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Abstract—We seek distributed protocols that attain the global
optimum allocation of link transmitter powers and source rates
in a cross-layer design of a mobile ad hoc network. Although the
underlying network utility maximization is nonconvex, convexity
plays a major role in our development. We provide new convexity
results surrounding the Shannon capacity formula, allowing us to
abandon suboptimal high-SIR approximations that have almost
become entrenched in the literature. More broadly, these new re-
sults can be back-substituted into many existing problems for sim-
ilar benefit.

Three protocols are developed. The first is based on a convexifi-
cation of the underlying problem, relying heavily on our new con-
vexity results. We provide conditions under which it produces a
globally optimum resource allocation. We show how it may be dis-
tributed through message passing for both rate- and power-alloca-
tion. Our second protocol relaxes this requirement and involves a
novel sequence of convex approximations, each exploiting existing
TCP protocols for source rate allocation. Message passing is only
used for power control. Our convexity results again provide suffi-
cient conditions for global optimality. Our last protocol, motivated
by a desire of power control devoid of message passing, is a near
optimal scheme that makes use of noise measurements and enjoys
a convergence rate that is orders of magnitude faster than existing
methods.

Index Terms—Congestion control, cross-layer optimization, mo-
bile ad hoc network, network utility maximization, outage proba-
bility, power control, Rayleigh fading.

I. INTRODUCTION

T RADITIONAL paradigms for communication network
design often call upon a layered approach: each slice

within the network stack should only utilize services from
those below, for design and implementation simplicity. Recent
research efforts have shown there exists a significant perfor-
mance benefit in undertaking a cross-layer networking design,
by optimizing functionality of the stack across the layers.

Nonlinear optimization has been instrumental in this process.
For example, in a multi-hop wired network, transmit control
protocol (TCP) algorithms are used to address problems of con-
gestion at the transport layer. These algorithms have recently

Manuscript received October 25, 2006; revised June 12, 2007. First published
February 25, 2008; current version published December 17, 2008. Approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor P. Marbach. CUBIN is an
affiliated program of National ICT Australia (NICTA).

The authors are with the ARC Special Research Centre for Ultra-Broadband
Information Networks (CUBIN), Department of Electrical and Electronic En-
gineering, University of Melbourne, Melbourne VIC 3010, Australia (e-mail:
jpap@ee.unimelb.edu.au; sdey@ee.unimelb.edu.au; jse@ee.unimelb.edu.au).

Digital Object Identifier 10.1109/TNET.2008.918099

been shown to implement approximate solutions to an under-
lying network utility maximization (NUM)

(1)

where each source attains some nonlinear utility by
transmitting at data-rate , doing so without overwhelming the
set of intermediate links along its route, and where each
link contributes a shared capacity of . While this problem
has been well studied in the context of wired networks having
fixed link capacities [16], [19], more recent efforts have focused
on a cross-layer design of source rate allocation and capacity
provisioning [31].

The link capacities can be conveniently optimized through
power control in a mobile ad hoc network (MANET): by in-
creasing the transmitter power on link , its capacity also in-
creases and vice versa. It is therefore of great benefit to con-
sider maximizing the utility (1) over both source rates and link
powers through a cross-layer design. In an interference limited
system—for example, one based on code-division multiple-ac-
cess (CDMA)—this optimization becomes nontrivial since the
power allocation is coupled across the entire network.

In [10], Chiang analyzed such a joint congestion and power
control problem by considering the Lagrangian dual of (1),
where the link capacities are functions of their signal-to-inter-
ference ratio (SIR). A high-SIR approximation was taken in
order to formulate a convex problem that was solved with a
gradient-based algorithm and made distributed with message
passing. These messages carried congestion state and noise
measurements at each link. Network nodes would repeatedly
broadcast such messages to the network and each receiving node
would use the state for their own power-allocation. It turned
out that the “high-SIR optimal” rate-allocation was achieved
by the existing TCP algorithm, coupled to the power-allocation
through the link congestion state.

In that work, an underlying assumption was fixed (snapshot)
or very slowly varying wireless channels. Under such condi-
tions, it is conceivable that such an algorithm is able to track any
changes in the channel as one would have the luxury of iterating
at a faster rate than the fading dynamics. Now consider a more
realistic scenario where the fading rate is increased, due to mo-
bility of the nodes and/or environment. The iteration update-rate
would also need to increase to keep track of the dynamic fading
state and so either the message passing overhead would become
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excessive, or the instantaneous channel state varies too quickly
to track properly—at this point the scheme would collapse.

Our motivation for this paper came from situations where
the fading falls into this fast-varying dynamic category. Rather
than a search for optimum source data-rates based on the in-
stantaneous link capacities, we allow the network to experience
a limited amount of fading-induced congestion, and by doing
so, avoid the fast-update problems outlined above. We make
this concept rigorous in this paper through the notion of a rate-
outage probability: the probability of experiencing fading-in-
duced congestion.

The resulting cross-layer design problem becomes one to
jointly allocate power and source rates such that the rate-outage
probability is within some arbitrarily small target tolerance.
It turns out that resources should be allocated according to
some notion of an “average SIR”, rather than the instantaneous
SIR that is the basis for Chiang’s snapshot model. The two
paradigms are similar as far as the underlying optimization
is concerned; the main point of departure between the devel-
opment in this paper and related work lies in its solution. We
remove the need for a high-SIR approximation, showing that
in a dynamic fading environment we can no longer afford to
presume as much anyway.

The underlying canonical optimization problem dealt with
here is an interesting one and deserves specific treatment: so-
lution methods for the particular snapshot or dynamic fading
environments easily flows from any positive development. The
problem was previously thought to be nonconvex, yet there is
much structure present. We show that for a restricted class of
utility functions, the canonical problem is indeed convex under
a transformation. We proceed with a Lagrangian solution and
observe that message passing for both power- and rate-alloca-
tion is required.

Convexity plays an important role in this paper. Indeed, some
of our general convexity results can be back-substituted into
other power control problems found in the literature (for ex-
ample, [9], [10], [13], [21]) where a high-SIR assumption has
been a popular but unnecessary path to solution. With the con-
vexity results herein, such problems can now be solved for true
global optimality.

