω{|Ω(ω, ξ)|2} − |E{Ω(ω, ξ)}|2 is a variance
measure, and 〈τ2〉 = 〈Eω{Ω(ω, ξ) · Ω(ω, ξ)}〉ξ is the mean-
square DGD. Alternatively, the BAC can be computed directly
from the mean of (4) with respect to ∆ω

BACout = E∆ω {RΩ(∆ω)}

= lim
W→∞

1
W

W
2∫

−W
2

RΩ(∆ω)d∆ω. (7)

Over an infinite bandwidth, the central peak has negligible
influence in (7), allowing the equation to be used for analysis.
However, in practice, for finite-bandwidth simulation and
experimental data, the averaging should be performed outside
the peak.

One of the consequences of a finite BAC is that the PMD-
induced system penalty ε(ω) associated with different WDM
channels becomes correlated. This can be seen from analyz-
ing the mean-square difference in penalties for two arbitrary
channels, ∆ε = 〈[ε(ΩCh1) − ε(ΩCh2)]2〉, which are assumed
to be separated by greater than the PMD-vector autocorrelation
bandwidth. Expanding the above quadratic gives

〈∆ε2〉 =
〈
ε(ΩCh1)2

〉 − 2 〈ε(ΩCh1)ε(ΩCh2)〉 +
〈
ε(ΩCh2)2

〉
.

(8)

On a real link, the PMD vectors are completely decorrelated
outside the autocorrelation bandwidth and thus independent.

Therefore, 〈ε(ΩCh1)ε(ΩCh2)〉 = 〈ε(ΩCh1)〉〈ε(ΩCh2)〉. Since
each channel has the same statistics, the mean-square difference
in error penalty between independent channels is twice the
variance of the penalty for a single channel

〈∆ε2〉 = 2
[〈
ε(Ω)2

〉 − 〈ε(Ω)〉2
]
. (9)

When the BAC is nonzero, the PMD vectors are frequency
correlated, and an incorrect ensemble of penalties is obtained
using an emulator.

IV. BAC MODEL

In this section, we derive an analytical model for describing
the BAC for PC-based statistical PMD emulators in terms of
their constituent elements. It emerges that if the following con-
straints are satisfied, the model has a particularly simple form.

1) The emulator elements are linearly birefringent.
2) The polarization rotation due to a PC is uniformly distrib-

uted in the output longitudinal component φ ∈ [0, 2π].
3) The polarization rotation due to a PC is symmetrically

distributed about π/2 in the output colatitude component
θ ∈ [0, π], and p(θ1) = p(θ2).

Since many practical PC implementations satisfy 1)–3),
automatically, the constraints are relatively nonrestrictive.

An overview of the procedure we use to derive the model
is as follows. The BAC is first expressed as the sum of N ,
averaged scalar product terms, f(Ωk) · g(Ωk), where each term
is uniquely associated with the PMD vector of each of the
N -emulator elements and is a function of the rotations applied
by the subsequent elements. The main step of the derivation
is to isolate the contribution from the last element and PC,
using statistical independence, and then evaluate it. We show
that when the PC constraints are applied, the contribution is a
scalar multiplicative factor. Using recursion, the contribution
from each element is found to be an identical scalar factor,
leading to a simple model for the BAC.

We begin by substituting the concatenation law for the emu-
lator (2) into (7). This gives BAC in terms of the PMD vectors
of the emulator elements

BACout =
1

〈τ2〉
N∑

k=1

N∑
l=1

E∆ω

{〈
KN

k (ω0 + ∆ω, ξ)Ωk

· KN
l (ω0, ξ)Ωl

〉
ξ

}
. (10)

The expression shows that the BAC is the sum of scalar prod-
ucts between all pairs of rotated local PMD vectors.

Initially, we consider each of the scalar product terms in (10)
for which k �= l. Assuming k > l without loss of generality,
each term has the unnormalized form〈

E
{
KN

k (ω0 + ∆ω)Ωk · KN
k (ω0)Kk

l (ω0)Ωl

}〉
(11)

where KN
k is the product of rotations common to both ar-

guments of the scalar product, and Kk
l contains only those

affecting Ωl. The PC rotations in Kk
l occur only once and,

using (5), can be replaced by their mean value. In particular,
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the matrix adjacent to Ωl is replaced by 〈Cl〉, which vanishes
when the PC symmetrically rotates any incident polarization.
Therefore, the terms for which k �= l do not contribute to
the BAC.

