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SCALE: A Low-Complexity Distributed Protocol for
Spectrum Balancing in Multiuser DSL Networks

John Papandriopoulos, Member, IEEE, and Jamie S. Evans, Member, IEEE

Abstract—Dynamic spectrum management of digital subscriber
lines (DSLs) has the potential to dramatically increase the capacity
of the aging last-mile copper access network. This paper takes
an important step toward fulfilling this potential through power
spectrum balancing. We derive a novel algorithm called SCALE,
that provides a significant performance improvement over the
existing iterative water-filling (IWF) algorithm in multiuser
DSL networks, doing so with comparable low complexity. The
algorithm is easily distributed through measurement and limited
message passing with the use of a spectrum management center.
We outline how overhead can be managed, and show that in the
limit of zero message-passing, performance reduces to IWF.

Numerical studies indicate that SCALE converges extremely fast
when applied to VDSL, with performance exceeding that of IWF
in just a few iterations, and to over 90% of the final rate in under
five iterations. We provide a proof to show that SCALE converges
to a Karush—-Kuhn-Tucker (KKT) point, suggesting that it indeed
has the potential to reach true global optimality.

Finally, we return to the IWF problem and derive a new algo-
rithm named SCAWF that is shown to be a very simple way to
water-fill, particularly suited to the multiuser context.

Index Terms—Digital subscriber line, dynamic spectrum man-
agement, interference channel, iterative water-filling, successive
convex optimization.

I. INTRODUCTION

IGITAL subscriber line (DSL) technology has helped
D quench our thirst for bandwidth in recent years, ex-
tending the life of existing copper twisted-pair networks that
now serve over 100 million subscribers around the globe with
broadband internet connectivity. While DSL technology has
been hugely successful, incumbent telephone operators are
increasingly faced with stiff competition from the decreasing
cost of optical fiber-fed leased lines, and aggressive cable
television companies serving subscribers from much higher
bandwidth Hybrid Fiber-Coax (HFC) cable networks. As a
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Fig. 1. Network topologies where DSM significantly improves performance.

result, telephone companies are in desperate need for increased
bit rates on existing DSL lines in an effort to further extend the
life of their aging copper plants.

Crosstalk and long loop lengths are the obstacles toward
reaching these higher rates. Twisted-pairs are bundled together
in groups of 25-100 lines in ducts directed toward subscribers.
Lines are sufficiently close such that electromagnetic radiation
induces crosstalk coupling between pairs. Near-end crosstalk
(NEXT) is caused by transmitters interfering with receivers
on the same side of the bundle and is often avoided by using
nonoverlapping transmit and receive spectra (FDD) or disjoint
time intervals (TDD). Far-end crosstalk (FEXT) is caused by
transmitters on opposite sides of the bundle (see Fig. 1). In
some cases, this interference can be 10-20 dB larger than the
background noise and has been identified as the dominant
source of performance degradation in DSL systems [1].

Telephone companies are increasingly shortening the loop
using remote terminal (RT) deployments (see Fig. 1(a)),
resulting in lower signal attenuation and larger available band-
widths. Unfortunately, this can cause other problems such
as the “near—far effect,” due to the crosstalk. Common in
code-division multiple-access (CDMA) wireless, the near—far
effect occurs when a user enjoying a good channel close to
the receiver overpowers the received signal of a user further
away having a worse channel and where both users transmit at
comparable power levels.

Two competing directions to the crosstalk impairment are
known: vectored DSL and spectrum balancing. Each falls
under the umbrella of dynamic spectrum management (DSM);
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see [2] for an overview. Vectoring treats the DSL network
as a multiple-input multiple-output (MIMO) system, where
modems must coordinate at the signal level to effectively
remove crosstalk through successive decoding or precoding.
In contrast, spectrum balancing involves a much looser level
of coordination: much like existing systems, modems employ
single-user encoding and decoding (treating interference as
noise), however, they may also interact on a more granular
time scale to negotiate a spectrum allocation that effectively
avoids crosstalk as much as possible to improve the overall
performance of the network.

This paper is concerned with the balancing of users’ power
spectral densities (PSDs), explicitly taking crosstalk effects into
account. A significant improvement in network capacity is pos-
sible by such a judicious allocation of users’ power, and espe-
cially so in near—far situations as pictured in Fig. 1.

Early work in this area introduced an iterative water-filling
(IWF) scheme to balance user PSDs, where each user repeat-
edly measures the aggregate interference received from all other
users, then greedily water-pours their own power allocation
without regard for the impact to be had on other users [3]. This
process results in a fully distributed and autonomous algorithm
having a reasonable computational complexity.

More recent efforts have focused on the underlying optimiza-
tion problem that spectrum balancing aims to solve. Unfortu-
nately, this optimization (introduced in Section III) is a diffi-
cult nonconvex problem. As such, the optimal spectrum bal-
ancing (OSB) algorithm [1] makes use of a grid-search to find
the optimal power allocation to a predetermined quantum. It suf-
fers from an exponential complexity in the number of users,
and so near-optimal iterative spectrum balancing (ISB) algo-
rithms were developed that reduce complexity through a se-
ries of line-searches, avoiding the grid-search bottleneck [4],
[5]. Appearing simultaneously with the conference version of
this work [6] was another variation on OSB making use of a
branch-and-bound technique [7]. All of these algorithms are
centralized and it is unclear how well-suited they are for prac-
tical implementation.

In this paper, we return to the underlying nonconvex spec-
trum balancing optimization, and show that it is an NP-hard
problem. We then apply a novel technique involving a series
of convex relaxations to derive an algorithm called SCALE
(Successive Convex Approximation for Low complExity).
We show through numerical simulation that SCALE performs
significantly better than IWF, and with comparable complexity.

An important feature of SCALE is that it may be distributed
with the help of a spectrum management center (SMC). The
resulting method may be viewed as a distributed computation
across the DSL network, in contrast to the centralized OSB and
ISB schemes. Importantly, we outline how the overhead asso-
ciated with this approach can be managed, and show that it de-
grades gracefully to the same performance as that attained by
IWF when no inter-user communication facility is available. Fi-
nally, we take a fresh look at IWF that leads to the develop-
ment of a new algorithm called SCAWF (Successive Convex
Approximation for Water-Filling). Our development simplifies
existing IWF approaches and enjoys a very low implementation
complexity.
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To summarize, the key contributions of this paper are as
follows.

1) We show that the nonconvex spectrum balancing problem,
previously thought to be devoid of any convex structure,
comprises so-called d.c. (difference of convex) functions.
Consequently, we reveal that the problem is inherently
NP-hard.

A novel algorithm that attempts to solve the nonconvex
spectrum balancing problem by exploiting its underlying
convexity. Called SCALE (Successive Convex Approx-
imation for Low complExity), the method involves a se-
quence of convex relaxations. We prove that the sequence
will always converge, to a solution satisfying the necessary
Karush—Kuhn—-Tucker (KKT) condition for optimality, and
with only a mild condition on rate-adaptive users’ targets
rates, that can typically be relaxed in practice.