Our most exciting results involve an effort to preserve
the existing TCP stack. Consequently, measurement-based
source rate allocation becomes possible—for example, with the
delay-based Vegas protocol [20]. Our method involves relaxing
the nonconvex problem formulation into a sequence of convex
approximations. The solution to each approximation involves
the existing TCP stack, each producing successively more
accurate allocations until the approximation becomes exact and
converges. This sequence is shown to always converge to a
Karush–Kuhn–Tucker (KKT) solution of the original problem,
and is a consequence of its careful construction. Unbeknownst
to us, the underlying idea can be traced to the optimization com-
munity as far back as 1966 [1], [22], [29]—our scheme appears
to be a rediscovery of a very useful mathematical technique
that we hope finds a greater prominence in communication
engineering circles. Our developments go further still, where
we provide sufficient conditions for the sequence to produce a
globally optimum allocation.

All developments thus far mentioned require some form of
broadcast message passing for power-allocation. We recognize
that in a practical setting it may be desirable to avoid such over-
head and so we include a near-optimal scheme that makes use
of autonomous SIR measurements at each link for power-allo-
cation.

This paper is organized as follows. In Section II we intro-
duce the system and fading model and derive an expression for
the rate outage probability. Section III outlines the underlying
optimization problem for the joint source rate- and power-allo-
cation, for both a snapshot channel model and one based on a
composite fading channel.

We review the high-SIR approximation in Section IV before
introducing some new convexity properties of the Shannon
link capacity in Section V. These are subsequently used in
Section VI to prove that the underlying problem is convex
under a transformation, when the utility functions are within a
suitable family. In Section VII we do away with this transforma-
tion by employing a sequence of convex approximations—each
making use of the existing TCP stack—to solve the original
nonconvex problem formulation. Both of these schemes re-
quire message passing for power-allocation and is the focus of
Section VIII where we outline a third near-optimal protocol
making use of noise measurements instead.

Illustrative numerical simulation results are provided in
Section IX that highlight the convergence speed, tracking
abilities and optimality of the protocols developed in this paper.
Our concluding remarks are given in Section X.

II. SYSTEM MODEL

We consider a MANET having logical links,
shared by sources.

A. Network Stack Decomposition

1) Network Layer: For each source there exists a
destination node and we denote the path (route) from this source
to the destination as an ordered set of links .

In this work, we assume that this layer is fixed. i.e., we assume
static routes. In practice, routing may be adapted and optimized,
with these improved routes communicated to the transport layer.
Provided that the time-scale of such updates is much slower than
the relevant time-scale of the cross-layer optimization presented
here, any such adaption will not adversely interfere with the
results provided.

2) Transport Layer: We make the usual fluid-flow model as-
sumption where each source has an infinite amount of data to
send. In this context, each source attains a utility when
allocated a data-rate , where is an in-
creasing strictly-concave function. In practice, however, sources
are often bursty. Our developments in the sequel are iterative in
nature and are nonetheless capable of handling such dynamics.

3) Physical Layer: We extend the physical-layer model con-
sidered in [10] to incorporate composite fading. This model uti-
lizes CDMA so that each link in the system may simultaneously
communicate within the same spectrum allocation, at the ex-
pense of multiple-access interference.

This model has an underlying assumption that nodes are able
to transmit and receive simultaneously. From an information-
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theoretic perspective, such a mode of operation is indeed pos-
sible: two-way channels have double the capacity of the cor-
responding one-way channel [24]. Moreover, real implemen-
tations of simultaneous transceivers have been demonstrated
in practice [8], [30], where the self-interference problem has
been mitigated through RF isolators and echo-cancelers, cou-
pled with base-band digital filtering (e.g., utilizing a CDMA
spreading gain).

The alternative, that we will not consider in this paper for sim-
plicity, is to emulate full-duplex operation with distinct transmit
and receive transmission modes (time-division duplex). This is
only possible if each node in the network is globally synchro-
nized through a link-activity schedule and is akin to a hybrid
CDMA-TDMA system. Finding optimal schedules is a very dif-
ficult problem as it is combinatorial in nature, and the topic is an
important area of research in its own right. Our results can easily
be applied to such a paradigm, through a similar time-slotted
system model as outlined in [17], [21] and references therein.

We consider fixed CDMA spreading sequences having
length and unit energy (i.e., ). These sequences are
preassigned to each link where matched filtering is employed.
Additionally, we make the simplifying assumption that the
self-interference cancellation at each node is perfect.

The instantaneous capacity of each link

(2)

is modeled on the Shannon capacity, offset by the “SIR-gap”
that reflects a particular modulation and coding scheme [11].

For simplicity of notation in the sequel, we will assume without
loss of generality, a gap unless otherwise stated. The
base-band (unspread) bandwidth is assumed normalized by
a fixed packet size, resulting in the capacity (2) taking units
“packets/sec”.

The SIR is defined as

where is a vector of transmitter powers,
is the instantaneous gain from the transmitter on link

to the receiver on link , and we assume thermal noise power
at each receiver.

Without loss of generality, we will absorb the
terms into the gain terms using the “effective gains”

to simplify the SIR expression

(3)

B. Fading Model

We can decompose each instantaneous channel gain
into fast- and slowly-varying components and respec-
tively. We assume Rayleigh fast-fading, where random variables

are iid exponentially distributed with unit mean. The terms
model slow-fading (such as distance-dependent path-loss

and/or log-normal shadowing) and are assumed constant over
the time-scale of interest.

The independence assumption on each is justified since
they represent the fading on distinct paths between nodes in the
network. The unity mean is without loss of generality, as any
non-unity value can be absorbed into the corresponding
component.

It will be useful to define the “average SIR”,

(4)

where we have made use of the unity mean of each .

C. Rate-Outage Probability

Define the rate-outage probability as the probability that
ingress rate to link exceeds its randomly time-varying
capacity , resulting in fading-induced congestion. It is written

(5)

where we define the data-rate threshold .
For our Rayleigh model, we can write (5) in closed form (cf.