We now consider the product terms for which k = l. The con-
tribution from the last section is trivial and equal to ΩN · ΩN =
τ2
N . The remaining terms, when k < N , can be represented as

χk =
〈
E

{
ΩT

k (KN−1
k (ω0 + ∆ω)TCT

N−1M
T
N (ω0 + ∆ω)

×MN (ω0)CN−1KN−1
k (ω0)Ωk

}〉
(12)

where the matrices associated with the last emulator element
and PC have been extracted from KN

k and were shown explic-
itly in preparation for evaluating each element’s contribution
separately. Therefore, a simplified expression for the BAC
containing only k = l scalar product terms is

BACout =
1

〈τ2〉
N∑

k=1

χk. (13)

The aim of the next step is to find a simple closed-form
expression for each χk by separating out the contributions from
the element and PC rotations using statistical independence.

We first note that since each χk evaluates to a scalar, a
trace operator may be applied to (12) without affecting the
overall result. The order of multiplication of the rotations can be
rearranged using trace-permutation properties to aid in separat-
ing the expectation operators and recursively finding a simpler
expression. Using PC independence, each pair of Ck terms
with the same index may be separated from each other pair.
Furthermore, assuming the static-DGD elements have random
DGDs, the rotation angles of the Mk are linear functions of
frequency with random slopes. Therefore, over an infinite ∆ω
interval, differently subscripted pairs of Mk are also separable
with respect to E∆ω{·}.

We proceed by setting A = ΩT
k (KN−1

k (ω0 + ∆ω)T and
B = CT

N−1M
T
N (ω0 + ∆ω)MN (ω0)CN−1KN−1

k (ω0)Ωk, and
using Tr[AB] = Tr[BA], so that χk becomes

χk = Tr
[〈

CT
N−1E

{
MT

N (ω0 + ∆ω)
}
MN (ω0)CN−1

〉

×
〈
KN−1

k (ω0)ΩkΩT
k E

{(
KN−1

k

)T
(ω0 + ∆ω)

}〉]
.

(14)

By permuting the trace as described, the rotations associated
with the last element and PC have been brought to the left of the
expression, allowing the ensemble expectation to be separated.
The left-hand expectation reduces to

Λ =
〈
CT

N−1(ζN−1, q̂N−1)E∆ω {MN (∆ω, r̂N )}
· CN−1(ζk−1, q̂N−1)〉 (15)

where the properties MT(ζ, r̂) = M−1T (ζ, r̂) = M(−ζ, r̂),
and M(ζ1, r̂)M(ζ2, r̂) = M(ζ1 + ζ2, r̂) for rotation matrices
with the same rotation axes have been used to simplify the
expression.

In order to simplify Λ, we apply the following symmetry
constraints. In simple notation Λ = 〈CTRC〉, where

R = E {M(ω, r̂)} =


 r21 r1r2 r1r3
r2r1 r22 r2r3
r3r1 r3r2 r23


 (16)

is a symmetric matrix with r̂ = (r1 r2 r3). A direct expansion
of Λ yields components with the form

Λij =
3∑

k=1

3∑
l=1

〈ckiclj〉rkrl. (17)

When the symmetry constraints are applied, Λ reduces to a
diagonal matrix. To see this, we consider separately each of the
four possible combinations of i, j, k, and l.

Case 1) i = k, j = l: The mean-square components of the
rotated basis vectors are given by

〈
c2ij

〉
=

π∫
0

2π∫
0

f2
i (φj , θj)p(φj , θj)dφjdθj �= 0. (18)

Importantly, these terms are nonzero.
Case 2) i = k, j �= l: The mean products of the same

component of different rotated basis vectors are
given by

〈cijcil〉 =

π∫
0

2π∫
0

π∫
0

2π∫
0

fi(φj , θj)fi(φl, θl)p(φj , θj , φl, θl)

· dφjdθjdφldθl. (19)

Using Bayes rule, p(φj , θj , φl, θl) = p(φl, θl)p×
(φj , θj |φl, θl). Since each fi(φ, θ) is an odd func-
tion over the intervals of the independent vari-
ables, 〈cijcil〉 = 0 if p(φl, θl), and p(φj , θj |φl, θl)
are both even functions. From PC symmetry con-
straints, p(φj , θj) and p(φl, θl) are both even func-
tions. It follows that p(φj , θj |φl, θl) is also even,
since geometrically it is the intersection of p(φj , θj)
with a plane passing through the origin, which
preserves symmetry.