An associated distributed protocol whereby modems make
local decisions based on measurement and limited mes-
sage-passing with a spectrum management center. This
protocol distributes computation across the DSL network,
further lowering the computational requirements of the
method.

We show that SCALE will always perform as well as
iterative water-filling. In a realistic very high speed DSL
(VDSL) scenario, we provide numerical results to show
that SCALE is very nearly globally optimum, significantly
outperforming iterative water-filling with only a small
handful of iterations.

A new family of algorithms for water-filling based on
the relaxation technique employed in SCALE. Unlike the
well-established water-filling methods that make use of
channel sorting or bisection, we propose a purely itera-
tive scheme having low complexity. Consequently, our
algorithms are perfect for iterative water-filling: we do not
perform a complete (and expensive) water-filling compu-
tation at each stage. Instead, each user iterates together
with others until the system reaches the simultaneous
water-filling condition.

A simple and practical approach to discrete bit-loading,
where the loading is layered on top of the power allocation
produced by the proposed algorithms.

This paper is organized as follows. In Section II, we introduce
the system model. Section III introduces the general form of the
spectrum balancing problem and reviews known attempts at its
solution. Our novel approach is presented in Section IV, where
the SCALE algorithm is derived and a distributed protocol for
implementation outlined. Techniques for further enhancing its
implementation efficiency are also provided.

We revisit IWF in Section V, where direct comparisons with
the SCALE protocol unveil new insights into its operation. The
results of that section are further shaped in Section VI, where
we derive the SCAWF algorithms—a very simple and low-com-
plexity method for water-filling, particularly useful in the IWF
context.

A layered approach for discrete loading is presented in
Section VII. Numerical performance evaluations follow in
Section VIII, where we highlight the speed of convergence
and performance improvements that SCALE can provide over

2)

3)

4)

5)

6)
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IWF. We also include an investigation into whether the results
provided by SCALE are globally optimum. Our conclusions
are outlined in Section IX.

II. SYSTEM MODEL

We adopt a standard model for a K user xXDSL system em-
ploying discrete multitone (DMT) modulation where each user
has N tones available that are used to form a set of NV in-
tersymbol interference (ISI)-free orthogonal subchannels. We
make the usual assumption that users are aligned in frequency
such that FEXT coupling occurs on a common tone-by-tone
basis.

A fixed band-plan is assumed for simplicity, that partitions
each of these tones into separate up- and downstream bands that
are the same for all users. While it is known that such a scheme
is not optimal [5], partitions are a common way to avoid NEXT.
The algorithms developed in this paper are easily extended to
include NEXT coupling if required.

We consider continuous bit-loading where the achievable
loading on tone n, user k is

by (P") £ log (1 + SIR}(P")) ()

in the units of nats, and where the corresponding signal-to-in-
terference ratio (SIR) is defined as

SIR}(P") = Gl 2)
¥ > GrPr o
ik
We denote by P}’ the transmitter power of user k on tone n.
For notational convenience, we write P" = [P;*, Py, ..., Pp]"
as the K -length vector of all transmitter powers on tone n. We
will also make use of the notation P, = [P}, PZ,..., Pl]

as the N-length PSD vector of user k. The K x N matrix
P is produced by stacking these vectors in the obvious way.
This notation makes clear the explicit dependence of the SIR on
power. In the sequel, vector- or matrix-inequalities are always
element-wise. The gains G7; model the channel power transfer
on tone n from user j to the receiver of user k. For further no-
tational convenience, we assume the gains G}, have been nor-
malized by an appropriate signal-to-noise ratio (SNR)-gap I'?,
that depends on the coding scheme, target probability of error,
and noise margin [8].

Each o}, models the received noise power on tone n. We as-
sume the noise powers are constant, modeling receiver thermal
noise plus any alien noise injected by other coexisting systems
(e.g., HDSL, ISDN, RF noise, etc.).

The achievable rate for user £ is then

N N
Ri(P)£ Y bi(P") = log(1+SIRi(P")  (3)
n=1 n=1
nats per channel use.

We will assume that all K users are coupled through inter-
ference to some degree. This is without loss of generality, as
any user population can always be partitioned into subgroups of
noninterfering users, with each independent subgroup consid-
ered separately.
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III. THE SPECTRUM BALANCING PROBLEM

The spectrum balancing problem has many forms, catego-
rized by the rate adaptive (RA) and fixed margin (FM) formula-
tions. The RA problem seeks to maximize the data rate of each
user, subject to per-user maximum power constraints. It is in-
herently a multicriterion optimization problem, where one has
the ability to scalarize the rates of each user, forming a weighted
sum objective (see below).

The FM problem is concerned with finding a minimal power
allocation such that each user has a minimum (or target) data
rate that is attained. These target rates must be feasible; that is,
there exists a power allocation whereby the maximum power
constraint of each user is not violated.

The set of feasible target rates is contained within the
so-called rate region. Its boundary corresponds to the Pareto
optimal surface of the RA problem, and is often explored by
sweeping values of the weights and solving a sequence of such
problems. Alternatively, given a set of target rates, one could
solve a suitable feasibility problem to determine whether the
supplied rates can be supported by the network.

In its most general form, the spectrum balancing problem is
written

N
> wiRi(P) = 1razz Y > P (4a)

max
0<P<L
- = kERA kEFM n=1
st. R < Ru(P), ke€FM (4b)
]\T
dopr<pr, k=1,...K (4c)
n=1

where P;?* is the maximum power constraint of user k£ and 1 4
is an indicator of the event A, taking value 1 when A is true
and 0 otherwise. The sets RA and FM denote the index sets
of RA and FM users, respectively. By a simple manipulation,
the individual RA and FM problems can be recovered as special
cases.

Each user £ € RA is assigned a fixed positive scalarization
weight wy, that allows a tradeoff between the rates allocated to
each user. Equivalently, these weights allow the system operator
to place differing quality of service (QoS) or importance levels
on each user. For example, in accordance with the premium paid
by the user for their service.

Every other user £ € FM is assigned a positive minimum data
rate R;**®°" that must be achieved. These minimum rates are
also provided by the system operator and are considered fixed.

The PSD masks L are included for satisfaction of regulatory
requirements. They specify the maximum power level L} for
user k on tone n. Although they do not add a level of difficulty
to the problem, we omit them for brevity in the sequel.!

This optimization problem is constructed to maximize the
rates of RA users as much as possible while simultaneously en-
suring the target rates of FM users are met exactly. For later
convenience and to ensure the latter condition, we include the
double summation in the objective. Without it, the inequality
(4b) should be replaced by an equality.

IThese PSD masks are so-called box-constraints on each power P;*. Full
treatment is found in [9], [10].
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A. Related Work

The individual RA and FM problems have been extensively
studied for single-user K = 1 systems, for both continuous
and discrete bit-loading. Algorithms enjoying O(N log N) or
O(N) complexity are well-established, their solutions usually
involving some kind of water-pouring; see [11] and references
therein.