[15], [25]) as

(6)

(7)

where the upper bound was derived in [25] and has been shown
to be very tight.

III. CROSS-LAYER DESIGN PROBLEMS

A. The Canonical Problem

Making use of our notion of link capacity (2), we can write
the joint power and congestion control problem as the following
canonical problem

(8)

where we jointly optimize over the vector of nonnegative source
rates and link transmitter powers . The
constraints ensure that the network is devoid of congestion: that
the rate-allocation of sources do not overwhelm any interme-
diate links, where the link-capacity is now a quantity that is op-
timized through the power-allocation.

Much like the general NUM problem (1), the objective here
is to maximize the utility of the network. In a MANET, how-
ever, power also becomes an important consideration and so
the above optimization contains a second objective to minimize

Authorized licensed use limited to: UNIVERSITY OF MELBOURNE. Downloaded on December 16, 2008 at 15:41 from IEEE Xplore.  Restrictions apply.



PAPANDRIOPOULOS et al.: CROSS-LAYER DESIGN OF PHYSICAL AND TRANSPORT LAYERS IN MANETS 1395

power (helping to reduce interference and prolong the life of
nodes relying on batteries). We incorporate the fixed weight

that allows these conflicting objectives to be traded
by a specified amount, a common way in which to treat multi-
criterion optimization problems [7, Sec. 4.7].

Should we choose and ignore the fast-varying gains
(i.e., assume them fixed and absorbing their value into the

slowly-varying gains ), this problem becomes the NUM op-
timization that is the basis for Chiang’s work in [10].

This problem formulation is based on a somewhat implicit
assumption that all channel gains and are fixed: a
so-called snapshot channel model. Any optimum resource
allocation is then tied directly to the fading state. To cater for
a time-varying channel, a completely new search could be
undertaken for each fading state. From a practical perspective,
however, such an approach may be excessive and so iterative
algorithms designed to solve the snapshot optimization are
often employed even though the channel may change during
execution. To track such changes, it is often the case that the
iteration rate need be “fast-enough”, often greater than the
fading-rate.

B. Composite Fading Formulation

When the channel is fast-varying, it can become prohibitively
difficult to undertake a rate- and power-allocation across the
entire network. To illustrate, consider the rate-allocation of a
source . The congestion state along the route must be
communicated back to the source, either implicitly by measure-
ment, or explicitly through message passing. The congestion
state is time-varying as it depends directly on the link-capaci-
ties en route, that is in turn linked to the fading state of each
link. As the fading rate increases, more timely feedback of the
end-to-end congestion state becomes increasingly difficult.

To alleviate this problem, we could allow the network to ex-
perience a limited amount of fading-induced congestion. The
constraints of the canonical problem (8) are no longer adequate:
they ensure a zero-level tolerance on fading-induced congestion.
We instead consider the rate-outage probability and aim to con-
strain it to a small tolerable value. By doing so, we show that
such a problem in fact becomes decoupled from the instanta-
neous state of the composite fading channel. Resources can then
be allocated on a much slower and manageable time-scale.

Incorporating rate-outage constraints results in the new NUM
problem

(9)

where we limit the probability to a maximum value of
on each link . It turns out that at the optimum solution,

all constraints are met with equality and so we refer to these as
rate-outage probability targets. They are fixed parameters of the
system.

Fig. 1. Concept of the rate outage probability. The ingress rate to a link (dotted)
is adjusted below the average link capacity by a fading-margin� that limits the
severity of any fading-induced congestion to within a target probability � .

Although the expressions for rate-outage probability are
known in closed form for the Rayleigh channel [cf. (6)], we
proceed by making use of the bound (7) to reformulate our
constraints as follows:

This reformulation significantly simplifies subsequent analysis
while still ensuring that the original rate-outage probabilities are
met.

Taking the logarithm of both sides of this constraint and sim-
plifying, we form a new optimization problem:

(10)

where we have scaled the average SIR by a positive constant
that is a function of the fixed rate-outage target probabilities as
given by

(11)

This optimization has the same form as the canonical problem
(8), however we now deal with average SIR. We are not con-
cerned at all with the instantaneous fading state of the channel,
only its average. To cater for the variation in the channel, we
employ the fading-margin (11), and allocate source rates so that
the total ingress traffic to any link does not exceed this margin.
In a Rayleigh fading environment, this margin is “just the right
amount” to meet the rate-outage probability targets , illus-
trated in Fig. 1.

The NUM problems (8) and (8) are mathematically equiva-
lent, in the sense that a technique to solve one can be used to
solve the other. In the interest of notational clarity, we will con-
centrate on the canonical problem (8) in the sequel, with refer-
ence to the composite fading formulation as appropriate.
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Fig. 2. Accuracy of the high-SIR assumption with and without fading margins.
With a fading margin, the minimum ��� to support a rate of zero kbps on a link
is over 15 dB. For positive link-rates, an exceedingly high ��� is required for
accuracy. (a) Without fading margin. (b) With fading margin.

IV. PRIOR TREATMENT: HIGH-SIR APPROXIMATIONS

The canonical problem (8) is not jointly convex in .
The nonconvexity stems from the link capacity terms (2) within
the constraints: they are neither convex nor concave in .
Consequently, local optima may not necessarily be globally
optimum solutions and under appropriate regularity conditions,
the well-known KKT optimality conditions are merely neces-
sary and not sufficient.

Prior work in this area employed a “high-SIR approximation”
on these link capacities, followed by a variable transformation

. The resulting problem was then convex in the new
-space so that any locally optimum solution was then de-

clared globally optimum, up to the approximation [9], [10], [13],
[14], [21].

That procedure can be interpreted as a lower bound approxi-
mation

(12)

that reduces the size of the constraint set in relation to the orig-
inal problem. As such, there is no guarantee that the feasible
region of the high-SIR approximate problem includes the true
globally optimal point(s). The tightness of the bound is what
determines how close the solution to the high-SIR approximate
problem is to the true global optimum. In this case, the bound
becomes tight when .