Case 3) i �= k, j = l: The mean products of different com-
ponents of the same rotated basis vector are
given by

〈cijckj〉 =

π∫
0

2π∫
0

fi(φj , θj)fk(φj , θj)p(φj , θj)dφjdθj . (20)

Each fi(φj , θj)fk(φj , θj) product is an odd func-
tion for i �= k. Therefore, 〈cijckj〉 = 0, since
p(φj , φj) is an even function.
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Case 4) i �= k, j �= l: The mean products of different
components of different rotated basis vectors are
given by

〈cijckl〉 =

π∫
0

2π∫
0

π∫
0

2π∫
0

fi(φj , θj)fk(φl, θl)p(φj , θj , φl, θl)

· dφjdθjdφldθl. (21)

For each of the three combinations of fi(·)fk(·) and
i �= k, there exists at least one variable for which
the integrand is odd with respect to the integrating
variable. Thus, 〈cijckl〉 = 0, when p(φj , θj , φl, θl)
is an even function with respect to that variable.
Symmetry again ensures that this will be the case.

Applying the above results, the final expression for Λ is

Λ =




∑3
i=1

〈
c2i1

〉
r2i 0 0

0
∑3

i=1

〈
c2i2

〉
r2i 0

0 0
∑3

i=1

〈
c2i3

〉
r2i


 (22)

which is diagonal and can be computed from (18) for any
arbitrarily implemented PC that satisfies the symmetry con-
straints. This includes simple randomly driven configurations of
waveplates and phaseplates, for which the probability densities
can be computed analytically or numerically for each basis
vector or more advanced PCs driven by software algorithms.

The final step of the derivation is to use recursion to find the
total contribution from χk after multiple rotations are applied.
From our previous analysis, (14) can now be simplified to

χk = Tr
[
Λ

〈
KN−1

k (ω0)ΩkΩT
k E

{(
KN−1

k

)T
(ω0 + ∆ω)

}〉]
(23)

where Λ is the contribution from the last emulator element and
PC. A clockwise cyclic permutation to the trace argument resets
the algorithm so that

χk = Tr
[ 〈

CT
N−2E

{
MT

N−1(ω0 + ∆ω)
}
ΛMN−1(ω0)CN−2

〉

×
〈
KN−2

k (ω0)ΩkΩT
k E

{(
KN−2

k+1

)T
(ω0 + ∆ω)

}〉]
(24)

where, now, the matrices associated with the second to last
emulator element and PC have been extracted from KN−1

k , just
as MN and CN−1 were in the first iteration of the algorithm.

The contribution, due to the last two pairs of rotations,
is 〈CT

N−2E{MT
N−1(ω0 + ∆ω)}ΛMN−1(ω0)CN−2〉. The PC

symmetry constraints cause Λ to be diagonal. However, Λ
can be further simplified if the following constraints are met:
The emulator elements are also linearly birefringent; p(φi) is
uniform for each basis vector; and p(θ1) = p(θ2). Linearly
birefringent elements constrain the rotation axes of the elements
to the equator of the Poincaré sphere so that r3 = 0 in (16) and
(17). It follows that the third element of the corresponding local

PMD vector must also be zero since it defines the rotation axis.
Using this additional constraint

Λ=




〈
c211

〉
r21+

〈
c221

〉
r22 0 0

0
〈
c212

〉
r21+

〈
c222

〉
r22 0

0 0
〈
c213

〉
r21+

〈
c223

〉
r22


 .