For the multiuser case, where K > 1, optimization (4) be-
comes difficult, because of the presence of the achievable rate
(3) terms in the objective and constraints. Further insight is
gained by rewriting (3) as follows:

N
Re(P)=>log <Z szp;ura;g) —log (Z G;gjpjuog) .

n=1 J J#k

Observe that the achievable rate comprises a difference of
concave functions in P. Optimization problems such as (4)
having d.c. structure have been of great interest to the opti-
mization community for the past 30 4 years. Unfortunately
these problems are NP-hard [12] and often difficult to solve
efficiently for the global optimum.

The IWF approach finds an approximate solution by split-
ting the problem into K convex subproblems, then iterating over
these until convergence. Each subproblem concerns only the
powers Py, fixing all other powers P, and treating their con-
tributions as noise (see Section V). These subproblems are made
distributed through SIR measurements. IWF has been shown to
converge to a competitive Nash equilibrium [3], and is amenable
to practical implementation [13].

A very different approach is made in OSB that attempts to
solve an optimization similar to (4) directly [1]. The innovation
was to formulate the Lagrangian dual problem. It was then
possible to iterate over N separate subproblems for fixed
Lagrange multipliers, each subproblem concerning only user
powers P" on tone n € [1, N|. Each subproblem is solved with
a brute-force grid-search having £ = P™**/Ap quantized
power levels, requiring at least £X operations each. An outer
loop then updated the Lagrange multipliers via bisection or
gradient-based methods.

Although OSB has an inherent exponential complexity in
the number of users, it has shown significant performance
gains are possible over IWF. Recent improvements have been
introduced sporting lower complexity, achieved by replacing
the grid-search with a sequence of line-searches [4], [5] or a
branch-and-bound method [7]. In general, a large number of
computations are employed in an attempt to solve each per-tone
subproblem completely before moving on to the next: still a
large computational hit!

Until now, there has been little in the way of a very low com-
plexity algorithm making use of measurement-based updates
devoid of explicit line- or grid-searching. Ideally, such an algo-
rithm would have its computation distributed, with little or no
message-passing between modems.
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IV. SUCCESSIVE CONVEX APPROXIMATION FOR
Low-COMPLEXITY (SCALE)

Our approach considers a relaxation of the nonconvex
problem (4) that avoids the d.c. structure. We will make use of
the following lower bound:

alogz+  <log(1+ 2) (5)

that is tight at z = z; when the approximation constants are

chosen as
20
= 6
« T 2 (6a)
Z0
= log(1 — 1 . 6b
B = log(1 + zo) 1 2 0870 (6b)
The following relaxation to the spectrum balancing problem (4)
results:
max Z wi R (P; ak, Br) — 1ra=o Z Zpk
= kKERA EEFM n
s.t. Rzarget < Rk(P;ak,Bk), k € FM
<P, Vi (7
where the approximation vectors a, = [a,lc, A akN ] and B, =

(6L, ..

. /3,16\’ ] are fixed for each user k, and we define

Ri(P;ag, Br) £ ajlog (SIRE(P™") + B (8)

as a lower bound on the achievable rate for user k. Although our
relaxation still has nonconvex form (since (8) has d.c. structure),
the following result gives a way forward.

Lemma I: The lower bound achievable rate (8) is concavified
by the transformation P}’ = log P}’.

Proof: With P}’ = exp (ﬁ,:’) , the lower bound achievable
rate (8) becomes

Rk(ep§ak7ﬂk) =

Z a |log Gy, + PP —log (Z szepf + JZ) + B

n ik
where exp(z) denotes an element-by-element operation on the
vector . Concavity follows from the sum of linear and con-

cave terms within the square brackets (where we note that log-
sum-exp is convex [14]). O

Lemma 1 ensures that the transformed relaxation
max E wy Ry, (ep;akﬁk) —1ra=gp E E el
P kERA E€FM n

s.t. Rz,arget < Rk (eP; ak,,Bk) , keFM

S < pE Wk )

is devoid of all d.c. structure. We now have a standard concave
maximization problem.

We derive an algorithm to solve this convex relaxation in Sec-
tion IV-A using gradient methods that are computationally effi-
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SIR”
wray — Pl A + Z wjay P”G"
JERA
i7k
SIR"(P
prog — Pl | 1ra=p + ik + Z wjaj P“G"
JERA
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SIR?(P) n'
+ > wad e =0, keRA (10a)
JEFM
SIR? (P) n'
+ > mio g G"| =0, keFM. (10b)
JEFM J
J#k

cient, and without the need for a brute-force or heuristic search
of any kind. Once a solution is obtained, we may transform back
to the P-space with PJ* = exp(P}}).

Here we are optimizing a lower bound on the achievable rate:
to either maximize the aggregate of all RA users, or when there
are none, minimize the aggregate power of all FM users. It then
becomes natural to improve these bounds successively, resulting
in the following procedure:

1: Initialize all a(o) =1, ,BI(CO) = 0 (a high-SIR approximation)

2: Initialize iteration counter ¢ = 1

3: repeat
4: Maximize: solve subproblem (9) to give solution
PO — oxp (P<t)
5: nghten update elements of a, (t+1) ﬂ(tH) using (6a) at
= SIR?(P™)
6: Increment ¢

7: until convergence

One caveat results from our choice of initial approxi-
mation constants. We require that the set of rate targets
{R;*" |k e FM} are at least “high-SIR feasible.” By this we
mean that, for the specified rate targets, there exists a feasible
solution to the first subproblem that is based on a high-SIR
approximation. We later discuss why this requirement can be
relaxed in practice.

Lemma 2: All target rate constraints are active at the optimum
solution of (9).
Proof: Suppose the feasible solution PWig optimal, where
at least one user j has a rate target constraint that is inactive.
When there are no RA users, we could reduce the power allo-
cated to user j while still remaining feasible, in turn improving
the objective and so our solution was clearly not optimum. Al-
ternatively, when one or more RA users are present, their data
rate could be increased, again improving the objective, until the
rate target constraint of user j becomes active—the same con-
clusion is reached. O

Theorem 1: Under the assumption of high-SIR feasible rate
targets, the sequence of iterates produces a monotonically in-
creasing objective and always converges. At the converged so-
lution, the lower bound (8) is equal to the actual achievable
rate (3).

Proof: The existence of a feasible solution PW (o the first
iteration is assured, by the high-SIR feasible rate targets as-
sumption. For subsequent iterations ¢ > 1, the relations

target (
Rk

(P(t 1) 5:—1)7}8;:—1))
(%) R (P(t_l))

9 e (PUD; a0, 0)

hold for eachuser k € F'M Equality (a) follows from Lemma 2,
inequality (b) follows from the definition of the bound (5), while
equality (c) is a consequence of the tightening step (“T-step”)
and (6). Together, these results ensure that iterate PtV s 4
feasible point of the following subproblem ¢.

We therefore conclude that the maximization (“M-step”) will
either improve the objective on the tth iteration, or remain at the
same point as the previous (¢ — 1)th iterate (since it is feasible).

The T-step can only lead to an improved objective on the next
iteration ¢: for FM users, this means that tightening creates a glut
of excess data-rate that is not optimum by Lemma 2 (cf. equality
(a) above); while for RA users, tightening may improve the ob-
jective value at the feasible point P(t_l), with further poten-
tial of improvement during the following M-step. Convergence
is brought about when the T-step maps onto itself: exactly the
same approximation vectors are selected for the next iteration.
Clearly then, performing an M-step would be futile as the so-
lution would also remain the same. Moreover, the lower bound
(8) is exactly equal to the actual achievable rate (3) at this point.

