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Base Station Cooperation With Feedback
Optimization: A Large System Analysis

Rusdha Muharar, Randa Zakhour, Member, IEEE, and Jamie Evans

Abstract— In this paper, we study feedback optimization
problems that maximize the users’ signal to interference plus
noise ratio (SINR) in a two-cell multiple-input multiple-output
broadcast channel. Assuming the users learn their direct and
interfering channels perfectly, they can feed back this information
to the base stations (BSs) over the uplink channels. The BSs
then use the channel information to design their transmission
scheme. Two types of feedback are considered: 1) analog and
2) digital. In the analog feedback case, the users send their
unquantized and uncoded channel state information (CSI) over
the uplink channels. In this context, given a user’s fixed transmit
power, we investigate how he/she should optimally allocate it
to feed back the direct and interfering (or cross) CSI for two
types of BS cooperation schemes, namely, multicell processing
(MCP) and coordinated beamforming. In the digital feedback
case, the direct and cross link channel vectors of each user are
quantized separately, each using the random vector quantization
scheme, with different size codebooks. The users then send the
index of the quantization vector in the corresponding codebook
to the BSs. Similar to the feedback optimization problem for
the analog feedback, we investigate the optimal bit partitioning
for the direct and interfering link for both types of cooperation.
We focus on regularized channel inversion precoding structures
and perform our analysis in the large system limit in which
the number of users per cell (K ) and the number of antennas
per BS (N) tend to infinity with their ratio β = (K/N) held
fixed. We show that for both types of cooperation, for some
values of interfering channel gain, usually at low values, no
cooperation between the BSs is preferred. This is because, for
these values of cross channel gain, the channel estimates for
the cross link are not accurate enough for their knowledge to
contribute to improving the SINR and there is no benefit in doing
BS cooperation under that condition. We also show that for the
MCP scheme, unlike in the perfect CSI case, the SINR improves
only when the interfering channel gain is above a certain
threshold.

Index Terms— Wireless communications, cellular networks,
cooperative beamforming, limited feedback, large system
analysis.
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I. INTRODUCTION

A. Background
Recently, many applications that require high data rates

such as high quality video streaming and huge volume data
transfers through wireless communication systems have
emerged. MIMO communication systems have arisen as a
promising candidate to support this requirement and have
been adopted for existing and future wireless communication
standards such as in IEEE 802.11n and 4G networks. Current
MIMO technological advancements can be considered as the
results of research work started about fifteen years ago. So
far, there has been a considerable amout of work focusing
on single user and single-cell multiuser MIMO systems. Only
recently, researchers have started to put more attention on
investigating how to maximize data rates in multi-cell MIMO
networks, particularly in the downlink [1, and references
therein].

The main challenge that limits the spectral efficiency in
the downlink of multi-cell networks, besides intra-cell inter-
ference, is the inter-cell interference (ICI). The conventional
approach to mitigate this interference is to use spatial reuse of
resources such as frequency and time [1]. The move towards
aggressive frequency or time reuse will cause the networks to
be interference limited especially for the users at the cell edge.
The current view is to mitigate ICI through base station (BS)
cooperations. Within this scheme, the BSs share the control
signal, channel state information (CSI) and data symbols for
all users via a central processing unit or wired backhaul
links [2].

It has been established in [3]–[8], to name a few, that
MIMO cooperation schemes provide a significant increase in
spectral efficiency compared to conventional cellular networks.
BS cooperation can be implemented at different levels [1].
In the Multi-Cell Processing setup, also known as Network
MIMO or Coordinated Multi-Point (CoMP) transmission, the
BSs fully cooperate and share both the channel state informa-
tion (CSI) and transmission data. This full cooperation requires
high capacity backhaul links which are sometimes not viable
in practical settings. To alleviate this requirement, only CSI
(including direct and interfering channels) is shared amongst
base stations in the interference coordination scheme [1].
Several papers have addressed coordinated beamforming and
power control schemes to improve the spectral efficiency in
interference-limited downlink multi-cell networks. Detailed
discussions regarding these topics can be found in [1] and
references therein.

In both base station cooperation schemes, the CSI at the
base stations plays an important role in maximizing the system
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performance. The base stations use this information to adapt
their transmission strategies to the channel conditions. The
benefit of having CSI at the transmitter (CSIT) with respect to
the capacity in single and multi-cell multi-antenna systems is
nicely summarized in [9] and [10]. However, these advantages
are also accompanied by the overhead cost for the CSI acqui-
sition via channel training and feedback in frequency division
duplex (FDD) systems. It needs to scale proportionally to the
number of transmit and receive antennas and the number of
users in the system in order to maintain a constant gap of the
sum-rate with respect to the full CSI case [11]. Moreover, in
practical systems, the backhaul-link capacity for CSI and user
data exchanges and feedback-link bandwidth are limited [2].
Considering the CSI signaling overhead from channel training
and CSI feedback, references [12], [13] suggested that the con-
ventional single-cell processing (SCP) without coordination
may outperform cooperative systems, even the MCP scheme.
It is because the CSI overhead severely affects the pre-log of
the sum rate (or spectral efficiency). In this paper, we ignore
the effect of CSI overhead on the pre-log of the sum rate even
though the work here can be extended to include it. We focus
on studying how to allocate feedback resources, depending on
the feedback schemes, to send the CSI for the direct channel
and interfering (cross) channel to BSs so that the users’ SINR
are maximized (see also [14]). Clearly, this allocation will
affect the CSI quality in both direct and interfering links. Two
feedback schemes are considered in our study: the analog feed-
back scheme, introduced in [15] and the limited (quantized)
feedback via random vector quantization (RVQ), introduced
in [16]. In the analog feedback scheme, each user sends its
unquantized and uncoded channel state information through
the uplink channel. Hence, we ask the question, for a given
uplink power constraint, what fraction of this uplink power
is allocated optimally to transmit the direct and interfering
channel information? For the digital feedback scheme, the
number of feedback bits determines the quality of the CSI.
Hence, we can ask, for a given total feedback bits, how many
bits are optimally needed to feedback the direct and cross CSI?

B. Contributions

The main goal of this paper is to optimize and investigate
the effect of feedback for MCP and CBf cooperation schemes
under analog and quantized feedback (via RVQ). We con-
sider a symmetric two-cell Multi-Input Single-Output (MISO)
network where the base stations have multiple antennas and
each user has a single antenna. We assume that the users
in each cell know their own channel perfectly: they feed
back this information through the uplink channel and the base
stations form the users’ channel estimates. The BSs use these
estimates to construct a regularized channel inversion (RCI)
type beamformer, also called regularized zero-forcing (RZF)
beamformer, to precode the data symbols of the users. The
precoders follow the structures proposed in [17]. Unlike
[2], [14], we assume several users are simultaneously active in
each cell so that the users experience both intra- and inter-cell
interference. To mitigate ICI through base station cooperation,
we consider both full cooperation (MCP) and interference
coordination via CBf.