(25)

The second and third sets of conditions lead to the upper two
diagonal elements of Λ being the same. Combining (1) and (18)

〈
c21i

〉
=

2π∫
0

cos2φip(φi)dφi

π∫
0

sin2θip(θi)dθi = κiρi (26)

〈c22i〉 =

2π∫
0

sin2φip(φi)dφi

π∫
0

sin2 θip(θi)dθi = (1−κi)ρi (27)

where κ corresponds to the φ integral and ρ the θ integral. For a
uniformly distributed φi, p(φi) = 1/2π, and κi = 1/2 for i =
1, 2, 3; while p(θ1) = p(θ2) gives ρ1 = ρ2. Combining with the
norm identity r21 + r22 = 1, Λ becomes

Λ =


 1

2ρ1 0 0
0 1

2ρ1 0
0 0 1

2ρ3


 =

1
2
ρ1I − µX (28)

where

µ =
ρ1(ρ1 − ρ3)

2
(29)

and

X =


 0 0 0

0 0 0
0 0 1


 . (30)

Substituting (28) into (23) and using the additive properties of
traces, χk becomes

χk =
ρ1

2
Tr

[〈
KN−1

k (ω0)ΩkΩT
k E

{(
KN−1

k

)T
(ω0+∆ω)

}〉]
−µTr

[
X

〈
KN−1

k (ω0)ΩkΩT
k E

{(
KN−1

k

)T
(ω0+∆ω)

}〉]
.

(31)

However, the second trace is zero. This can be seen by per-
muting the argument so that X is on the right and moving it
inside the expectation. X now multiplies E{Mi(ω0 + ∆ω)}.
Since r3 = 0, the product has the special form[ A 0

−−−−
0 0

] [ 0 0
−−−−
0 1

]
= 0 (32)

where A is the upper left 2 × 2 submatrix of (16). Thus, only
the first term in (31) contributes. Specifically, it introduces a
scalar factor of ρ1/2, and the identity matrix is absorbed. After
further trace permutation, a reduced expression for (23) is then

χk =
ρ1

2
Tr

[〈
ΩT

k E

{(
KN−1

k

)T
(ω0 + ∆ω)

}
KN−1

k (ω0)Ωk

〉]
.

(33)
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This equation has the same form as the original problem
except with one less pair of matrices. Therefore, the procedure
described above can be repeatedly applied to remove each pair
of matrices with the same index. Each stage of the iterative
algorithm introduces a factor of a (ρ1/2)I, and the contribution
from the kth emulator element term is

χk =
(ρ1

2

)N−k 〈
#ΩT

j
#Ωk

〉
=

(ρ1

2

)N−k

τ2
k . (34)

Combining the above results, a general formula is found
for the BAC of polarization scrambled statistical PMD emu-
lators employing linearly birefringent elements and PCs that:
1) uniformly randomize the longitudinal angle of each rotated
basis vector; 2) symmetrically rotate the colatitude angle of
each rotated basis vector; and 3) have identical colatitude
distributions for the rotated ŝ1 and ŝ2 basis vectors

BACout =
∑N

k=1 β
N−kτ2

k∑N
k=1 τ

2
k

. (35)

We refer to β = ρ1/2 as the base weight factor. Equation (35)
is the main result of this paper. It links the BAC of an emulator
to parameters describing its discretization relative to an actual
fiber, which is the number of elements, their size (DGD), and
their relative ordering.

V. MODEL ANALYSIS

In this section, we show how the derived BAC relationship
can be applied to several common PC implementations.

A. Rotatable Element Emulator

The rotatable-element-emulator design is widely used due to
its simple control and relative robustness. It includes birefrin-
gent crystals cascaded in rotatable mounts, as well as polariza-
tion maintaining (PM) fiber sections combined in series with
rotatable connectors. The emulator fits within the PC frame-
work shown in Fig. 1, since a rotatable linearly birefringent
element can be equivalently modeled by a fixed element sand-
wiched between two rotations about the s3 axis with opposite
angles

Mk (ωτk, r̂(φk)) ≡ Cs3 (−φk, ŝ3))Mk(ωτk,0)Cs3(φk, ŝ3))
(36)

as shown in Fig. 3. The PC between the kth and
(k + 1)th elements is replaced by the rotation product
Cs3(φk)Cs3(−φk+1) = Cs3(φk − φk+1). As each φk is inde-
pendently driven uniformly randomly, the emulator effectively
consists of static DGD elements separated by independent
uniformly rotations about the s3 axis over the interval [0, 2π].