Convergence is guaranteed by the monotonically improving
objective, bounded above by the global optimum of the original
spectrum balancing problem (4), and since each subproblem re-
mains within its feasible region by virtue of our lower bound (8)
on the achievable rate. O

One consequence of Theorem 1 is that each subproblem need
not be maximized fully; only an improved feasible solution is
required. This lends itself toward a distributed T-step: each user
need not wait until convergence of subproblem ¢, each tightens
at periodic intervals whenever their constraints are not violated.
Moreover, each T-step requires only local information—a
simple measurement of the SIR. Our next result deals with a
second consequence.

Corollary 1: When the sequence of iterates converges, it
does so to a feasible power allocation that satisfies the neces-
sary KKT optimality conditions of the nonconvex spectrum
balancing problem (4).
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Proof: The KKT conditions for each convex subproblem
(9) can be written as (10) (see the top of the page) after re-
verting back to the original P-space, and where {P, p, A} is a
primal-dual triplet satisfying primal feasibility and complemen-
tary slackness.

Denote the solution of the final converged subproblem as P*.
Then by [15, Proposition 3.3.1], there exists Lagrange multi-
pliers {u*, A\*} that, together with P*, satisfy the KKT condi-
tions above as well as feasibility and complementary slackness
(regularity is assured by the convexity of the subproblem). Fur-
thermore, Theorem 1 tells us that the lower bound approxima-
tion is exact at this point. From the definition of the approxima-
tion constants (6), it follows that

N G 11
T SIRI(PY) (D

for every tone n associated with every user k.

The proof is completed by recognizing that (10) has exactly
the same form as the corresponding KKT conditions of (4)
when o} 'k * is substituted as shown in (11)—and thus the triplet
{P*, u*, \*} satisfies both sets of KKT conditions. O

Corollary 1 tells us that the sequence of iterates guarantees
at least a local solution to the spectrum balancing problem (4).
However, it also has the potential to achieve true global opti-
mality. We investigate further in Section VIII-A.

In the sequel, we refer to this procedure as Successive
Convex Approximation for Low complExity (SCALE). Sec-
tion IV-B outlines its realization, leading to a scalable protocol
for spectrum balancing where computation is distributed across
the network.

A. Subproblem Solution

We begin by deriving an algorithmic solution to subproblem
(9) via the dual problem ming, x>0 gs(p,A), where p =
{purlk € RA} and X = [Aq,...,A\g]T are Lagrange multi-
pliers. The dual function is given by

q§(#’7 A) S H@XLg(ﬁ7[l,, A) (12)

P

and the corresponding Lagrangian is

Z wy, Ry, ( ak7ﬂk) lra—o Z Ze’ﬁ;

kKERA kKEFM n
+ Z (e R (ep;amﬁk)—

kEFM
max
— P }

- Ak{ZeT’f
k n

where we recall that the approximation vectors ey, and B, are
fixed. ~

Since the Lagrangian (13) is strictly concave in P, the inner
maximization (12) has a unique solution. By [15, Proposition
6.1.1], the dual function gs (g, A) is differentiable everywhere,
and we can employ the simultaneous gradient-descent

/\gcs+1) [ (s) + Q‘{Z pr() p;cmaXH-i_

s(P,p, )

target
UkRk

(13)

(14a)
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s s arge » s +
Y = [ + e { Ry = B (P9 e, 81) ] (14b)
to solve the outer minimization, where €{u,\} are sufficiently
small step sizes, [-]T = max(0, -), and s is an iteration number.

We denote by P**) = exp(IN’ S)) the maximizer of the La-
grangian with multipliers fixed at iteration s.

Multipliers A, and i, are conveniently updated by the respec-
tive user k using only local information. As with many other
Lagrangian dual formulations, the multipliers have a pricing in-
terpretation: as the maximum-power constraint is violated, the
price Ax goes up and vice versa until the equilibrium price A* is
reached; and similarly for p with respect to the target rate. At
equilibrium, the dual subproblem has been solved.

The dual function (12) is evaluated by finding the stationary
point of the Lagrangian (13) with multipliers fixed. This equates
to finding a solution to the coupled KKT equations (10). On
closer inspection, we may rewrite these with

) wk, k€ RA
o = {/uﬁ ke FM (15)
resulting in the unified KKT equation
n bk
Py = L SIR™(P) - (16)
g T g b e

that has been further rearranged in terms of P;’. This is a fixed-
point equation, since P’ also appears in the denominator of
each SIR term, and convenient too, as it forms the basis for our
iterative solution of the Lagrange maximization (12) whereby
the right-hand side is used to update the power of user k£ on
tone 7.

As a power update, (16) admits an elegant interpretation: the
gains G;‘k indicate the impact user £ has on all other users j,
tone n. Power is allocated in such a way so that it takes other
users into account on a tone-by-tone basis, rather than a selfish
allocation as is done in IWF. Further, on violation of the power
constraint, the price of power )y, increases, lowering the alloca-
tion to an appropriate level within the budget.

Lemma 3: The fixed-point power update based on (16) al-
ways converges to the maximizer of the Lagrangian (13) with
multipliers fixed.

Proof: The right-hand side of (16) can be written in the
following abstracted form:

n
Ak
cn

BWFZW

Ji (P) = 7)

where A}, By, C;?, D;‘ are nonnegative constants, I is a column
vector of all ones, and P ; is a (K — 1)-length column vector
equivalent to P™ with the jth element missing.

With reference to the Yates framework [16], we identify J}! ()
as the (k,n)th component of the matrix-valued interference
function Jj,(-). Interference functions that are standard enjoy
guaranteed convergence of the iteration PGt = J(P®)
to a unique fixed-point (when it exists) from any initial PO,
Updates need not be synchronized.
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We are assured a stationary point of the Lagrangian (13) by
its strict concavity in P. Therefore, a fixed-point of (17) always
exists. We now proceed to prove that (17) satisfies the three
properties (positivity, monotonicity, and scalability) required
of such functions. Positivity follows from the nonnegativity of
each component.

Taking P = U@ with ¥ > 1, monotonicity follows from
An
JI?(P):B N Z . cr

k DraivITO™
fert Dy +\IJITQ7].