Consider the following typical operating parameters:
• BER for MQAM (see [27], [14], [11]), with

BER ;
• % (when a fading-margin is employed).
Fig. 2 illustrates the tightness of the bound over different

SIR operating points. For the canonical problem without fading
margins, a 10–15 dB SIR is required for reasonable tightness.
When fading margins are employed, this jumps toward 20 dB
average SIR, and registers positive link-rates only after a stag-
gering 15 dB average SIR.

Such high operating points are undesirable for CDMA sys-
tems, as we must limit the interference between links by em-
ploying extremely large spreading gains, or complex interfer-
ence suppression schemes so that channels appear near-orthog-
onal. Moreover, it is often unclear whether one would know

a-priori whether a system will operate in a high-SIR regime,
as the SIR (3) itself depends on the power-allocation and cross-
gains between links and .

On the surface, a high-SIR assumption may seem reasonable
in some circumstances. Nevertheless, it can also be embarrass-
ingly unacceptable—especially when a fading margin comes
into play. Fortunately such an approximation is not required,
as we next demonstrate.

V. SHANNON CAPACITY CONVEXITY PROPERTIES

In this section we expose some convexity properties of the
Shannon link capacity (2) in preparation for the development of
a method attaining a global solution to the canonical problem
(8) in the subsequent section. At the heart of our investigations
herein is a more general notion of convexity that has been the
subject of extensive research spanning the last 50+ years.

One such important type of generalized convexity is the class
of quasiconvex functions. While not necessarily convex, these
functions have the property that their lower level sets are convex
[2, Ch. 3]. Consequently, optimization problems comprising
quasiconvex constraint functions have the desirable property
that any local optimum is also global and the KKT conditions
are sufficient for global optimality, much like a regular convex
program.

Result 1: The Shannon link capacity (2) is a quasiconcave
function.

Proof: We can re-write the Shannon link capacity as

where is a row-vector of
channel gains, and is exactly the same, with the th element
zeroed.

The argument to the logarithm is known as a linear frac-
tional and is quasilinear (both quasiconvex and quasiconcave)
[2, Sec. 5.2]. The required result follows by composition with
the nondecreasing concave function [2, Prop. 5.1].

In the context of the canonical problem (8), Result 1 might
lead us to believe that the constraint functions (comprising a sum
of linear terms and the negative of the link capacity) is a quasi-
convex function, in turn, giving us hope of sufficient conditions
on global optimality. Unfortunately quasiconvex functions are
not closed under addition, in contrast to the convex case. Despite
this fact, we include Result 1 as it may prove useful in solving
other problems involving the Shannon link capacity.

A more promising aspect of the growing body of research
on generalized convexity relates to the family of convex trans-
formable functions. These are functions that can be turned into
convex ones by a one-to-one transformation of their domain
and/or range. In an optimization context, such functions prove
useful as seemingly nonconvex optimization problems can be
convexified and solved with relative ease, using convex pro-
gramming techniques such as duality.

The most general notion of convexifiability was introduced
by Ben-Tal in 1977 [3]. A function on (not nec-
essarily convex), having a domain and range transformation by
functions and respectively, is said to be -convex if the
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combined transformation given by its corresponding function
is convex on .

We now proceed with the following general convexity results
before providing our main Shannon link capacity convexity
results.

Result 2: The function is nonde-
creasing and concave in .

Proof: Omitted due to space restrictions; see [26].
Result 3: The high-SIR (lower bound) approximation

of the Shannon link capacity is
-concave.

Proof: Under the transformation , the approx-
imation can be written

The sum of a linear and concave negative-log-sum-exp term is
clearly concave.

Result 4: The Shannon link capacity is -concave.
Proof: Under the range transformation, we can write the

Shannon link capacity as the composition where
and are given as in Result 2 & 3. With Results 2 & 3 at
hand, the proof follows after domain transformation and scalar
composition [7, pg. 84].

Result 5: The Shannon link capacity is a so-called d.c. func-
tion (difference of two concave functions).

Proof: The proof follows after rewriting it as

where and are defined in the Proof of Result 1.
Result 4 implies that we might transform the nonconvex op-

timization (8) into a much easier convex problem. On the other
hand, Result 5 implies that in general, the Shannon link capacity
may lead to great difficulties, as it is known that optimization
problems having d.c. constraints are NP-hard [12]. We resolve
these seemingly conflicting statements in the next section.

VI. GLOBAL OPTIMALITY VIA CONVEXIFICATION

Inspired by Result 4, we transform the canonical problem (8)
as follows:

(13)

The link powers are transformed logarithmically to en-
sure that the right-hand side of the constraints are concave. The
source rates are similarly transformed, to ensure convexity of
the left-hand side (recall that log-sum-exp is convex). We there-
fore conclude that the constraint set is convex.

Have we succeeded in transforming the nonconvex canonical
problem (8) into convex form? We address this question in the
following theorems.

Theorem 1: The objective of the transformed problem (13)
comprises a sum of quasiconcave functions.

Proof: The function is quasilinear (both
quasiconcave and quasiconvex), since the lower level set

and the upper level set
are each convex. Consequently, its negative is also

quasilinear.
We can write the objective as the sum

Each term in the first sum is quasiconcave by the concavity of
the utility and composition [2, Prop. 5.1]. The proof is com-
pleted once it is recognized that each term appearing in
the second sum is also quasiconcave.

Unfortunately quasiconcave functions are not closed under
addition, and in general, their sum is nonconvex. Theorem 1
tells us that in general, the transformed problem remains non-
convex. This should not be surprising, given the d.c. nature of
the original problem as noted above. Fortunately there exists an
important exception that is the subject of our next result.

Theorem 2: The transformed problem (13) is convex if the
utility functions are all -concave over their domain.

Proof: The objective is separable in each variable, and
clearly concave in (sum of negative exponentials). Concavity
in follows from the concavity of , and is satisfied
whenever the utility functions are -concave.