Our contributions can be summarized as follows. First,
under both feedback models and both cooperation schemes,
we derive the SINR expression in the large system limit, also
called the limiting SINR, where the number of antennas at
base stations and the number of users in each cell go to
infinity with their ratio kept fixed: As our numerical results
will show, this is indicative of the average performance for
even finite numbers of antennas. Then, we formulate a joint
optimization problem that performs the feedback optimization
for both feedback models and both cooperation schemes and
finds the optimal regularization parameter of the corresponding
RCI-structured precoder. The regularization parameter is an
important design parameter for the precoder because it controls
the amount of interference introduced to the users. Moreover,
the optimal regularization parameter, as can be seen later,
captures information concerning the channel estimation or
quantization error even though only channel estimates are
included in the RCI precoder. Therefore, it will allow the
precoder to adapt to the changes of the CSIT quality and
consequently produces a ‘robust beamformer’.

We analyze the behavior of the maximum limiting SINR as a
function of the cross channel gains and the available feedback
resources, and identify, for both the analog and quantized
feedback models, regions where SCP processing is optimal.
We also show that whereas in the perfect CSI case, MCP
performance always improves with the cross channel gain, this
only occurs after a certain threshold is crossed in both analog
and limited feedback cases.

Parts of this work appeared in [18] and [19], but without
the proofs.

C. Related Work

In the last decade, there has been a large volume of research
discussing feedback schemes in multi-antenna systems.
A summary of digital feedback (also known as limited or
finite-rate feedback) schemes in multi-antenna (also single-
antenna) and multi-user systems in the single-cell setup can be
found in [11]. Since the optimal codebook for limited feedback
is not known [16], [20], [21], the use of RVQ, which is based
on random codebooks, becomes popular for its analytical
tractability. Moreover, it has been shown in [22] and [23]
that RVQ is asymptotically optimal in single user MIMO
systems with infinite number of antennas. In MISO broadcast
channels, [20] demonstrates that the performance of RVQ
is relatively close to that of the optimal quantization. For
analog feedback, work in this area commonly refers to [15]
(sometimes [24]).

The paper by Jindal [20] sparked the use of RVQ in
analyzing broadcast channels. Considering a MISO broadcast
channel (BC) with a zero-forcing (ZF) precoder and assuming
that each user knows its own channel, the main result in the
paper is that the feedback rate should be increased linearly
with the signal-to-noise ratio (SNR) to maintain the full
multiplexing gain. Caire et al. in [21] investigate achievable
ergodic sum rates of BC with ZF precoder under several
practical scenarios. The CSI acquisition involves four steps:
downlink training, CSI feedback, beamformer selection and



3622 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 6, JUNE 2014

dedicated training where each user will try to estimate the cou-
pling between its channel and the beamforming vectors. They
derive and compare upper and lower bounds of the achievable
ergodic sum rate for the same analog feedback scheme as
in [15] and for RVQ-based digital feedback under different
considerations, e.g., feedback transmission over AWGN and
MAC channel, feedback delay and feedback errors for the
digital feedback scheme. A subsequent work by Kobayashi
et al. in [25] studies training and feedback optimizations for
the same system setup as in [21] except without dedicated
training. The optimal periods for the training and feedback that
minimize achievable rate gap (with and without perfect CSI)
are derived under the same scenarios as in [21]. The authors
also show that digital feedback can give a significant advantage
over analog feedback. In the same spirit as [20], reference [26]
discusses the feedback scaling (as SNR increases) in order to
maintain a constant rate gap for a broadcast channel with RCI
precoder. The analysis has been done in the large system limit
since the analysis the finite-size turns out to be difficult [20].
Moreover, besides analyzing for the case K = N , as in [20],
the authors also investigate the case K < N .

While channel state feedback in the single-cell system
has received considerable attention so far, fewer works have
addressed this problem in multi-cell settings. The effect of
channel uncertainty, specifically the channel estimation error,
in the multi-cell setup is studied in [27] and [28]. In [28],
the authors conclude that when channel estimates at one base
station contain interference from the users in other cells,
also called the pilot contamination phenomenon, the inter-cell
interference increases. Thus, this phenomenon could severely
impact the performance of the systems. Huh et al. in [27]
investigate optimal user scheduling strategies to reduce the
feedback and also the effects of channel estimation error
on the ergodic sum-rate of the clustered Network MIMO
systems. They consider the ZF precoder at the base stations
and derive the optimal power allocation that maximizes the
weighted sum-rate. In deriving the results, it is assumed that
the BSs received perfectly (error-free) the CSI fed back by
the users. The overhead caused by the channel training is
also investigated and they observe that there is a trade-off
between the number of cooperating antennas and the cost of
estimating the channel. Based on the trade-off, the optimal
cooperation cluster size can be determined. By incorporating
the channel training cost, no-coordination amongst the base
stations could be preferable. The same conclusion is also
obtained in [13] and [12].

For the interference coordination scheme, [2] presents the
RVQ-based limited feedback in an infinite Wyner cellular
model using generalized eigenvector beamforming at the base
stations. The work adopts the intra-cell TDMA mechanism
where a single user is active in each cell per time slot.
Each user in each cell is also assumed to know its downlink
channel perfectly. Based on that system model, an optimal bit
partitioning strategy for direct and interfering channels that
minimizes the sum-rate gap is proposed. Explicitly, it is a
function of the received SNR from the direct and cross links.
It is observed that as the received SNR from the cross link
increases, more bits are allocated to quantize the cross channel.

A better quality of the cross channel estimate will help to
reduce the inter-cell interference. The authors also show that
the proposed bit partitioning scheme reduces the average sum-
rate loss. Also in the interference coordination setting, [14]
takes into account both CSI training and feedback in analyzing
the system they called the inter-cell interference cancellation
(ICIC) scheme. In ICIC, the precoding vector of a user is the
projection of its channel in the null-space of the others users’
channels in other cells so that the transmission from this user
will not cause interference to the users in other cells. The work
also assumes the intra-cell TDMA and presents the training
optimization and feedback optimization for both analog and
digital feedback (RVQ). Based on that system setup, the
most interesting result is that the training optimization is
more important than the feedback optimization for the analog
feedback while the opposite holds for the digital feedback.

For different levels of cooperation, i.e., MCP, CBf and
SCP, [17] investigates an optimization problem to minimize
the total downlink transmit power while satisfying a specified
SINR target. The authors derived the optimal transmit power,
beamforming vectors, cell loading and achieved SINR for
those different cooperation schemes in a symmetric two-cell
network. The resulting optimal beamforming vectors have a
structure related to RCI.

Here, we consider a symmetric two cell setup as in [17].
This model is also similar to that with two cells used in
[29], [30], and [8]. Though this is a somewhat simplified
model of cellular networks found in practice [17], it does
have the benefit of leading to some interesting insights into
the behavior of the system that would otherwise be difficult to
obtain for more general models, for which system performance
results would require numerical simulations. Thus, we extend
the work in [17] by analyzing the optimal feedback strategies
for analog and digital feedback under MCP and CBf schemes.
This is done by performing the analysis in the large system
limit where the dimensions of the system i.e., the numbers of
users and transmit antennas tend to infinity with their ratio
being fixed. The large system analysis mainly exploits the
eigenvalue distribution of large random matrices. For example,
it has been used to derive the asymptotic performance of
linear multiuser receivers in CDMA communications in early
2000 (see [31]), single-cell broadcast channels with RCI for
various channel conditions [26], [32]–[34], base station coop-
erations in downlink multi-cell networks (see e.g., [17], [27]).
The asymptotic performance measure becomes a determinis-
tic quantity and can have closed-form/compact expressions.
Hence, it can be used to derive the optimal parameters for the
system design. Moreover, it can provide a good approximation
of, hence insights into, the performance of the finite-size
(or even small-size) systems.