To derive the BAC model for this emulator type, we need
to determine the probability densities of the PCs when op-
erated on the Cartesian basis vectors. In this case, the PCs
uniformly randomize the s1 and s2 basis vectors on the equa-
tor of the Poincaré sphere so that p(φ1,2) = 1/2π, p(θ1,2) =

Fig. 3. Rotatable linearly birefringent element is equivalent to a fixed element
sandwiched between two rotations about the s3 Stokes axis, with angles equal
to plus and minus the orientation of the element’s birefringence axis.

δ(θ1,2 − π/2), and s3 is unaffected. Evaluating (26) and (27),
κ1,2,3 = 1/2, ρ1 = ρ2 = 1/2, and ρ3 = 0. Substituting these
values into (28), Λ becomes

Λ =


 1

2 0 0
0 1

2 0
0 0 0


 (37)

and the BAC, with respect to the output PMD vector, is given by

BACout =
∑N

k=1

(
1
2

)N−k
τ2
k∑N

k=1 τ
2
k

. (38)

The base weight factor for the BAC model for rotatable
connectors is therefore 1/2. This is the result we previously
presented in [12].

B. Rotatable Quarter-Half-Quarter (QHQ) Waveplates

Next, we consider an emulator where the PCs are im-
plemented in the commonly employed rotatable QHQ-
waveplate configuration. The matrix C(ζ, q̂) is equal to C1/4

(π/2, r̂(φ3))C1/2(π, r̂(φ2))C1/4(π/2, r̂(φ1)), where r̂(φ1,2,3)
are independent rotation axes on the equator of the Poincaré
esphere. We determined the probability density functions for
each of the basis vector rotations numerically and used them to
evaluate (26) and (27). We found that κ1,2,3 = 1/2, ρ1,2 = 3/4,
and ρ3 = 1/2. Combining, Λ is given by

Λ =


 3

8 0 0
0 3

8 0
0 0 1

4


 (39)

and the BAC by

BACout =
∑N

k=1

(
3
8

)N−k
τ2
k∑N

k=1 τ
2
k

. (40)

The base weight factor for the BAC model for QHQ polariza-
tion scrambling is therefore 3/8.

C. Isotropic Polarization Scrambling

Isotropic polarization scrambling between static-DGD ele-
ments is closely related to the rotatable-element-emulator case.
Where the latter uniformly randomizes the polarization in the
equatorial plane, isotropic scrambling randomizes in three di-
mensions, providing uniform coverage of the Poincaré esphere.
This model is typically used to represent fibers or emulators
in simulations, for example, by Karlsson and Brentel [8],
when deriving the ACF of an ideal link. To analyze the em-
ulator, we assume that there exists some PC implementation
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Fig. 4. Simulation comparison of 15-section emulator designs using rotatable
connectors (left) and cascaded QHQ-waveplate PCs (right) with the derived
BAC model.

that isotropically randomizes the three Cartesian basis vector.
From standard spherical-geometry results, isotropy requires
that p(φ1,2,3) = 1/2π, and p(θ1,2,3) = (1/2) sin(θ1,2,3). Eval-
uating (26) and (27), and substituting into (28) gives Λ for the
isotropic scrambling case as

Λ =


 1

3 0 0
0 1

3 0
0 0 1

3


 . (41)

The base weight factor for the BAC model for the emulator with
isotropic polarization scrambling is therefore 1/3, which differs
from the QHQ case by just 1/24.

VI. MODEL VERIFICATION

We investigated the validity of the BAC models for the
rotatable element and QHQ-waveplate emulators by performing
Monte Carlo simulations using Jones matrix eigenanalysis [22],
and comparing the simulated BACs with those predicted by
the models shown in (38) and (40). The static-DGD elements
were generated with random-fixed orientations, and the polar-
ization scramblers between elements in the QHQ case were
modeled by three rotatable waveplates. We simulated 200
15-section emulators with different element DGDs. The DGDs
were randomly selected to be 20% Gaussian distributed and
produce rms DGDs of 40 ps. There were 2000 independent
random-coupling configurations generated and the PMD vec-
tors determined for each of 201 equally spaced frequencies in a
2-THz bandwidth. For each emulator, we computed the output-
PMD-frequency ACFs for every selected set of PC setting.
The BAC for each DGD configuration was estimated from the
average ACF outside the central peak. Fig. 4 shows adjacent
plots of the predicted versus estimated BAC for the rotatable
element and QHQ emulators. Excellent agreement is found
for the simulation and analytical model. The few anomalous
points can be associated with unbalanced constructive interfer-
ence of oscillatory components over the finite-ACF-frequency
range. A nonlinear least square-parameter estimate [23] for
the base weight factor gives 0.4795 ± 0.005 for the rotatable-
element emulator, compared with the expected value of 0.5, and
0.3446 ± 0.006 for the QHQ emulator, compared with the