Theorem 2 essentially tells us that when each of the quasicon-
cave functions comprising the objective are also concave, the
transformed problem is indeed convex. This depends directly
on the structure of the utility functions. Fortunately, as the fol-
lowing examples show, many utility functions of interest satisfy
this property to a large degree.

A. Examples

1) Vegas: Associated with TCP Vegas is the utility function

where is a parameter of Vegas and is the round trip prop-
agation delay of source [20]. This utility function is clearly

-concave.
2) Reno: The following utility functions are associated with

TCP Reno:

where is the propagation plus queueing delay of source .
The first utility function models an older behavior of Reno,
while the second relates to newer variants. The differences relate
to particular ways in which a multiplicative-decrease in rate is
implemented upon detection of a packet mark. Full details and
derivations are found in [18].

We are interested whether these utility functions are
-concave. Taking the first function, we can write
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the second derivative as follows, after a logarithmic domain
transformation:

This second derivative is nonpositive only when
. Unraveling the domain transformation and

rearranging reveals that is -concave only on

the domain . This utility function can only satisfy
the condition of Theorem 2 if we restrict its domain to some
minimum rate that is a function of the total propagation and
queueing delay. Nonetheless, this minimum rate is usually
small in practice: just over 8 packets/sec for a delay of
ms.

The second utility function can be re-written as

and is clearly -concave.
3) -Bandwidth Utility: A general utility function given by

was introduced in [23] for the general NUM problem (1). It pro-
vides a so-called -bandwidth rate-allocation through selection
of the -parameter: proportional fairness with , harmonic
mean fairness with , and that of max-min fairness as

[6], [13].
We have already established the -concavity for the

case of (Vegas). Concentrating on the other case, we
write its corresponding function after domain transformation as
follows:

By inspection, it can be seen that the second derivative
is nonpositive only when . We conclude that this utility
function is -concave only when . Nonetheless, this

-range captures all notions of fairness that are of interest.

B. Globally Optimal Solution

Assuming that the condition of Theorem 2 is satisfied, we
now derive an algorithm that solves the transformed problem
(13) for the globally optimum rate- and power-allocation. We
will refer to the following development as Algorithm A.

The Lagrangian dual of (13) is given by

(14)

where is a vector of dual variables, and (15)
are partial dual functions, thanks to the separable nature of the
problem:

(15a)

(15b)

The following result tells us that we can solve this dual
problem in lieu of the primal problem (13) for the globally
optimum result.

Lemma 1: The solution to the dual problem (14) has zero
duality gap.

Proof: The objective of the primal problem (13) is con-
cave, under the -concave utility assumption of Theorem
2, while the constraints are convex. There exists a strictly fea-
sible point (cf. ) and so Slater’s
constraint qualification holds. The proof follows from [4, Prop.
5.3.1].

We will take an iterative approach to solve the dual problem
(14): at iteration , the inner minimizations (15) are solved for
fixed , then a gradient method is employed to update the dual
variables. Subsequent iterations would repeat
this process until convergence to the globally optimum resource
allocation.

1) Link Algorithm: Link powers are obtained by solving
(15a).

Lemma 2: Repeated transmitter power updates

(16a)

with

(16b)

(16c)

solve (15a), for a specified .
Proof: Omitted due to space restrictions; see [26].

Each are messages in comprising local information
at each link : a scaled measurement of the receiver interfer-
ence-plus-noise.

These equations combine into a distributed power-update
protocol through message passing, in a conceptually similar
manner to the protocol described in [10]: each receiver on link

broadcasts their message . In turn, each transmitter
receives each of the broadcasts and estimate through

training sequences. They utilize the quantity to update their
power with (16a).

Due to strict concavity and strict convexity of the partial La-
grangian functions and respectively, the op-
timizations (15) have unique solutions, for fixed. By [4, Prop.
6.1.1], the dual functions and are differentiable ev-
erywhere, therefore we can employ the gradient-descent

(17)
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to solve the dual problem (14). This update is shown after trans-
formation back to the original co-ordinate space and where is
a sufficiently small step-size. Only local information is required
for this update: a measurement of the and the ingress rate.

In a similar spirit to prior work in congestion control, the dual
variables can be interpreted as “congestion prices” [10], [20],
here in logarithmic form.

2) Source Algorithm:
Lemma 3: The source rate update

(18a)

solve the inner maximization (15b), where is a sufficiently
small step size and

(18b)

are normalized congestion prices. The function is the first
derivative of the utility.

Proof: The inner Lagrangian maximization (15b) is strictly
concave for fixed , and so we can use a gradient ascent with
a sufficiently small fixed step-size to find the maximizer. The
ascent direction is given by

shown after returning to the original co-ordinate space.
The proof follows after the ascent direction in the transformed

space

is placed back into the original space:

This update can figure into a distributed protocol by making
use of explicit message passing. A field is reserved in an ac-
knowledgment (ACK) packet header that is sent from the re-
ceiver back to the source. Along the path, each intermediate
link accumulates its normalized congestion price into
this field. When the ACK reaches the source, this reserved field
forms the summation within (18a).

VII. PRESERVING THE EXISTING TCP STACK

Alg. A requires explicit message passing for both power- and
rate-allocation. In this section we develop a new scheme that
makes use of the existing TCP stack for rate-allocation. Each
source can then control their rate in a distributed manner through
(implicit) measurement of the congestion prices en-route. The
associated power-allocation remains along similar lines to pre-
vious developments.

Our new scheme guarantees a globally optimum resource
allocation when sources’ utility functions are -concave,
and otherwise provides a solution that satisfies the first-order
necessary condition for optimality. Unlike related work, we
make no assumptions on the SIR regime and therefore aim to

solve the nonconvex canonical problem (8) for the global op-
timum, and doing so in a distributed fashion. Analogous results
in [10] are based on a fixed (suboptimal) convex approximation
under a high-SIR regime.

A. A Series of Convex Approximations

We begin by making use of the inequality

(19

that is tight (exact) at when the approximation constants
are chosen as

(20a)

(20b)

These relations are easily derived by equating the slope and
function values at and therefore a unique correspondence ex-
ists between each and the pair .