Similar to [2] and [14], we perform feedback optimization
for the interference-coordination scheme (CBf). As in [14],
we also investigate the feedback optimization for the analog
and digital feedback schemes. However, different from those
works, we do not assume intra-cell TDMA in each cell,
and hence each user experiences both intra-cell and inter-cell
interference. We also consider a different type of precoder, the
RCI. Moreover, we also analyze the feedback optimization
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Fig. 1. System model.

for different level of cooperation between the base stations,
including the MCP setup, and try to capture how we allocate
resources available at the user side as the the interfering
channel gain varies.

D. Paper Organization and Notation

The rest of the paper is structured as follows. The system
model is described in Section II. It starts with the channel
model, and the expressions of the transmit signal, precoder
and the corresponding SINR for each MCP and CBf. At the
end of the section, the feedback schemes and true channel
model in terms of the channel estimate at the BSs and the
channel uncertainty for the analog and digital feedback are
presented. The main results for the noisy analog feedback
and digital feedback and for different types of coordination
are discussed in Section III and IV, respectively. In each
section, we begin by discussing the large system result of the
SINR for the MCP and CBf and then follow by deriving the
corresponding optimal feedback allocation; optimal (uplink)
power for the analog feedback and optimal bit partitioning for
the digital feedback. The optimal regularization parameter for
the RCI precoder is also derived for both types of feedback
and cooperation. The end of each section provides numerical
results that depict how the optimal feedback allocation and
the SINR of each user behave as the interfering channel gain
varies. In Section V, we provide some numerical simulations
that compare the performance of the system under the analog
feedback and digital feedback. The conclusions are drawn in
the Section VI and some of the proofs go to the appendices.

Throughout the paper, the following notations are used. E[·]
denotes the statistical expectation. The almost sure conver-
gence, convergence in probability, and mean-square conver-

gence are denoted by
a.s.−→,

i.p.−→,
L2−→ respectively. The partial

derivative of f with respect to (w.r.t.) x is denoted by ∂ f
∂x . The

circularly symmetric complex Gaussian (CSCG) vector with
zero mean and covariance matrix � is denoted by CN (0,�).
|a| and �[a] denote the magnitude and the real part of the
complex variable a, respectively. ‖·‖ represents the Euclidean
norm and Tr (·) denotes the trace of a matrix. IN and 0N

denote an N × N identity matrix and a 1 × N zero entries
vector, respectively. (·)T and (·)H refer to the transpose and
Hermitian transpose, respectively. The angle between vector x

and y is denoted by � (x, y). LHS and RHS refer to the left-
hand side and right-hand side of an equation, respectively.

II. SYSTEM MODEL

We consider a symmetric two-cell broadcast channel, as
shown in Figure 1, where each cell has K single antenna
users and a base station equipped with N antennas. The
channel between user k in cell j and the BS in cell i is
denoted by row vector hk, j,i where hk, j, j ∼ CN (0, IN ) and
hk, j, j̄ ∼ CN (0, εIN ), for j = 1, 2 and j̄ = mod ( j, 2)+ 1
refers to the “other” cell. We refer to the hk, j, j as direct
channels and hk, j, j̄ as cross or “interfering” channels. We
find it useful to group these into a single channel vector
hk, j = [hk, j,1 hk, j,2].

We should note that, by considering distance dependent path
gains, the model represents the case where all users in a cell
have the same distance to the serving base station (BS) and
also to the interfering BS. This setup is a rough approximation
of the case where two neighboring BSs are serving cell edge
users located between those BSs.

We also consider an FDD system and assume that the users
have perfect knowledge of their downlink channels, hk, j, j

and hk, j, j̄ . Each user feeds back the channel information to
the direct BS and neighboring BS through the corresponding
uplink channels. The BSs estimate or recover these channel
states and use them to construct the precoder.

The received signal of user k in cell j can be written as

yk, j = hk, j,1x1 + hk, j,2x2 + nk, j ,

where xi ∈ C
N×1, i = 1, 2 is the transmitted data from

BS i , and nk, j ∼ CN (0, σ 2
d ) is the noise at the user’s

receiver. The transmitted data xi depends on the assumed
level of cooperation, and will be described in more detail
in Sections II-A and II-B. We restrict ourselves to linear
precoding schemes, more specifically variations of the RCI
precoder. We assume each BS’s transmission is subject to an
average power constraint E

[‖xi‖2
] = Pi . In the MCP case,

we relax this constraint to an average sum power constraint1

so that E
[‖x‖2

] = ∑2
i=1 Pi = Pt . In the analysis, we assume

P1 = P2 = P and denote γd = P/σ 2
d .

1This assumption is made to simplify the analysis. However, it is possible
to handle the per base station average power constraint case and we can show
that the results will be the same.



3624 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 6, JUNE 2014

As already mentioned, in practical scenarios, perfect CSI is
difficult to obtain and the CSI at the BSs is obtained through
feedback from the users. We are particularly interested in the
channel model where we can express the downlink channel
between the user k in cell j and BS i as

hk, j,i = √
φk, j,i ĥk, j,i + h̃k, j,i , (1)

where ĥk, j,i represents the channel estimate, and h̃k, j,i the
channel uncertainty or estimation error. Note that the channel
estimates are used by the BSs to construct the precoder. The
variable φk, j,i will be used mainly for the channel model of
the quantized feedback scheme. It represents the quality of
the channel estimate due to the quantization. For the analog
feedback, we can omit this variable or assume to have a
deterministic value φk, j,i = 1,∀k, j, i . Detailed explanation
of (1) for the analog and limited feedback schemes can be
found in Sections II-C and II-D, respectively.

The transmitted signal, precoder and SINR for each user for
each cooperation scheme will be presented in the following
subsections.

A. MCP

As previously mentioned, in the MCP, both BSs share
the channel information and data symbols for all users in
the network. Therefore, we may consider the network as a
broadcast channel with 2N transmit antennas and 2K single
antenna users. The BSs construct the precoding matrix by
using the users’ channel estimates. In this work, we consider
RCI precoding, for which the precoding or beamforming
vector for user k in cell j , wkj , can be written as [35]

wkj = cŵkj = c
(

ĤHĤ + αI2N

)−1
ĥH

k, j ,

where c is a normalizing constant to ensure that the total
power constraint is met with equality, ĥk, j = [̂hk, j,1 ĥk, j,2],
Ĥ = [̂hH

1,1 ĥH
2,1 · · · ĥH

K ,1 ĥH
1,2 ĥH

2,2 · · · ĥH
K ,2]H and α is the

regularization parameter. The transmitted data vector can be
expressed as

x = c
2∑

j=1

K∑

k=1

ŵkj skj ,

where skj ∼ CN (0, 1) denotes the symbol to be transmitted to
user k in cell j . It is also assumed that the data symbols across
the users are independent, i.e, E[ssH] = I2K , with s = [s1 s2]T
and s j = [s1 j s2 j · · · sK j ]T. Note that we can express the data

vector as x = (
ĤHĤ + αI2N

)−1
ĤHs. From the total power

constraint E
[‖x‖2

] = Pt , we can determine c as follows

c2 = Pt

Tr
((

ĤHĤ + αI2N
)−2

ĤHĤ
) .