Fig. 5. Experimental setup for testing the BAC model for an emulator with
QHQ-waveplate-PC scrambling using PM-fiber elements. The coil diameter D
of the fiber is 20 cm.

expected value of 0.375. We believe that the slight underesti-
mation of the parameter in both cases is, again, due to localized
periodic features over the ACF frequency range.

We also investigated the QHQ model experimentally by con-
structing a five-section emulator with three-paddle PCs between
sections of PM fiber. The experimental setup is shown in Fig. 5.
The emulator was placed between the input and output ports of
an Agilent 8509C Lightwave polarization analyzer, which had
a continuous-wave optical signal supplied to it by an Agilent
8194A tunable laser source. The PM fiber used in the emulator
had a nominal-beat length of 3.02 mm at 1550 nm, which
corresponds to a DGD of 1.7 ps/m. The ends of the fiber
were spliced to single-mode-fiber pigtails for straightforward
connection to the PCs and reordering of the sections. Each PM
section was insulated from ambient, thermal, and vibrational
effects sufficiently that the output polarization was stable on the
order of 5–10 min, which was greater than the time required
to obtain the PMD-frequency response for a single nominally
stable PC setting. The rms DGD of the emulator was 19 ps,
and the section DGDs 13.75, 6.76, 9.08, 5.21, and 3.87 ps.
Four permutations of the section ordering were investigated to
generate a spread of BAC values.

The emulator ACFs were determined at 51 equally spaced
frequencies in a 400-GHz bandwidth centered at 1550 nm.
The ACF at each frequency was computed from (4) using an
ensemble of PMD-vector measurements corresponding to 30
randomly selected PC settings. Since the polarization analyzer
uses mechanically controlled optics, and the mode coupling
configurations are set manually, we found it necessary to mini-
mize the number of measured data points in order to ensure re-
alistic running times for the experiment. While quite small, we
found that an ensemble of just 30-mode coupling configurations
was sufficient to compute BACs that approximately matched
the model predictions to within experimental error. Simulations
verified that BACs computed using these many configurations
were within a few percent of those obtained using 2000 config-
urations (the number used to generate each point in Fig. 4).

The experimental BACs we obtained for four different per-
mutations of section ordering and their corresponding model
predictions are shown in Fig. 6 and illustrate reasonably good
agreement. The error bars correspond to 95% confidence in-
tervals computed assuming Gaussian statistics. A least square-
parameter estimation of the four points gives a base weight
factor of 0.39 ± 0.126, which is quite close to the expected
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Fig. 6. Experimental comparison with the derived BAC model of a five-
section polarization scrambled PMD emulator using cascaded QHQ-retarder
fiber paddle PCs.

Fig. 7. Experimental and simulation comparison of the ACF for a five-section
polarization scrambled PMD emulator using QHQ-retarder PC scrambling.

0.375. However, the 95% confidence interval is quite large
since the graph contains only four points. Fig. 7 shows an
example of the relatively close matching between experimental
and simulated ACF we were able to obtain for one ordering of
section DGDs. The strong periodicity is due to the emulator
containing only five sections.

VII. DISCUSSION

We have developed a model that links the BAC of an emu-
lator to the ordering of its elements. First, the model illustrates
that the BAC is reduced when the polarization scrambling is
close to isotropic. Second, it illustrates that placing elements
with lower DGDs near the end minimizes the output BAC.

One issue to consider is whether the DGD of the last element
of an emulator can be decreased arbitrarily close to zero,
thereby reducing the output BAC, and the model still remains
valid. For an emulator with a fixed number of elements to
maintain a constant mean DGD, the other element’s DGDs must
be correspondingly increased. By decreasing the last element’s

DGD, the rate at which it causes an incident signals’ polariza-
tion to rotate is similarly reduced. In the limit of a small DGD
compared to the other elements, it ceases to have any apprecia-
ble effect over the bandwidth of the system, and the emulator
behaves as if it had one fewer element. Determining an analytic
description for this phenomena is a focus for future work.