Ax

> Bty - = Ji(Q).
K+ SriiTon
j#k Dj +ITQ7.7'
Taking U > 1, scalability follows from

An
W (P) = :

(o

1 1 =
7Be+ X o
J#k 7 -’

A7

. Cr
By + gé:k b7 R +I]TPg_7

An
> b = Q).
By + Ek R o

>

We conclude that (16) has a unique fixed point and the given
update will always converge to it. Moreover, the fixed point de-
termines the stationary point of the Lagrangian and therefore
maximizes it. O

Each variable (15) is a kind of “QoS parameter”—statically
assigned to RA users by the system operator, and dynamically
adjusted for FM users—controlled by “market forces” to ensure
they are of sufficiently high priority for realization of their target
rate. This interpretation explains why SCALE can, in practice,
converge to a solution even when the set of rate targets are not
“high-SIR feasible,” as required by Theorem 1. In this sense,
SCALE treats all users as if they were RA; their weights 6, are
adjusted by an auxiliary process. Solutions to each intermediate
subproblem are thus always feasible whenever the power con-
straints are met. This is precisely our motivation for including a
maximum power constraint for all users in our statement of the
spectrum balancing problem (4); even though these constraints
are not technically required for FM users. Strictly speaking, the
(general) feasibility of the rate-targets should be enough to en-
sure the (then implicit) power constraints are met for associated
FM users.

In practice, we do not need to fully maximize the Lagrangian
in (12) before updating the multipliers A and g. A single ascent
step is sufficient, that equates to one iteration of (16). This obser-
vation is the key that enables a low-complexity implementation
that is comparable to that of IWF.

B. The SCALE Protocol

The SCALE algorithm just described can be implemented
centrally at an SMC, where a priori knowledge of all direct
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and crosstalk channels is required. This channel state can ei-
ther be measured (see, for example, [17]) or derived approxi-
mately with standard models (e.g., [18]) and knowledge of the
loop topology. The computed PSD for each user would then be
fed back to its associated transmitting modem, perhaps period-
ically, to track changes in the network such as modems turning
on and off.

This centralized approach requires message-passing between
user modems and the SMC for distribution of the computed
PSDs and collection of live channel measurements where
applicable. Unlike other centralized methods, however, we can
take our developments one step further to create a protocol
whereby computation of the PSDs is distributed across the
network, through a different kind of message-passing that in-
corporates per-user local measurement. This has the advantage
of a reduction in the computational requirements of individual
network elements, thereby further enhancing the scalability of
the scheme, while also incorporating live channel conditions
through the measurement process.

To this end, we rewrite the power update (16) as

(5kOéZ

Pn(5+1) —
* A+ Mp)

(13)

where MZ(S) € R, is a message passed to user k from the
SMC, defined as
MZ(S) =1germ + Z G;Lk-/vjn(S) (19)
RA=D

and is formed by a weighted sum calculation at the SMC. For
this, we require access to estimates of the crosstalk channels
Gy, obtained through measurement or with crosstalk models
and knowledge of the loop topology, in much the same way as
the centralized approach described above. Loop makeup infor-
mation is also useful for determining the 0—1 state of the indi-
cator function value. The terms N'J“(s) € R, are also messages,
from every other user j # k on tone n to the SMC
(Sj Oz?

L SIR?(P")

J n n(s = n n(s n
GPrt Y G PrY oy
J#k

./\/jn(s) = (5]'04

(20)

and is a local quantity at the receiver of user j: a simple scaled
noise measurement.

With reference to Fig. 1: we summarize the main steps of the

SCALE protocol.
1) Initialization on power-up:
a) All user PSDs are set to zero: P, = 0.
b) Multipliers are set to zero: A\, = 0,V k and 6, = 0,
k € FM.
¢) Approximation vectors set to a “high-SIR approxima-
tion”: a« = 1,8 = 0.

2) The receiver associated with user k performs weighted
noise measurements (20) and sends these to the SMC.

3) The SMC computes the weighted sums (19) for all users
k € [1, K] with knowledge of the crosstalk channels, and
sends these to the user’s corresponding transmitter.

4) The transmitter associated with user k:
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a) Updates the target rate multiplier §; = uj according
to (14b) if k € FM.
Receives SMC messages (19) and updates their PSD
by alternating between the updates (18) and (14a)
until convergence.
¢) Tightens the approximation vectors @y, B, according
to (6) at the point zg = SIR} obtained by measure-
ment. This tightening step is made periodically after
D > 1 iterations for RA users; and for FM users,
whenever the lower bound rate target constraint is ac-
tive (or within some small ¢).

We envisage steps 2—4 to repeat indefinitely, so that changes
in the network can be tracked. These changes may include
modems powering down at night, configuration updates of
the FM rate targets and/or RA priority weights by the system
operator, slow variations in the alien noises o7;;, etc.

b)

C. Efficient Lagrange Multiplier Updates

The alternating update of step 4b above is essentially a one-
dimensional search for minimum A; > 0 such that the PSD
allocation remains feasible. We can improve the efficiency of
this update tremendously by exploiting the notion underlying
complementary slackness: when the maximum power constraint
is inactive, the corresponding multiplier is A\, = 0, otherwise, it
is nonnegative.

We propose the following modified bisection rule: start with
Ar = 0; if the PSD does not exceed the maximum power con-
straint then it is minimum and stop. Otherwise, the PSD is in-
feasible and we require A, > 0 to reduce the PSD back into the
feasible set. Search for a coarse upper bound ), by successively
trying larger values (every decade, for example) until the PSD
becomes feasible. Finally, perform a bisection on the interval
(0, \¢) to find the value of ), that ensures the maximum power
constraint is met with equality to within a small tolerance e, as
given by

P]:"Ilax — € S Z PkTL S P]z‘ﬂax.
The target rate multiplier update of step 4a can also benefit
from a more efficient update rule. We will make use of the fact

that at equilibrium, the target rate constraint is always met with
equality for all FM users. That is, for all £ € FM

Rt 93T o log(SIRY(P™) + 67

e SIR (P™

© > ap [log (%) +10g5k:| + By
n k

RZarget _ Z |:OZZ log(SIR,(%IEP )) + ,B]?i|

2 ay
n

®
= exp

Ok

2y

where (d) follows from (8) and Lemma 2; step (e) multiplies
and divides the SIR by the QoS parameter ¢y; and (f) rearranges
the expression in terms of 6. It does not directly depend on
itself, since the SIR}, (P") is directly proportional to &, cf. (18)
and (2).

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 8, AUGUST 2009

10

e

Function value
N
o

m—a/z+B
alog(z) + B
—log(1+2)

0.6

0 0.2 0.4

z value

0.8

Fig. 2. Two lower bounds (dashed) that lead to convex relaxations, with zg =
0.2.

These heuristics result in attractive ‘“zero-configuration al-
gorithms,” devoid of any step-size selection. They have never
failed to produce the desired outcome throughout several nu-
merical studies. In particular, the target rate update (21) was
found to significantly speed convergence of FM users to their
rate targets in numerical studies, as compared to the update
(14b).

D. Other Convex Approximations

Our development hinged on a particular approximation that
was used to recast the nonconvex spectrum balancing problem
(4) into a convex relaxation. It turns out that our choice is just
one of many. For example, the reader can verify that the lower
bound

—g-l—ﬂglog(l—{—z)

(22)

is also suitable, where we recall that z > 0 is our range of
interest.

In general, any lower bound that leads to a convex relaxation
is a suitable candidate. Not all bounds, however, are created
equal. A tighter bound can hasten convergence to a KKT point of
the original nonconvex spectrum balancing problem, since the
deviation at each subproblem is relatively smaller as compared
to a corresponding subproblem based on a looser bound. Fig. 2
graphically illustrates the tightness of the bound employed in
SCALE (5) and the example (22) above.