The received signal at user k in cell j can be written as

yk, j = hk, j x + nk, j = chk, j

(
ĤHĤ + αI2N

)−1
ĤHs + nk, j

= chk, j

(
ĤHĤ + αI2N

)−1
ĥH

k, j sk, j

+chk, j

(
ĤHĤ + αI2N

)−1
ĤH

k, j sk, j + nk, j ,

where hk, j follows the channel model (1) with h̃k, j =
[̃hk, j,1 h̃k, j,2]. The term Ĥk, j and sk, j are obtained from Ĥ
and s by removing the row corresponding to user k in cell j
respectively. Hence, the SINR for user k in cell j can be
expressed as

SINRk, j =
c2
∣∣
∣hk, j

(
ĤHĤ + αI2N

)−1
ĥH

k, j

∣∣
∣
2

c2
∣
∣
∣hk, j

(
ĤHĤ + αI2N

)−1
ĤH

k, j

∣
∣
∣
2 + σ 2

d

. (2)

B. Coordinated Beamforming

In this scheme, the base stations only share the channel
information, so that, for cell j , x j can be expressed as

x j = c j

K∑

k=1

ŵkj skj ,

where as in the MCP case skj ∼ CN (0, 1) denotes the symbol
to be transmitted to user k in cell j . The constant c j is chosen
to satisfy the per-BS power constraint, that is, E

[‖x j‖2
] = Pj .

Hence, c2
j = Pj∑K

k=1 ‖ŵkj ‖2
. We let

ŵkj =
⎛

⎝αIN +
∑

(l,m) �=(k, j )

ĥH
l,m, j ĥl,m, j

⎞

⎠

−1

ĥk, j, j ,

which is an extension of regularized zero-forcing to the
coordinated beamforming setup [17]. Note that designing the
precoding matrix at BS j requires local CSI only (the ĥk,i, j

from BS j to all users, but not the channels from the other BS
to the users). The SINR of user k in cell j can be expressed as

SINRk, j = c2
j |hk, j, j ŵkj |2

∑

(k′, j ′) �=(k, j )

c2
j ′ |hk, j, j ′ŵk′ j ′ |2 + σ 2

d

, (3)

where, once again, hk, j, j and hk, j, j ′ follow (1).

C. Analog Feedback through AWGN Channel

In the analog feedback scheme, proposed in [15], each user
feeds back the CSI to the base stations using the linear analog
modulation. Since we skip quantizing and coding the channel
information, we can convey this information very rapidly [15].
We also consider a simple uplink channel model, an AWGN
channel. A more realistic multiple access (MAC) uplink chan-
nel model could be a subject for future investigation. In the
uplink, each user in cell j feeds back its CSI hk, j orthogonally
(in time). Since each user has to transmit 2N symbols (its
channel coefficients), it needs 2κN channel uses to feed back
the CSI, where κ ≥ 1. User k in cell j sends

hk, j

1
2
j , (4)

where 
 j is a diagonal matrix such that the first N diagonal
entries are equal to λ j1 and the remaining diagonal entries
are equal to λ j2, with λ j j = 2νκPu , λ j j̄ = 2ε−1(1 − ν)κPu

and Pu is the user’s average transmit power per channel use.
Equation (4) satisfies the uplink power constraint
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E[‖hk, j

1
2
j ‖2] = 2κN Pu . Thus, the power allocated to

feedback the direct and interfering channel is controlled by
ν ∈ [0, 1]. We should note that in (4), it is assumed that κ is
an integer. If κN is an integer, we can modulate the signal (4)
with 2N × 2κN spreading matrix [15], [21] and the analysis
presented below still holds.

Now, let b,  = 1, 2, . . . , 2N , be the th element of hk, j ,
λ be the corresponding element on the diagonal of 
, and
ε = E[bb∗

 ]. When this channel coefficient is transmitted,
the signal received by the coordinating BSs is

y = √
λ

[
1N√
ε1N

]
b + nu = √

λpb + nu,

where nu ∈ C
2N×1 ∼ CN (0, σ 2

u I2N ) is the noise vector at the
coordinating BSs and 1N is a column vector of length N with
all 1 entries. Using the fact that the path-gain from the users
in cell j to BS j̄ is ε, the MMSE estimate of b becomes

b̂ = √
λεpT

[
λεppT + σ 2

u I2N

]−1
y,

and its MMSE is σ 2
b

= ε − λε
2
pT

[
λεppT + σ 2

u I2N
]−1

p.
We should note that {b̂} are mutually independent. By using
the property of MMSE estimation, we can express hk, j,i as

hk, j,i = ĥk, j,i + h̃k, j,i , (5)

where ĥk, j,i represents the channel estimate, and h̃k, j,i the
channel uncertainty or estimation error. Note that the entries of
each vector ĥk, j,i ∼ CN (0, ω j i IN ) and h̃k, j,i ∼ CN (0, δ j iIN )
are independent, where

δ j i =
{

1
1+νγ̄u

, j = i
ε

1+(1−ν)γ̄u
, j �= i,

, ω j i =
{

νγ̄u
1+νγ̄u

, j = i
ε(1−ν)γ̄u

1+(1−ν)γ̄u
, j �= i,

(6)

and γ̄u = 2γuκ(1 + ε) with γu = N Pu/σ
2
u . The channel

estimates are used by the BSs to construct the precoder. Since
each δ j i and ω j i are identical for all users then we denote
δd = δ j j , δc = δ j j̄ , ωd = ω j j and ωc = ω j j̄ . From (6),
it follows that ωd = 1 − δd and ωc = ε − δc.

D. Quantized Feedback via RVQ

In the digital feedback case, user k in cell j uses Bk, j, j

and Bk, j, j̄ bits to quantize/feedback the direct and interfering
channels, respectively. The total number of feedback bits is
assumed to be fixed. It is also assumed that each user has
different codebooks: Uk, j, j with size 2Bk, j, j and Uk, j, j̄ with

size 2Bk, j, j̄ , to quantize the direct and interfering channel,
respectively. Moreover, these codebooks are different for each
user. In this work, Bk, j, j is the same for all users and Bk, j, j =
Bd ,∀k, j = 1, 2. Similarly, Bk, j, j̄ = Bc,∀k, j = 1, 2.
The total number of feedback bits is denoted by Bt , where
Bt = Bd + Bc.

Since the optimal codebook design for the quantized feed-
back is not known yet, we consider the well known RVQ
scheme for analytical tractability. As suggested by its name,
RVQ uses a random vector quantization codebook where the
quantization vectors in the codebook are independently chosen
from the isotropic distribution on the N-dimensional unit

sphere [16], [20]. The codebook is known by the base station
and the user. The user quantizes its channel by finding the
quantization vector in the codebook which is closest to its
channel vector and feedbacks the index of the quantization
vector to the BSs. We should note that only the channel
direction is quantized, as is done in most of the work employ-
ing RVQ for the feedback model. As mentioned in [20], the
channel norm information can also be used for some problems
that need channel quality information (CQI) such as power
allocation across the channel and users scheduling [36].

The user k in cell j finds its quantization vector for the
channel hk, j,i according to

ûk, j,i = arg max
uk, j,i ∈ Uk, j,i

|hk, j,i uH
k, j,i |

‖hk, j,i‖ .