We now form a new lower bound approximation to the con-
straint of problem (8):

(21)

where we have the benefit of making this approximation exact
for a given by choosing as in (20).

Making use of the parameterized lower-bound capacity, de-
fined as

(22)

optimization (8) becomes

(23)

where the approximation vectors and
are fixed.

Taking a logarithmic transformation of co-ordinates
in the link powers only results in an equivalent convex

problem: the objective is a sum of exponentials and negative-
concave (thus convex) utilities; the constraint set is convex by
Result 3.

Not surprisingly, we arrive at the same high-SIR problem as
Chiang [10] when we fix . In our formulation (23),
we have choice over these approximation vectors. The following
procedure for “tuning” them becomes natural:

1: Initialize all source rates ; link powers
2: Initialize (a high-SIR approximation)
3: Initialize iteration counter
4: repeat
5: Maximize: solve (23) for solution
6: Tighten: update at

with (20)
7: Increment
8: until convergence
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Lemma 4: Each iteration results in a monotonically im-
proving objective. The sequence always converges, at which
point the lower bound approximation (21) becomes exact.

Proof: We first establish that, at the th iteration, the
previous iterate is a feasible solution to
subproblem (23). Clearly the all-zero vector is feasible for the
first subproblem when . For , we have that

for each link , and our desired result follows.
We show (a) by contradiction. On the left-hand side is the

ingress rate; our approximation (21) of the link capacity is on
the right-hand side. Suppose that at the optimum solution to the
subproblem, the ingress rate is instead strictly less than the ap-
proximate capacity. We could then lower the link power so
that we achieve equality. This increases the objective of sub-
problem (23) and so our solution was clearly not optimum.

Inequality (b) follows from the definition of the bound (19),
while equality (c) is a consequence of the tightening step (“T-
step”) and (20).

We therefore conclude that the maximization (“M-step”) will
either improve the objective on the th iteration, or remain at the
same point as the previous th iterate (since it is feasible).
The T-step can only lead to an improved objective on the next
iteration: recall that all constraints are satisfied with equality at
the optimum solution to each subproblem; where they are not, an
improved objective can be had. By the above development, we
observe that the point , while feasible for the

th iteration, may not be optimal for the th subproblem,
as the constraints may not be met with equality at that point.
Consequently, an improved objective could be had.

Convergence is brought about when (b) becomes an equality.
That is, the T-step results in the same approximation vectors
for the following iteration: and .
Clearly then, performing an M-step would be futile as the solu-
tion would also remain the same.

We are also guaranteed convergence, since the monotonically
improving objective is bounded above by the global optimum
of the original canonical problem (8), and each subproblem re-
mains within its feasible region due to the lower bound con-
straints (21).

The Proof of Lemma 4 does not change if, rather than finding
the optimum to each subproblem during an M-step, a feasible
point that improves the objective is found instead. This is the
key to the formation of a distributed protocol: in practice, each
T-step is achieved through local information (a measurement of
the ) and each link need not know when “subproblem
has been solved”; each link performs a T-step when the con-
straint function

is sufficiently close to zero, corresponding to an equilibrium be-
tween the ingress- and egress-rates at that link. A first-order ap-
proximation to this rule could be a periodic T-step every it-
erations, where is chosen sufficiently large so that each sub-
problem safely converges within the iterates.

B. Subproblem Solution

The dual problem associated with each subproblem (23) is

(24)

where is a vector of dual variables, and

(25a)

(25b)

are partial dual functions, since each subproblem is separable.
1) Link Algorithm: Solving (25a) gives the optimum link

powers for a fixed . The fixed-point update

(26)

with

(27)

can be shown to converge to such a solution, where the proof is
similar the one provided for Lemma 2, available in [26].

Links update their power according to (26), with messages
passed via broadcasts from other links, in a similar way

to the operation of Alg. A.
Like the convex problem (13) of the previous section, the par-

tial Lagrangian functions and are strictly
concave and strictly convex, respectively, for fixed. The so-
lutions to (25) are therefore unique and the dual problem (24)
can be solved by updating the link congestion prices by the
gradient descent

(28)

where is a sufficiently small step-size. We observe that these
congestion prices are updated in exactly the same way as the
well-known duality-model solution [20], except that the link
capacity is no longer a constant: it is our approximation (22).
Should the egress-rate of each link be artificially restricted to
this approximate capacity instead of the true
value given by (2), then it follows from [20] that the
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network implicitly performs this update: at equilibrium, the con-
gestion prices are given by , where is the buffered
backlog at the link.

2) Source Algorithm: Solving (25b) gives the optimum
source rate allocation for a fixed . We need only consider
the stationary point of the Lagrangian function since
is strictly concave in . This results in the well-known du-
ality-model solution [20]:

(29)

where is the inverse of the first derivative of the utility.
The inverse is always guaranteed to exist, since each utility func-
tion is strictly increasing.

This is an important result. It implies that existing TCP al-
gorithms can be used to allocate source rates in this cross-layer
optimization. We can therefore reuse existing TCP algorithms
that are fully distributed, such as TCP Vegas that employs
delay measurements for estimating the total congestion

en-route appearing in (29). Going further
still, it enables a MANET cloud to become transparently
interconnected between other wired internet networks that
use existing TCP algorithms, and doing so without breaking
end-to-end semantics.

C. Global Optimality

Although the canonical problem (8) has nonconvex form, the
following results tell us that Alg. B can truly converge to a glob-
ally optimum resource allocation.

Lemma 5: All constraints are active at any (local or global)
optimum solution to each of the canonical (8), convexified (13)
and convex subproblems (23).

Proof: Observe that the objective function associated with
each problem is a decreasing function of the link powers. In
each problem, each constraint function can be represented by
the inequality where we understand that and
are the logarithmically transformed variables in the case of the
convexified problem. Suppose that at any (locally or globally)
optimum solution, these inequalities are strict. We could then
lower the link power (or ) so that we achieve equality. By

our earlier observation, this increases the objective and so our
solution was clearly not (locally or globally) optimum.

Theorem 3: The series of convex approximations converges
to a KKT-point of the original canonical problem (8).