The bound employed in SCALE (24) is the tightest avail-
able for the relaxation to remain convex in the P-space. To see
this, we first recast the spectrum balancing problem (4) into the
equivalent optimization

1Hax Z Zwk log(1+ ') — 1ra=g Z Z P

Pt keRA n kEFM n
st R < Zlog(l +elt), keFM

n
Sl <P, Vi

7 < log(STR}(exp(P"))), Vk (23)

2

of

where we have introduced the auxiliary variables %
{t}|V k,n}. This is the so-called reverse-convex form
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the d.c. spectrum balancing problem: the objective is re-
verse-convex when the set RA is nonempty; the first constraint
set is also reverse-convex. Only the second and third constraint
sets are convex, where we recall that log (SIR}) is convex in
the P-space by Lemma 1.

We could form a convex relaxation to this problem by taking
tangential approximations to each log (1 + etf) term using the
bound

az + f <log(l+ e¥) (24)
that is tight at the point z = 2y when the approximation con-
stants are chosen as
e
o =

14 e

B = log(1+¢*) -

(252)

e*o

1+ e

Z0. (25b)

By recognizing that the value of auxiliary variables are by their
definition
i = log (IR (exp(P))) (26)
we observe that this tangential approximation (24) is exactly the
same as the SCALE lower bound (5) when (26) is substituted
into the approximation constants (25).
So in fact, the lower bound employed in SCALE is actually
a tangential approximation under a nonlinear transformation. It

follows that, in that space, no other bound can be as tight and
yet still result in a convex relaxation.

V. A FRESH LOOK AT ITERATIVE WATER-FILLING

A. Rate Adaptive Water-Filling (RA-WF)

Consider the RA-WF subproblem for user k € [1, K] in the
standard IWF procedure, where all PSDs P, are held fixed
and we have choice over only Pj. We can apply the same lower
bound technique as before, to form the relaxation

ZékRk(PQkaﬂk)

max
P, >0

sty Pr <P 27)

where again ay and B}, are fixed approximation vectors ad-
hering to (6).

This relaxation is maximized by following a similar line of
development as outlined in the previous section. That is, we
again formulate an appropriate Lagrangian dual problem, this
time with a single multiplier \ associated with the power con-
straint of subproblem k. It is straightforward to show that the
following solution results:

N =D+ a3 P - pre}] T s

§kaz
A

ppith) — (28b)
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In a similar spirit to the procedure introduced earlier, we can
again alternate between maximization and tightening to find a
converged solution P}. It can be shown that this is exactly the
unique global optimum of the kth RA water-filling problem, and
follows the proof of Corollary 1 closely, where the KKT condi-
tions are now sufficient for a global optimum due to convexity
of the unapproximated RA-WF subproblem.

B. Fixed Margin Water-Filling (FM-WF)

Repetition of the above analysis for the FM problem provides
the lower bound relaxation

S
st R < Ry (Prag, Br)
> <

max
P.>0

(29)

with rate target multiplier 6;, = p. The associated dual solution
is given by

51(:+1) = [519 + es{R?rg“ - Z Rk(P(S);akﬁk)}r

(302)
+
M = D {3 P - Pl (30b)
prith - ‘9’“0"2 ) (30¢)
1+

where again it can be shown that successive maximization and
tightening converges to the global optimum P;, of the kth FM
water-filling problem.

C. Comparison Between IWF and Scale

Let us compare the SCALE algorithm with the solutions to
the RA and FM water-filling problems above, described by
(28a) and (30a), respectively. We immediately observe that
the Lagrange multiplier updates of SCALE (14) are identical
(recall that by (15), 6% £ wr. for FM users). The power updates,
(28b) and (30c) are also identical to the SCALE update (18)
when we disregard the impact user k has on other users.

This is a significant result: SCALE degrades to IWF when
message passing is not available, or not desired. More impor-
tantly, it motivates the use of reduced communication to form
a hybrid SCALE-IWF scheme whereby no communication is
made on tones enjoying little or no FEXT (i.e., those at low fre-
quencies), and making full use of neighboring line conditions
on tones heavily affected by FEXT to improve performance be-
yond IWF. As the level of such communication reduces to zero,
SCALE degrades gracefully to the same performance as what
IWF would provide. Put simply, SCALE will always perform at
least as well as IWF. In practice, SCALE can outperform IWF
considerably.

VI. THE SCAWF ALGORITHM: AN IMPROVED IWF

In this section, we develop novel water-filling methods
that are purely iterative in nature and therefore admit low
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complexity implementation, unlike traditional solutions that
make use of channel sorting or bisection. We name these al-
gorithms Successive Convex Approximation for Water-Filling
(SCAWF), as they are based on the relaxed water-filling prob-
lems of the previous section. Our new methods stem from
closed-form solutions to the relaxations (27) and (29), allowing
simultaneous evaluation of the maximization and tightening
steps.

A. Rate Adaptive SCAWF (RA-SCAWF)
We first consider the RA-WF relaxation (27). Substituting the

closed-form power update (28a) directly into the multiplier up-
date (28b) reveals the very simple form of the dual problem

+
s 5 [ max
)\Ev)—f_EA{Z:(—(:)k_Pk }‘| .
k

n

/\](cs—i-l) —

This is a beautiful example of Lagrange duality: the N-dimen-
sional constrained optimization (27) has been transformed into
a one-dimensional search over multiplier A.

Going further, it is easy to see that the dual solution occurs at
the equilibrium point

* 1 n
A= s Xn: ol (31)
where the associated primal solution is given by
5k ol
P max k (32)
k k Z 6kCYZ’L

and follows by substitution of (31) into (28b). This is a some-
what surprising closed-form solution to the relaxed optimiza-
tion problem (27). Combined with the tightening operation (6)
around the point zg = SIR}(P), we obtain the RA-SCAWF
algorithm

SIR
T+SIR}

N smp
Z TSI

PP = pex (33)

where the denominator sum is common to the allocation of all
tones, and needs to be calculated only once (consequently, nu-
merators are calculated for free). This algorithm is a particu-
larly attractive alternative to the current IWF procedure where
a conventional water-filling solution is computed for every user
at every iteration. Such water-filling computations often require
a sorting step of the channel gains or the use of complex data
structures. Instead, the SCAWF algorithm computes the partial
solution (33) that adapts a user’s PSD and converges together
with all other users to the simultaneous multiuser water-filling
solution.

The SCAWEF algorithm is also extremely simple: the SIR on
each tone is periodically measured and (33) computed to form a
new power allocation that is immediately updated. No channel
sorting or complex data structures are required.
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B. Fixed Margin SCAWF (FM-SCAWF)

We now develop a similar algorithm for the FM-WF relax-
ation (29). Substituting the closed-form power update (30c) into
(30a) gives

5(s+1) 5(5) +es Rtarget

X e (i) )

where o} is the thermal noise plus (fixed) interference experi-
enced by the receiver of user & on tone 7. The equilibrium con-

dition is given by
) + 6

e = Yot (et
Sk e X [eaws (5) <]

Ok
log <1+)\
= > lag log (o /ay) + Bi]

target
Rk
n
PO
n

+

5kak
L+ Ap)oy

O
14+ A

exp

The right-hand side is a constant, resembling (21). Substituting
it into (30c) results in the closed-form power update

target
Rk

=2 o log (@

m
2yl
m

K /%) + B

Pl = aj exp

(34)
While it may seem surprising that this update is independent of
the multiplier A\, the result is indeed sensible. The preceding
development supposed existence of the equilibrium condition.
In other words, we had assumed that the rate target R, was
feasible. It then follows that the maximum power constraint be-
comes redundant (reminiscent of our discussion at the end of
Section IV-A), and so the actual power allocation should not
depend on Ay.