The quantization error or distortion τ 2
k, j,i is defined as

τ 2
k, j,i = 1−

∥
∥
∥hk, j,i ûH

k, j,i

∥
∥
∥

2

‖hk, j,i‖2 = sin2 ( � (hk, j,i/‖hk, j,i‖, ûk, j,i
))
.

It is a random variable whose distribution is equivalent to
the minimum of 2Bk, j,i beta random variables with parameters
N − 1 and 1 (see [20], [37]). Each realization of τk, j,i is
different for each user even though the users have the same
amount of feedback bits.

Having obtained ûk, j,i , each user then sends its
Bk, j,i -bits quantization index from the codebook [21]
and also the channel magnitude ‖hk, j,i‖ (see also [36]).
By assuming that the BSs can receive the information
perfectly, the channel estimate at the BS can be written as

ĥk, j,i = ‖hk, j,i‖ûk, j,i . (7)

Note that ĥk, j,i has the same statistical distribution as hk, j,i

i.e., ĥk, j,i ∼ CN (0, ε j i IN ), where ε j i = 1 when i = j and
otherwise, ε j i = ε.

From [20], [38], we can model hk, j,i as follows

hk, j,i =
√

1 − τ 2
k, j,i ĥk, j,i + τk, j,i‖hk, j,i‖zk, j,i , (8)

where zk, j,i is isotropically distributed in the null-space of
ûk, j,i and is independent of τk, j,i . Moreover, zk, j,i can be
rewritten as

zk, j,i =
vk, j,i�

⊥̂
hk, j,i

‖vk, j,i�
⊥̂
hk, j,i

‖ ,

where �ĥk, j,i
is the projection matrix in the column space of

ĥk, j,i , �⊥̂
hk, j,i

= IN − ĥH
k, j,i ĥk, j,i

‖̂hk, j,i ‖2 and vk, j,i ∼ CN (0, IN ) is

independent of ĥk, j,i . It is clear that the channel model (8)
has the same structure as (1) with φk, j,i = 1 − τ 2

k, j,i and
h̃ = τk, j,i‖hk, j,i‖zk, j,i .

E. Achievable and Limiting Sum-Rate

Besides SINRk, j , another relevant performance measure is
the achievable rate. For the user k at cell j , it is defined as

Rk, j = log2(1 + SINRk, j ). (9)
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It is obtained by treating the interference as noise or equiva-
lently performing single-user decoding at the receiver. Observ-
ing (9), it is obvious that there is a one-to-one continuous
mapping between the SINR and the achievable rate (see
also [39]). The total sum-rate, or just the sum-rate, can then
be defined as follows

Rsum =
2∑

j=1

K∑

k=1

Rkj .

As shown later in the following sections, as K , N → ∞,
we have

SINRkj − SINR∞ → 0, (10)

where SINR∞, also called the limiting SINR, is a determin-
istic quantity and the above convergence holds either almost
surely or in probability (see Section III and IV for detailed
discussions). It is also shown that the limiting SINR is the
same for all users. By using the result (10) and based on the
continuous mapping theorem [40], the following

1

2N
E [Rsum] − R∞

sum → 0

holds (see also [26]) where the limiting achievable sum rate per
antenna2 can be expressed as R∞

sum = β log2(1+SINR∞). For
the numerical simulations, we also introduce the normalized
sum-rate difference, defined as

�Rsum =
1

2N E [Rsum] − R∞
sum

1
2N E [Rsum]

, (11)

that quantifies the sum-rate difference, 1
2N E [Rsum] − R∞

sum,
compared to the (actual) finite-size system average sum-rate.

III. MCP AND CBF WITH NOISY ANALOG FEEDBACK

In this section, we will discuss the large system results and
feedback optimization for the MCP and CBf by using the
analog feedback model discussed in Section II-C. First, the
large system limit expression for the SINR is derived. Then,
the corresponding optimal regularization parameter that maxi-
mizes the limiting SINR is investigated. Finally, the optimal ν
that maximizes the limiting SINR that already incorporates the
optimal regularization parameter will be discussed.

A. MCP

We start with the theorem that states the large system limit
of the SINR (2).

Theorem 1: Let ρM,AF = (ωd +ωc)
−1α/N and g(β, ρ) be the

solution of g(β, ρ) =
(
ρ + β

1+g(β,ρ)

)−1
. In the large system

limit, the SINR of MCP given in (2) converges in probability
to a deterministic quantity given by

SINR∞
MCP,AF = γeg(β, ρM,AF)

1 + ρM,AF

β (1 + g(β, ρM,AF))
2

γe + (1 + g(β, ρM,AF))
2 , (12)

2For the rest of the paper, we refer this term as the limiting sum-rate.

where the effective SNR γe is expressed as

γe = ωd + ωc

δd + δc + 1
γd

= 1 − δd + ε − δc

δd + δc + 1
γd

. (13)

Proof: See Appendix II-A
It is obvious from above that the limiting SINR is the same

for all users in both cells. This is due to the assumption that
the channel statistics of all users in both cells are the same.
The channel uncertainty, captured by ω• and δ•, affects the
system performance (limiting SINR) via the effective SNR
and regularization parameter ρM,AF.

As discussed previously, the (effective) regularization para-
meter ρM,AF controls the amount of interference introduced to
the users and provides the trade-off between suppressing the
inter-user interference and increasing desired signal energy.
The optimal choice of ρM,AF that maximizes (12) is given in
the following.

Corollary 1: The optimal ρM,AF that maximizes SINR∞
MCP,AF is

ρ∗
M,AF = β

γe
, (14)

and the corresponding limiting SINR is

SINR∗,∞
MCP,AF = g(β, ρ∗

M,AF). (15)
Proof: The proof follows easily from [41].

It is interesting to see that the limiting SINR expression with
ρ∗

M,AF becomes simpler and depends only the cell-loading (β)
and the effective SNR (γe). Clearly from (13), γe is a function
of the total MSE, δt = δd + δc, which can be thought of as a
reasonable measure of the CSIT quality. Thus, ρ∗

M,AF adjusts its
value as δt changes. Also, from (13), it is obvious that γe is a
decreasing function of δt . As a result, ρ∗

M,AF is increasing with
δt . In other words, if the total quality of CSIT improves then
the regularization parameter becomes smaller. In the perfect
CSIT case, i.e., when δt = 0, and in the high SNR regime,
ρ∗

M,AF goes to zero and we obtain a ZF precoder.
Now, we will investigate how to allocate ν to maximize the

limiting SINR (15), or equivalently g(β, ρ∗
M,AF). ν is captured

by γe (or ρ∗
M,AF) via δd . It can be shown that g is decreasing

(increasing) in ρM,AF (γe). Then, for a fixed β the limiting SINR
is maximized by solving the following optimization problem

max
ν∈[0,1] γe = ε − δc + 1 − δd

(δd + δc)+ 1
γd

.

As mentioned earlier, γe is a decreasing function of δt . Thus,
the optimization problem above can be rewritten as

min
ν∈[0,1] δt = δd + δc = 1

νγ̄u + 1
+ ε

(1 − ν)γ̄u + 1
.

From the above, it is very interesting to note that the optimal ν
that maximizes SINR∗,∞

MCP is the same as the one that minimizes
the total MSE, δt .

It is easy to check that the optimization problem above is
a convex program and the optimal ν, denoted by ν∗, can be
expressed as follows

ν∗ =

⎧
⎪⎪⎨

⎪⎪⎩

0,
√
ε ≥ γ̄u + 1

1,
√
ε ≤ 1

γ̄u+1
1+ 1

γ̄u
(1−√

ε)

1+√
ε

, otherwise.