Proof: Due to the separability of the original canonical
problem, and each subproblem, we can investigate the KKT
conditions for and separately.

We begin with the link powers. By Lemma 4, the sequence of
convex subproblems converges when iteration satisfies:

It follows that the solution satisfies (30),
shown below, where (30a) is the KKT condition for the th
convex subproblem, and (30b) follows from (20a). It is easily
verified that (30b) is exactly the KKT condition for the original
canonical problem (8).

We now consider the source rates. The associated KKT con-
dition of the th convex subproblem is given by

(31)

and is exactly the same condition for the original canonical
problem (8).

We have demonstrated that any solution of the final
subproblem in the series of approximations satisfies the KKT
conditions of the original canonical problem (8). The proof is
completed by recognizing that complementary slackness is al-
ways satisfied, since all constraints are active (by Lemma 5) and
dual variables satisfy .

Corollary 1: When the condition of Theorem 2 is satisfied,
the series of convex approximations converges to a globally op-
timum solution to the nonconvex canonical problem formula-
tion (8).

Proof: With the condition of Theorem 2 satisfied, the
problem (13) is convex. Therefore the associated KKT con-
ditions become sufficient for global optimality. That is, the
primal-dual triplet solves the convex problem
(13) if conditions (32), shown below, are satisfied and
is primal-feasible. Conditions (32a) and (32b) arise from the
stationary points of the partial Lagrangian functions and

(30a)

(30b)

(32a)

(32b)

(32c)
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respectively (shown after returning to the -space).
Condition (32c) follows from Lemma 5, and implies comple-
mentary slackness.

Suppose now that the sequence of convex approximations
converge to the triplet , along with approximation
vectors . By our supposition, this solution is feasible
and satisfies the KKT conditions (30b) and (31). Recall that the
constraints are all active (Lemma 5) and that our link capacity
approximation is exact (Lemma 4). That is, for all links :

(33)

We can now construct new dual-variables

(34)

by making use of condition (33) and recognizing that each term
is nonnegative. By inspection, the new triplet sat-
isfies the KKT conditions (32a)–(32c), where we remind the
reader of the link capacity definition (2). It then follows that

is a globally optimum rate- and power-allocation.
Corollary 1 tells us that the multipliers arising from the se-

quence of approximations are a scalar multiple of the optimum
multipliers associated with the convex optimization (13). A
straightforward rearrangement of (34) further reveals that they
are exactly the normalized congestion prices (18b).

VIII. DISPOSING OF POWER-ALLOCATION OVERHEADS

In pursuit of the (globally) optimum solution to the canon-
ical problem (8), algorithms A and B require explicit message
passing between links for power-allocation. While broadcasts
are a viable way in which to realize such inter-link communica-
tion, an ideal scheme would use some kind of indirect measure-
ment to achieve a similar goal.

In this section, we formulate an algorithm having this prop-
erty: each link’s power-allocation is based on the locally mea-
sured interference level caused by other links. No explicit mes-
sage passing is required. For the logarithmic utility functions of
TCP Vegas, we outline a scheme that makes use of limited mes-
sage passing only for source rate allocation. These messages are
embedded in a header field within ACK packets that traverse the
source’s reverse-path and presents little overhead.

Of course, we can opt to simply and completely omit passing
of messages in an implementation of Alg. B, creating a
fully distributed algorithm at the expense of optimality. How
its subsequent performance compares to the following develop-
ment is an interesting direction of future research.

1) Link Algorithm: The following development pivots on the
fact that, at the optimum solution, the ingress rate to a link is
matched to its capacity (all constraints are active). Considering
a particular link , we can rearrange the constraint in terms of the
link transmit power, resulting in the following power update:

(35)

This update rule is very simple. The fraction outside of the
brackets is a scaled noise measurement, observed to be indepen-
dent of on comparison with (3), while the bracketed quan-
tity makes use of an estimate of the ingress rate. With fixed,
we can interpret the bracketed quantity as a SIR-threshold; con-
vergence of the update then follows from [32].

2) Source Algorithm: General Utility: We now obtain a rate-
allocation under the assumption that link powers are fixed. Sub-
stituting (35) into (8) results in the unconstrained optimization

(36)

This approach is not entirely ideal: it does not guarantee that
we will arrive at the jointly optimum rate- and power-alloca-
tion of the original problem (8). To do so would require that
we instead consider the above optimization with replaced
by the function . This function, in vector form

, gives the simultaneous minimum power
solution to (35) for the specified . Unfortunately we do not
have a closed-form expression for this function: it is the solu-
tion to coupled nonlinear equations. In the previous sections,
the congestion prices played a go-between the physical and
transport layers and helped us avoid this issue.

Returning to (36) with fixed, we observe that the objective
is strictly concave in . We can therefore make use of the source-
rate update

(37)

to find the optimum rate-allocation, where is a sufficiently
small step-size and

is an ascent direction for source .
3) Source Algorithm: Vegas Utilities: An alternative to the

gradient-update (37) is the nonlinear Gauss-Seidel algorithm
that solves (36) by successively maximizing the objective in
each component while holding all others fixed [5].

For the logarithmic utility function
of TCP Vegas, we can find the component-wise maximizer by
considering the stationary point of the objective, with all other
source rates fixed. This leads to the fixed-point equation

(38)

where

is considered fixed, as it depends on the vector of source
rates that does not include . It can be shown that the asso-
ciated fixed-point is not attractive over all and so the
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associated iterative rate-update may not converge. Fortunately,
our next result provides a remedy.

Result 6: With fixed, the equation

(39)

has a unique fixed-point, that is attractive for . Moreover,
it shares the same fixed-point as

(40)

Proof: Omitted due to space restrictions; see [26].
Making use of Result 6 with

results in the convergent source rate update:

(41)

where

(42)

are messages that are accumulated from each link along the
route of a source . Each of these terms involves a noise mea-
surement that is scaled by the total ingress rate, a per-link, lo-
cally measurable quantity. As in Section VI-B2, these terms
may be progressively accumulated into an ACK packet header
as it traverses from the receiver back to the source.