This maximum power constraint is still important nonethe-
less. Without it, we would require “high-SIR feasible” rate tar-
gets, as discussed in Section IV-A. We therefore propose that
the PSD allocated according to (34) is paired back whenever it
violates the maximum power constraint. We elect a simple pro-
jection that scales all components of the PSD equally, resulting
in the power update

Qp)

max
Pk

0., <
prls+1) _ when ||Q,, =k
k QE(S)

W otherwise
R

)

(35)
where Q, = [Q},..., Q] is an N-length PSD with compo-
nents given by (34), and we note that the total power required
by the update is given by ||Q}||1-

This update solves the relaxation (29) in closed form when
it is feasible. Otherwise, the relaxation does not have a solution
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and we provide a compromise: a PSD that satisfies the max-
imum power constraint with equality, having the “same shape”
of the PSD that would have been allocated without any max-
imum power restriction. Combined with an alternating tight-
ening operation (6) around the point zy = SIR}(P), we ob-
tain the FM-SCAWF algorithm that solves the RA water-filling
problem at convergence.

This algorithm, much like its close relative RA-SCAWE, is an
attractive alternative to existing methods for water-filling under
arate constraint, and especially so in an IWF procedure for sim-
ilar reasons already discussed.

VII. DISCRETE BIT-LOADING

All of our developments thus far have hinged on the assump-
tion of continuous bit-loading. That is, once the PSD Pj, for
user k is found with the SCALE or SCAWF algorithm, the
bit-loading on each tone is computed with (1).

It may be desirable to limit the bit-loading to a discrete set in
practice. We propose this by “layering” the PSD optimization
and bit-loading operations: all user PSDs are first optimized
with the SCALE or SCAWF algorithms as presented. With
PSDs fixed, the associated continuous bit-loadings are mapped
to the desired discrete set.

For example, we may be interested in the discrete set of in-
tegers by € [0, ..], where b7, is a maximum integer bit-
loading on tone n, and a bit-loading of zero indicates that the
associated tone will not be used for data communication. In this
case, the continuous-to-discrete mapping may be realized with

Bt = min {bfs. [logy (14 SIR)]}
where |-| is the floor operator. The SIR}] can be obtained
through a noise measurement and knowledge of the PSD Pj.
We always truncate—not round—to ensure that the loading
associated with a particular SIR is supported.

This layered approach is typically suboptimal: slightly more
power will be expended in general than what is optimally
required, unless by chance, the continuous bit-loading aligns
with the desired discrete set. Conceptually, we may think of this
layering as being similar to the well-known practice of “gain
scaling”: a perturbation of the spacings between constellation
points by multiplying each complex symbol by a small positive
factor [19]. Although gain scaling is typically used to equalize
the bit-error rate (BER) on each tone, we can think of it as
the gap in power between the optimal PSD based on discrete
loading and the continuous result. On the upside, the resulting
tonal BERs may be improved since we may be supporting
a bit-loading with a slightly higher SIR, than what is really
required.

We do not advocate that each PSD be reduced accordingly
(for example, with true gain scaling to counteract the gap), as the
corresponding interference between users would also change.
This interference is an important message-passing mechanism,
albeit an implicit one, achieved through measurement.

Despite these caveats, this layered approach provides a simple
and practical way in which to operate with discrete bit-loadings.
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Fig. 3. SCALE can significantly enlarge the VDSL rate region compared to
IWF in both down- and upstream topologies.

VIII. PERFORMANCE

In this section, we compare the performance of the SCALE
and SCAWEF algorithms to IWF under continuous bit-loading.
Our evaluations consider VDSL over 26-AWG (0.4-mm) lines.
A coding gain of 3 dB, with a 6-dB noise margin is assumed,
giving an SNR gap I} = 12.8 dB for an error probability
of 10~7 [8]. Each modem has maximum transmission power
11.5 dBm, and can transmit in both 1U and 2U upstream
bands (regional-specific band; former plan 998) [18, Table
1] with amateur RF bands notched off [18, Table 17]. No
other spectral masks are enforced. A DMT symbol rate of 4
kHz is assumed, with tone spacing of 4.3125 kHz. Users are
subject to —140-dBm/Hz background noise and alien noises
corresponding to European Telecommunications Standards In-
stitute (ETSI) models XA.{L,N}T.{A,D} as appropriate [18,
Tables 21-22]. The cross-gains G}, are calculated according to
[20] without FSAN combination of FEXT sources, and using
standard FEXT models [8].

Our simulations consider K = 8 users, split into two equal
groups of four users each. The downstream topology of Fig. 1(a)
has a central office (CO)-based group placed at 3 km and an RT
deployment at a distance of 2 km, with the second RT-based
user-group placed 2 km further along. The upstream topology
of Fig. 1(b) has one group placed 0.5 km from the CO, the other
at 1.5 km.

Due to the inherent symmetry in the channel models [8], the
resulting rates for users having equal loop lengths end up the
same. Fig. 3 then shows the rate region between two users,
one from each user group. The performance improvement of
SCALE is clearly significant, where the rate region is almost
doubled over IWF in the upstream direction.
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Fig. 4. Convergence and performance comparison: SCALE has improved
system rate with speedy convergence to rates well above IWF and SCAWF.

The SCALE region is produced by sweeping the weights 0y,
and solving a complete RA problem for each tuple. A similar
goal is achieved in IWF by pairing back the maximum power
budget of each user k by a factor ¥;, < 1. That is, each user
may use a maximum total power of W %, rather than the
full power budget P;"**. Selection of the scaling factors ¥y
was a challenging process, as minute changes resulted in large
differences of the final allocated rates.

We now compare the convergence properties of each algo-
rithm, having selected specific weightings that correspond to
particular points within the rate region.

For the downstream, our selection corresponds to a 4-Mbps/
user service on CO-based loops. Fig. 4(a) shows the conver-
gence of each scheme, where iterates are shown after all users
have updated their PSD. The IWF algorithm converges within
two iterations. While the SCAWF algorithm takes an additional
iteration to converge to the same result, it requires significantly
less computation as outlined in Section VI. The SCALE algo-
rithm also converges very quickly, and in just two iterations, far
exceeds the final performance of IWF. These gains stem from
an almost disjoint frequency-division separation of the near and
far user groups, negotiated automatically by a power allocation
that takes other users into account on a tone-by-tone basis. These
PSDs are depicted in Fig. 5. In contrast, the IWF scheme over-
laps the spectrum of each user group due to its selfish nature.