(16)
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As a result, for
√
ε ≤ 1

γ̄u+1 , the BSs should not waste resources
trying to learn about the “interfering” channel states. In this
situation, the coordination breaks down and the base stations
perform SCP. The completely opposite scenario, in which
the BSs should not learn the “direct” channels, occurs when√
ε ≥ γ̄u + 1. Clearly, this can only happen if ε > 1. When√
ε ≥ γ̄u +1, the BSs also perform SCP but each BS transmits

to the users in the neighboring cell.
We end this subsection by characterizing the behavior of γe

(equivalently SINR∗,∞
MCP ), after optimal feedback power alloca-

tion, as the cross channel gain ε varies. This also implicitly
shows how the total MSE, δt , affects the limiting SINR. Let
γ̆u = γ̄u

(1+ε) . We analyze the different cases in (16) separately.
1)

√
ε ≤ 1

γ̄u+1 : This is the case when the BSs perform SCP
for the users in their own cell. For fixed γ̆u , this inequality
is equivalent to ε ≤ εSCP

max, where εSCP
max ≥ 0 satisfies

√
εSCP

max =
1

γ̆u(1+εSCP
max)+1 . Now, by taking the first derivative ∂γe

∂ε and setting

it to zero, the (unique) stationary point is given by

εSCP
AF = 1

√
γd γ̆u

− 1.

If
√
εSCP

AF ∈ [0,√εSCP
max], it is easy to check that the limiting

SINR is increasing until ε = εSCP
AF and then decreasing.

If
√
γd γ̆u > 1 then εSCP

AF < 0, or equivalently, ∂γe
∂ε < 0.

Consequently, for this case, the limiting SINR is decreasing
in ε. Moreover,

√
εSCP

AF ≥ √
εSCP

max if the following condition
holds

√
γd γ̆u(2 − 2γd − γ̆u) ≥ (2γd γ̆u − γd − γ̆u), (17)

in which case ∂γe
∂ε > 0, which implies that the limiting SINR

always increases over ε for this case.
This behavior of γe as a function of ε can be intuitively

explained as follows. When ν = 1, the total MSE is δt =
1

(1+ε)γ̆u+1 + ε, where the first and second terms are δd and δc,
respectively. As ε increases, δd decreases whereas δc increases.
This shows that there is a trade-off between the quality of the
direct channel and the strength of the interference. The trade-
off is also influenced by parameters γd and γ̆u . As shown in the
analysis, when

√
γd γ̆u > 1, the effect of cross channel to the

limiting SINR dominates. In contrast, if the condition in (17)
is satisfied, the effect of the quality of the direct channel (δt )
becomes dominant. If the aforementioned conditions do not
hold, δt causes the SINR to increase until εSCP

AF and after that the
interference from the cross channel takes over as the dominant
factor, thereby reducing the limiting SINR.

2) γ̄u + 1 ≥ √
ε ≥ 1

γ̄u+1 : Here, the BSs perform MCP.

By taking ∂γe
∂ε in that interval of ε, it can be shown that we have

a unique stationary point which we denote as
√
εM

AF. We can
also show that γe is a convex function for ε ∈ [0, 1] and is
increasing for ε ≥ 1. Thus, if 1

γ̄u+1 ≤ √
εM

AF ≤ γ̄u + 1, the

limiting SINR will decrease for
√
ε ∈ [ 1

γ̆u(1+ε)+1 ,
√
εM

AF] and
increase after that; Otherwise, the limiting SINR increases in
the region. Here, for

√
ε ∈ [ 1

γ̄u+1 , 1], we still can see the effect
of the trade-off within δt to the limiting SINR as ε changes.
In that interval, the quality of the direct channel becomes better
as ε increases; However, that of the cross channel decreases
and this affects the SINR badly until εM

AF. After this point, the

improvement in the quality of the direct channel will outweigh
the deterioration of that of the cross channel, causing the SINR
to increase.

3)
√
ε ≥ γ̄u + 1: In this case, each BS performs SCP, but

serves the other cell’s users. We can establish that ∂γe
∂ε > 0.

Hence, for this case, the limiting SINR is increasing in ε.

B. Coordinated Beamforming

Theorem 2: Let ρC,AF = α
N , and let �A satisfy

�A = 1

ρC,AF + βωc
1+ωc�A

+ βωd
1+ωd�A

.

In the large system limit, the SINR of the coordinated beam-
forming given in (3) converges almost surely to a deterministic
quantity given by

SINR∞
CBf,AF =

ωd
β �A

[
ρC,AF + βωc

(1+ωc�A)2
+ βωd

(1+ωd�A)2

]

(
1
γd

+ δd + δc + ωd
(1+ωd�A)2

+ ωc
(1+ωc�A)2

) . (18)

Proof: See Appendix III-A
Similar to the MCP case, the limiting SINR expression (18)

is the same for all users. The optimal ρC,AF that maximizes the
limiting SINR (18) is given in the following.

Corollary 2: The limiting SINR (18) is maximized by
choosing the regularization parameter according to

ρ∗
C,AF

= β

(
1

γd
+ δd + δc

)
(19)

and the corresponding limiting SINR is

SINR∗,∞
CBf,AF = ωd�

∗
A, (20)

where �∗
A is �A with ρC,AF = ρ∗

C,AF.

Proof: Let γe f f = β
(
γ−1

d + δd + δc

)
and � =

βωd
(1+ωd�A)2

+ βωc
(1+ωc�A)2

. It is easy to show that

∂SINR∞
CBf,AF

∂ρC,AF

= ωd
γe f f − ρC,AF

[γe f f +�]2

∂�

∂ρC,AF

,

where ∂�
∂ρC,AF

= −2β ∂�A
∂ρC,AF

(
ω2

d
(1+ωd�A)3

+ ω2
c

(1+ωc�A)3

)
> 0 with

∂�A
∂ρC,AF

< 0 is given by (54). Thus, it follows that ρ∗
C,AF = γe f f is

the unique stationary point and the global optimizer. Plugging
back ρC,AF into (18) yields (20).

Similar to the MCP case, the corollary above shows that
the optimal regularization parameter adapts to the changes of
CSIT quality and it is a decreasing function of δt . By compar-
ing (14) and (19), it is also interesting to see that ρC,AF = ρM,AF

for a given α.
Finding ν that maximizes the limiting SINR of the CBf is

more complicated than in the MCP case. It is equivalent to
maximizing ωd�, such that ν ∈ [0, 1]: this is a non-convex
program. However, the maximizer ν∗ is one of following: the
boundaries of the feasible set (ν = {0, 1}) or the stationary
point, denoted by ν◦, which is the solution of

ν◦ = − �∗
A

∂�∗
A

∂ρ∗
C,AF
(1 + ν◦γ̄u)

. (21)
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Fig. 2. The normalized sum-rate difference for different system dimensions
with β = 0.6, κ = 1, ε = 0.5 γd = 10 dB and γu = 0 dB.

The point ν = 0 can be eliminated from the feasible set since
the derivative of the limiting SINR with respect to ν at this
point is always positive.