The second issue to consider is the interpretation of the
BAC, given that it is derived in a specific reference frame. The
concatenation law in (2) is for the output PMD vector, but it
is just as valid to describe a system’s PMD by the frequency
dependence of the input PMD vector Ωin = M̃−1(ω)Ωout,
where M̃(ω) is the net Müller matrix describing the polariza-
tion transformation due to birefringence. It is straightforward to
show, by considering light propagating in the opposite direction
through the cascaded birefringent elements, that the analysis
proceeds almost exactly as before but with the indices reversed
and the Müller matrices transposed. Following this argument,
the BAC at the input is given by

BACin =
∑N

k=1 β
k−1τ2

k∑N
k=1 τ

2
k

. (42)

The above analysis illustrates that by ordering the elements
from largest DGD to smallest, an emulator can be constructed
with low-output BAC and high-input BAC or by reversing the
ordering, high-output BAC, and low-input BAC. Similarly, by
locating the larger DGD elements in the center, the BAC can
be reduced at both the input and output to a degree. The PMD
vector ACF has been shown to be the product of the ACF of the
DGD and the ACF of the PSP, with the latter dominating [8].
Therefore, the BAC in the input and output frames directly
corresponds to the degree of correlation of the corresponding
input and output PSPs.

From a practical perspective, decorrelated-input PSPs may
be required when a system under test employs PSP launch
alignment at the transmitter to mitigate PMD. Similarly,
decorrelated-output PSPs may be necessary to properly test a
PMD compensator that simultaneously compensates multiple
WDM channels. It is an open question, however, whether
designing for low input and output BAC for a fixed number of
elements provides overall reduction in the interchannel correla-
tion. It appears that moving the higher DGD elements closer to
the center of the emulator merely localizes the positions of cor-
related PSPs away from the input and output, but may not offer
any overall improvement. Instead, fundamental improvement
is gained by either improving the isotropy of the polarization
rotations, which converges to a hard limit and offers only
modest improvement, or by increasing the number of elements.

Last, it is possible to extend the BAC model to a more ad-
vanced PMD-emulator designs constructed with variable DGD
elements [24], [25]. Assuming mutual independence between
the element DGDs, as well as dynamic polarization scrambling
between them, the BAC for the variable DGD emulator is given
by the slightly modified formula

BACout =
∑N

k=1 β
N−k

〈
τ2
k

〉
∑N

k=1〈τ2
k 〉

(43)
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Fig. 8. BAC versus number of elements for a variable DGD-PMD emulator
with mean DGD of 50 ps.

where the expectation is with respect to the element DGD
statistics. One verification of the formula is found by comparing
it with the Monte Carlo-based analysis reported in [25] for an
emulator design in which the element DGDs are independently
and identically distributed (i.i.d) Maxwellian random variables.
The concatenation of Maxwellian DGD elements results in a
similarly Maxwellian net DGD [26], which obeys

〈τ2〉 =
N∑

k=1

〈
τ2
k

〉
= N

〈
τ2
0

〉
(44)

where 〈τ2〉 is the desired net mean-square DGD, and τk = τ0
are the i.i.d element DGDs. Thus, the individual element mean-
square DGDs are equal to the net mean-square DGD divided
by the number of elements. Setting the mean DGD to 50 ps
and assuming perfect isotropic polarization scrambling as
in [25], the relationship between the BAC and the number of
emulator elements is obtained using (43), as shown in Fig. 8.
Comparing this graph with [25, Fig. 5(b)] they are almost
indistinguishable, illustrating the strong correlation between
theory and independent simulation.

VIII. CONCLUSION

We have rigorously derived a model for the BAC of statis-
tical PMD emulators with symmetric polarization scrambling.
The model illustrates that the average PMD-vector frequency
correlation depends on the number of emulator elements, their
relative DGDs and ordering, and the isotropy of the polariza-
tion scrambling. Increasing the number of elements and PC
isotropy improves the BAC in an absolute sense, while ordering
the elements can minimize the PSP correlation at the input,
output, or jointly, which is useful for testing different types of
broadband-PMD-mitigation techniques. The effects of highly
localized BAC within the emulator on WDM PMD emulation
are unclear at this stage.
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