On the upstream, we select weightings that correspond to a
500-kbps/user service on 1.5-km loops. Fig. 4(b) shows the cor-
responding iterations. Convergence rates similar to the down-
stream direction are observed, where SCALE outperforms IWF
after a single iteration. Comparing the associated PSDs in Fig. 5,
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we clearly see that SCALE allocates power over a much larger
bandwidth, employing tones that IWF neglects.

A. Global Optimality

In this section, we revisit the topic of global optimality. Re-
call that at convergence, SCALE guarantees at least a local op-
timum solution: a point that satisfies the necessary KKT opti-
mality condition. Nonetheless, this solution may or may not be
globally optimum, due to the nonconvex nature of the problem.
We therefore resort to a numerical technique to test the previous
two examples for global optimality. Our basis is the following
general sufficiency condition, listed in [15] and recast below in
terms of a maximization problem (not necessarily convex).

Proposition 1 (General Sufficiency Condition): Consider the
problem

max f(x)

st. z€X,

gj(z) <0,

where f and g; are real-valued functions on R"™ and X is a given
subset of R™. Let z* be a feasible vector which together with a
vector p* = [u3,. .., ur], satisfies

w; >0,
n; =0,

g=1...,r
Vi ¢ A

*

)
and maximizes the Lagrangian function L(z, u*) over z € X
)

¥ = argmax L(x, u*). (36)

reX
Then z* is a global maximum of the problem.

Consider the converged primal—dual triplet {P*, A*, §*} re-
sulting from the SCALE algorithm. By Corollary 1, it satisfies
the feasibility and multiplier conditions of Proposition 1 with re-
spect to the spectrum balancing problem (4). All that remains is

evaluation of condition (36). The associated Lagrangian is given
by

L(P,)\ 6) 2 Z L"(P™, ), 9)
+ Z )\kplznax
k

where we have made use of the unifying multiplier (15) for no-
tional simplicity and

L*(P"X,8)23 " 8, log (14SIR}.(P")) P} ()\k+1 kePy )
g i

_ Z 6kR1’;arget (37)

keFM

represents a partial Lagrangian involving only the user powers
on a particular tone n.

We exploit this separability to simplify the maximization (36)
from dimension K x N to a sequence of N smaller maximiza-
tions, each involving only K dimensions. This leads to a vast
computational saving, since typically N > K. It follows that
when the condition

P

max
{o<Pr<Prax|ke(l, K]}

— arg L"(P",\*,6%)

(38)

holds for all tones n € [1, N], the SCALE power allocation P*
is globally optimal.
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Fig. 5. Power spectrum density allocation: SCALE spreads power over a wider bandwidth, with less overlapping spectrum between near and far users.

For the purposes of evaluating this per-tone nonconvex max-
imization, we employ an exhaustive grid search, reminiscent of
the OSB method [1]. We employ a nonuniform grid spacing, in
contrast to OSB, with 150 points in each dimension. This ex-
ploits the fact that the per-user maximum power P;"%* is typ-
ically spread over a large number of tones and therefore the
power allocated to an individual will likely be small. In turn,
this allows us to achieve high accuracy with reasonable compu-
tation. We further exploit the symmetry in the channel models
[8], where each user within each group ends up with exactly the
same power allocation and multiplier values, to further reduce
the search space. This latter technique is not uncommon [21].
Fig. 6 shows the per-tone Lagrangian difference

L= LM(P" N, 6%)— L"(P", )", 6")

max
{o<Pr<Prax|ke(1, K]}

where the grid-search is employed to compute the maximization
over P". Assuming sufficient accuracy in the exhaustive search,
small nonnegative differences imply that condition (38) holds
and the associated power allocation P" on tone n is optimal for
the supplied multiplier values. Negative values indicate other-
wise. We make use of the SCALE solution {P*, \*, u*} from
the previous two examples, taken at the 50th iterate.

Fig. 6(a) illustrates the differences for the downstream ex-
ample, where only 10 out of 1602 tones (0.6%) resulted in a
negative difference. Interestingly, these tones were located at
the crossover point between CO- and RT-based loops, observed
in Fig. 5(a) at around 500 kHz. The corresponding powers re-
sulting from the grid-search were “dimensionally opposite” to
those provided by SCALE in this case. i.e., power allocated
to the RT-based user group should have been allocated to the
CO-based group and vice versa. Otherwise, whenever L'} > 0,

0.2 "
0.1
781

156, 534 1068 1602
Tone index

(a) Downstream

Per-tone Lagrangian difference
o

0.2

0.1

Per-tone Lagrangian difference
(=]

-134:
268 375 749 1123
Tone index
(b) Upstream

Fig. 6. Difference of per-tone Lagrangians, between SCALE and a grid-based
search.

the powers obtained by grid search were very nearly P"". This
gives us confidence that our grid search was of sufficient accu-
racy and that condition (38) was met on all such tones.
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The upstream example is illustrated in Fig. 6(b), where only
27 tones out of 1123 (2.4%) did not satisfy condition (38). These
violations were similarly located at the crossover point between
the long and short loops, shown at around 4 MHz in Fig. 5(b).

These minute differences give us confidence that the SCALE
solution is very nearly globally optimum in this case. This is a
very significant result: with a mere 50 iterations, SCALE has
nearly achieved a globally optimum solution on an NP-hard
problem having approximately 8000-12 000 variables—very
large scale indeed. Although not shown here, additional SCALE
iterations were found to further reduce the number of tonal vio-
lations of condition (38). The associated total-network data rate
remained virtually the same in this case, giving further weight
to our claims.

IX. CONCLUSION

Two novel algorithms for spectrum balancing in multiuser
DSL networks have been introduced, each enjoying a low-com-
plexity implementation. SCALE, the first algorithm, explicitly
accounts for the “damage” a user’s power allocation has on other
users, resulting in higher achievable rates than the selfish com-
petitive-optimal rates resulting from simultaneous water-filling.
Through measurement and limited message passing, SCALE
is easily distributed with the help of a SMC. Message-passing
overhead can be arbitrarily traded for performance, and in the
limit of zero overhead, SCALE can perform no worse than IWF.

Convergence to a solution satisfying the necessary KKT op-
timality condition was proven under a mild assumption on RA
users that can be typically relaxed in practice. Numerical studies
indicate that SCALE can converge to rates far exceeding that
of IWF with just two to three iterations, and to within 90% of
the final rate in under five iterates. These results were further
shown to be very nearly global optimum, where less than 3% of
the 1000+ subchannels employed were observed to fail a gen-
eral sufficiency condition for global optimality.

The second algorithm, SCAWF, was shown to be an ex-
tremely simple way to water-pour that is particularly well-suited
to iterative multiuser water-filling problems. Unlike existing
methods, it does not employ expensive channel sorting or
bisection operations.

While the focus of this paper was on continuous bit-loading,
we recognize the importance of discrete bit-loading and have
outlined a layered approach that paves the way for a simple
and practical method based on the results herein. Any further
improvements in this area would require a very different ap-
proach—that of solving a discrete optimization problem—and
remains an attractive area of future work.
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