C. Numerical Results

Since propagation channels fluctuate, the SINR expressions
in (2) and (3) are random quantities. Consequently, the average
sum-rates are also random. Figure 2 illustrates how the random
average sum-rates approach the limiting sum-rates as the
dimensions of the system increase. This is quantified by
the normalized sum-rate difference which is defined in (11).
The average sum-rate is obtained by averaging the sum-rates
over 1000 channel realizations. The optimal regularization
parameter and power splitting obtained in the large system
analysis are used in computing the limiting and average sum-
rates. We can see that as the system size increases, the
normalized sum-rate difference becomes smaller and this hints
that the approximation of the average sum-rate by the limiting
sum-rate becomes more accurate. The difference is already
about 1.3% and 0.5% for the MCP and CBf respectively for
N = 60, K = 36.

Figure 3 describes the applicability of the large system
results into finite-size systems. We choose a reasonable
system-size in practice, i.e., N = 10, K = 6. Then,
250 channel realizations are generated. For each channel real-
ization, with a fixed regularization parameter of the precoder,
the optimal ν, denoted by ν∗

FS, is computed. Then the resulting
average sum-rate is compared to the average sum-rate that
using ν∗ from the large system analysis, i.e., (16) and (21), for
different values of ε. We can see that the normalized average
sum-rate difference, i.e.,

�R∗
sum = E

[|Rsum(ν
∗
FS)− Rsum(ν

∗)|]
Rsum(ν∗

FS)
(22)

for CBf has a peak around 4% that can be considered as a
reasonable value for the chosen system size. For MCP, it is
less than 0.47%. To this end, our simulation results indicate

Fig. 3. The normalized average sum-rate difference of the finite-size system
by using the νFS and ν∗ with N = 10, β = 0.6, κ = 1, γd = 10 dB and
γu = 0 dB.

that the large system results discussed earlier approximate the
finite-system quite well.

In the following, we present some numerical simulations
that visualize the characteristics of the optimal ν∗ (in the
large system limit) and the corresponding limiting SINR for
each cooperation scheme. We are primarily interested in their
characteristics when the interfering channel gain ε varies, as
depicted in Figure 4. In general, we can see that for the same
system parameters, the CBf scheme allocates more power to
feed back the direct channel compared to the MCP. From
Figure 4(a), we can see that for values of ε ranging from 0 up
to a certain threshold (denoted by ε th

M = εSCP
max and ε th

C for MCP
and CBf respectively), the optimal ν is 1: in other words, it is
optimal in this range for the BSs not to try to get information
about the cross channels and to construct the precoder based
on the direct channel information only. Effectively, the two
schemes reduce to the SCP scheme when ν∗ = 1: as a result,
the same limiting SINR is achieved by both schemes.

In Figure 4(b), we can observe a peculiar behavior of the
limiting SINR of the MCP which we already highlighted in
the analysis of Section III-A. When

√
ε ≤ 1

γ̄u+1 , i.e. when
ν∗ = 1, the SINR is decreasing as ε increases. After that the
limiting SINR is still decreasing until ε reaches εM

AF and then
increasing: this reflects the trade-off between δc and δd . For
the CBf scheme, the limiting SINR is decreasing in ε when
ν∗ = 1 (SCP) and remains decreasing when both BSs perform
CBf.

Figure 5(a) and 5(b) depict the limiting SINRs for the MCP
and the CBf as γu increases. As illustrated in Figure 5(a),
the initial decrease of the limiting SINR of the MCP is still
present. It occurs at a smaller value of εM

AF when the feedback
quality improves i.e., by increasing γu . For, γu = 20 dB, at a
glance, we can not notice it but by zooming in on a smaller
interval of ε, it shows up. The plot also shows that it does
not occur in the perfect CSI case where the SINR is strictly
increasing in ε. The gap between the limiting SINR obtained
from the perfect CSI and that obtained from γu = 5 dB is less
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Fig. 4. (a) The optimal ν∗ and (b) the limiting SINR for the MCP and CBf scheme as ε varies in [0, 1] with β = 0.6, κ = 1, γd = 10 dB, γu = 0 dB.

Fig. 5. (a) SINR∗,∞
MCP,AF vs. ε and (b) SINR∗,∞

CBf,AF vs. ε, for different values of γu . Simulation parameters: β = 0.6, κ = 1, γd = 10 dB.

than 6 dB. Increasing the feedback quality will reduce this
gap. It become less than 0.5 dB when γu = 20 dB. For the
CBf, as shown in Figure 5(b), the gap is less than 4 dB when
γu = 5 dB and becomes less than 0.2 dB when γu = 20 dB.
In the figure, we also include the limiting SINR’s for the SCP.
In Figure 4(b), we already observed that there is almost no
advantage of doing the CBf instead of the SCP. However, as
the quality of the feedback improves, as shown in Figure 5(b),
we can see clearly the advantage. For γu = 5 dB, the CBf
outperforms the SCP for ε > 0.25. For γu = 10 dB, it occurs
when ε > 0.1.

IV. QUANTIZED FEEDBACK VIA RANDOM

VECTOR QUANTIZATION (RVQ)

In this section, we will derive the approximations of the
SINR for the MCP (2) and CBf (3) by analyzing them in
the large system limit. We use these approximations to opti-
mize the feedback bit allocation, and regularization parameter.

This joint optimization problem can be split into two steps.
First, we derive the optimal bit allocation, i.e., the optimal

B̄d = Bd
N and B̄c = Bc

N . Plugging the optimal bit allocation
back into the limiting SINR expression, we can then proceed
to the second step where we obtain the optimal regularization
parameter. At the end of the section, some comparisons of the
limiting SINR and bit allocation values for the two schemes
are illustrated.

A. MCP

Theorem 3: Let ρM,Q = (1 + ε)−1α/N and g(β, ρ) be the

solution of g(β, ρ) =
(
ρ + β

1+g(β,ρ)

)−1
. In the large system

limit, the SINR converges in probability to a deterministic
quantity given by

SINR∞
MCP,Q = γeg(β, ρM,Q)

1 + ρM,Q

β (1 + g(β, ρM,Q))
2

γe + (1 + g(β, ρM,Q))2
, (23)
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where

γe = d2

1 − d2 + 1
γd (1+ε)

(24)

is defined as the effective SNR and

d =
√

1 − 2−B̄d + ε
√

1 − 2−B̄c

1 + ε
. (25)

Proof: Refer to Appendix II-B.
Theorem 3 shows that the limiting SINR is the same for all

users in both cells. This is not surprising given the symmetry
in their channel statistics and feedback mechanisms. Moreover,
the only dependence of the limiting SINR on the bit allocation
is via γe, which itself is a function of d: d can be interpreted as
a measure of the total quality of the channel estimates; In fact,
given that B̄d and B̄c are constrained to sum up to B̄t , d in (25)
highlights a trade-off between increasing feedback bits for
direct channel and cross channel. Comparing (12) and (23),
we can immediately recognize an identical structure between
them. The effective SNR expressions (13) and (24) also share
a similar construction, where (1+ ε)d2 in (25) can be thought
to be equivalent to ωd + ωc.