This source rate update is guaranteed to converge should (41)
and (42) be iterated until convergence for a single source ,
holding fixed other sources, and before proceeding to the next
source. In practice, we have observed it to converge even when
these messages are used for continuous asynchronous updates.

IX. NUMERICAL RESULTS

In this section, we provide illustrative numerical examples
of Algs. A–C, where we highlight the speed of convergence,
suitability under composite-fading and tracking ability.

We consider a MANET with topology illustrated in Fig. 3.
Each link is assigned a random CDMA spreading sequence of
unit energy having length . A transmission bandwidth of
1 MHz is selected, giving a kHz baseband on each
link. We model the SIR gap as BER with
BER corresponding to MQAM modulation [11]. Vegas
logarithmic utilities are employed throughout, for a fair compar-
ison between algorithms. A scaled base-RTT of ms

Fig. 3. MANET with four sources having routes shown. Nodes are spaced
100 m apart.

Fig. 4. Illustrative example (snapshot channel gains). (a) Convergence com-
parison (higher values are superior). (b) Link transmitter powers (Alg. B).
(c) Source rates (Alg. B).

is arbitrarily chosen for each source. An equal trade-off between
power-allocation and network-utility is chosen with . All
simulations are initialized from an all-zero state.

A. Static Channel

We begin with the snapshot channel model, where fading is
ignored (all ) and the slowly-varying gains are assumed
fixed with . Each is a loss de-
pending on distance from transmitter on link to the receiver
on link .

Fig. 4(a) compares the evolution of all algorithms. Alg. B
converges much faster than Alg. A, and both to the global
optimum within 50 and 250 iterations respectively. This is
significant, as Alg. B has solved the nonconvex canonical
problem formulation (8) for the global optimum with a dis-
tributed algorithm, while preserving the existing TCP Vegas
stack: no explicit message passing is required for source rate
allocation. Corresponding power- and rate-allocations are
shown in Figs. 4(b) and (c).

While Alg. C is clearly not optimal, it is very close. Per-
formance is observed to be similar to the high-SIR based pro-
tocol, although it was observed to use roughly double the trans-
mission power as compared to the optimal (Alg. A and B). Of
great importance is the observed rate of convergence—within
just a few iterations—even though only one sub-iteration of the
fixed-point updates (41) and (42) are taken.
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Fig. 5. Snapshot- and composite-fading algorithm comparison. (a) Snapshot
formulation (10 kHz update rate). (b) Coposite formulation (0.1 kHz update
rate).

B. Composite Fading Channel

We now consider a channel subject to fading, where we com-
pare the snapshot- and composite fading-based schemes. Only
Alg. C is considered, for brevity and due to its attractive conver-
gence rate and fully-distributed power-updates.

At each symbol period , fading realizations are com-
puted with Clarke’s model [28, Ch. 5] at a carrier frequency of
2.4 GHz and maximum node velocity 5 km/hr.1 Each slowly-
varying gain is fixed (taking the same value as the static
scenario). Gains are normalized so the time-series has unity
mean for all . We make use of the same sequence of channel
realizations for each simulation, under the assumption of per-
fect channel knowledge.

Although the snapshot-based scheme assumes fixed channels,
we implement it blindly though changes occur between iter-
ates. Experimentally, we found a minimum update frequency of
10 kHz sufficient for the algorithm to adequately track the fading
without severe fading-induced outage, illustrated in Fig. 5(a) for
links 2 & 3. Recall that each update includes message-passing
of (42) along each route. At a rate of 10 kHz, this presents an
prohibitive implementation overhead.

An update frequency of just 0.1 kHz was found to be sufficient
for the composite fading based algorithm to converge within just
50 ms from an all-zero state, as illustrated in Fig. 5(b). In com-
parison to the snapshot-based algorithm, this update frequency
is much more manageable, although at the expense of lower
source rates and a limited amount of fading-induced congestion,
in this case, controlled by a rate-outage target of %
for all links.

In reality, perfect channel state is not available and we must
obtain estimates of the slowly-varying gains from the com-
posite instantaneous fading state . This can be achieved

1We use � � �� km/hr to calculate the maximum Doppler frequency for the
worst-case situation of nodes moving in opposite directions.

for example, by averaging out the fast-fading gains with a
first-order filter. The iterative algorithm would then track esti-
mates of until some degree of accuracy is achieved. In prac-
tice, the gains also vary with time and so the the algorithm
should run continuously, allowing changes in these gains to be
tracked.

X. CONCLUSION

This paper has revisited a cross-layer design problem for
MANETs involving power- and rate-allocation. The primary
focus was on the analysis and solution of the underlying
canonical optimization problem. Complicated by Shannon link
capacity terms that are neither convex nor concave, previous
attempts at solution involved high-SIR approximations that can
result in allocations far from the true global optimum.

We have shown that the Shannon link capacity is in fact qua-
siconcave and, under a suitable range and domain transforma-
tion, can be “concavified”’ without resorting to approximation.
These new developments revealed that the canonical problem is
actually convex, under a transformation and suitable choice of
NUM utility function. A new optimal protocol was subsequently
derived, devoid of any high-SIR approximation.

Due to message-passing requirements of the optimal pro-
tocol, a second new solution method was proposed, involving a
series of convex approximations. Each made use of the existing
TCP stack for rate-allocation—a desirable attribute since these
TCP protocols are distributed in nature. Convergence results
to the global optimum of the underlying nonconvex canonical
problem formulation were given when utilities are within the
family already mentioned. It was further outlined how each
approximate problem may be solved only partially, leading to a
new distributed protocol.

A third protocol was also developed, having near-optimal per-
formance in simulation with a convergence rate orders of magni-
tude faster than previous developments. It enjoyed the additional
advantage of fully-distributed measurement based power-allo-
cation, greatly simplifying implementation of such cross-layer
designs in practice.

The results of this paper extend beyond the applications de-
scribed. Many existing problems in the literature relying on
high-SIR convex approximations can now be solved for true
global optimality with the results and ideas presented herein.
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