Now, we move to the first step of the joint optimization
i.e., determining the optimal bit allocation that maximizes
(23). It is clear from (23) that B̄d and B̄c contributes to
the limiting SINR through d . It is easy to check that the
limiting SINR is an increasing and a convex function of d .
Thus, maximizing SINR∞

MCP,Q is equivalent to maximizing d ,
i.e. solving (cf. Eq. (25))

max
xd∈[Xt ,1]

√
1 − xd + ε

√

1 − Xt

xd
, (26)

where Xt = 2−B̄t , B̄t = Bt
N and xd = 2−B̄d . The solution of

(26) is presented in the following theorem.
Theorem 4: SINR∞

MCP,Q is maximized by allocating B̄d =
− log2(x

∗
d ) bits to feed back the direct channel information,

and B̄c = B̄t − B̄d to feed back the interfering channel
information, where x∗

d is the unique positive solution of

x4
d − Xt x

3
d + (εXt )

2(xd − 1) = 0. (27)

Proof: The first derivative of the objective function over
xd is given by

(1 + ε)
∂E[d]
∂xd

= 1

2

⎛

⎝− 1√
1 − xd

+ 1

x2
d

εXt√
1 − Xt

xd

⎞

⎠ (28)

and limxd→Xt
∂E[d]
∂xd

= ∞, limxd→1
∂E[d]
∂xd

= −∞. Moreover,
the objective function is concave since

(1 + ε)
∂2

E[d]
∂x2

d

= 1

2

⎛

⎝−1

2
(1 − xd)

−3/2 − 2

x3
d

εXt√
1 − Xt

xd

−1

2

εXt

x4
d

(
1 − Xt

xd

)−3/2
)

< 0, xd ∈ [Xt , 1].

The global optimum occurs at the stationary point, x∗
d , which

is obtained by setting the first derivative (28) equal to 0. It is
the positive solution of

x4
d − Xt x

3
d + (εXt )

2(xd − 1) = 0.

The (positive) solution always exists and is unique. This can
be shown as follows. Let (xd) = x4

d − Xt x3
d +(εXt )

2(xd −1).
Recall that xd ∈ [Xt , 1] and Xt ≤ 1. Thus, (Xt ) < 0 and
(1) > 0. Moreover, ∂(xd)

∂xd
= x2

d (4x3
d − 3Xt ) + (εXt )

2 > 0
showing that (xd) is monotonically increasing in xd ∈ [Xt , 1].
Therefore, (xd) crosses zero at a unique point x∗

d .
Now, let us discuss how the optimal bit allocation varies

with ε. Since xd = x∗
d satisfies (27), then by taking the

(implicit) derivative of (27) w.r.t. ε, we have

∂x∗
d

∂ε
= 2εX2

t (1 − xd)

4x3
d − 3Xt x2

d + (εXt )2
> 0, for Xt ≤ x∗

d ≤ 1.

This implies that as ε increases, x∗
d (B̄∗

d ) increases (decreases).
This is consistent with the intuition that for higher ε, more
resources would be allocated to quantize the cross channel
information. At one of the extremes, i.e., ε = 0, x∗

d = Xt ,
or B̄d = B̄t . If ε = 0, x∗

d = Xt , so that when there is no
interference from the neighboring BS, all feedback bits are
used to convey the direct channel states, as expected. At the
other extreme, when ε → ∞, x∗

d → 1 or B̄d → 0. This can
be shown by setting the derivative (28) equal to zero and we
have

1

ε
= Xt

√
1 − xd

x2
d

√
1 − Xt

xd

.

As ε → ∞, the left hand side goes to zero and the stationarity
is achieved by setting xd = 1.

It is also interesting to see how d , after optimal bit
allocation, behaves as the cross channel gain varies. Let d∗ is d
evaluated at xd = x∗

d . By taking ∂d∗
∂ε , we can show the

following property.
Proposition 1: For ε ≤ 1, d∗ is decreasing in ε and

increasing for ε ≥ 1. Consequently, d∗ is minimum at ε = 1.
As mentioned previously, x∗

d increases and consequently
1 − x∗

d decreases as ε increases. On the other side,
ε
√

1 − Xt/x∗
d is getting larger. So, from the calculation we

can conclude that d∗ is mostly affected by
√

1 − x∗
d for ε ≤ 1,

while for the other values of ε, the other term takes over.
We now proceed to find the optimal ρM,Q that maximizes

SINR∞
MCP,Q. The result is summarized below.

Theorem 5: Let γ ∗
e be γe evaluated at d = d∗. The optimal

ρM that maximizes SINR∞
MCP(d

∗) is

ρ∗
M,Q = β

γ ∗
e
. (29)

The corresponding limiting SINR is given by

SINR∗,∞
MCP = g

(
β, ρ∗

M,Q

)
.

Proof: The equation (23) has the same structure as (12)
and thus, (29) follows.

From Theorem 5, d∗ affects the regularization parameter
and the limiting SINR via effective SNR γ ∗

e . The latter grows
with d∗ (cf. (24)). Thus, ρ∗

M,Q declines as the CSIT quality, d∗,
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increases and this behavior is also observed for the cooperation
schemes with analog feedback.

In Proposition 1, we established how d∗ changes with ε.
We can show that γ ∗

e has a similar behavior but reaches its
minimum at a different value of ε due to the last term in the
denominator in (24). For SINR∗,∞

MCP , it attains its minimum at
ε = εM

Q , as described in the next proposition.
Proposition 2: Suppose that ε = εM

Q satisfies

(x∗
d )

2 = γd(1 + ε)− 1
2

εXt
[
γd(1 + ε)+ 1 + ε

2

] .

Then, SINR∗,∞
MCP,Q decreasing for ε ≤ εM

Q and increasing
for ε ≥ εM

Q
.

The characterization of SINR∗,∞
MCP,Q above reminds us a similar

behavior of SINR∗,∞
MCP,AF after optimal power allocation. We can

conclude that the limiting SINR of MCP under both feedback
schemes has a common behavior as ε varies.

B. Coordinated Beamforming

Theorem 6: Let ρC,Q = α/N and �Q satisfy

�Q = 1

ρC,Q + β
1+�Q

+ βε
1+ε�Q

.

Also let φd = 1 − 2−B̄d , φc = 1 − 2−B̄c , δd = 2−B̄d and
δc = ε2−B̄c . In the large system limit, the SINR (3) for the
quantized feedback via RVQ converges in probability to a
deterministic quantity given by

SINR∞
CBf,Q = − φd�

2
Q

β
(

1
γd

+ φd
(1+�Q)2

+ φcε
(1+ε�Q)2

+ δd + δc

)
∂�Q
∂ρ

,

(30)

where

−∂�Q

∂ρC,Q

= �Q

ρC,Q + βε
(1+ε�Q)2

+ β
(1+�Q)2

.

Proof: See Appendix III-B
As in Theorem 3, Theorem 6 shows that that the limiting

SINR is the same for all users. The quantization error variance
of estimating the direct channel, δd , affects both the signal
strength (via φd ) and the interference energy, in which it
captures the effect of the intra-cell interference. δc, on
the other hand, only contributes to the interference term:
It represents the quality of the cross channel and determines
the strength of the inter-cell interference. Since B̄t is fixed,
increasing B̄d , or equivalently reducing B̄c, will strengthen the
desired signal and reduce the intra-cell interference: it does so,
however, at the expense of strengthening the inter-cell inter-
ference. Thus, feedback bits’ allocation is important in order
to improve the performance of the system.

To solve the joint optimization problem, it is useful to write
(30) as follows

SINR∞
CBf,Q = G1(1 − xd)

(
1

γd
+ 1 + ε + (1 − xd)(G2 − 1)

+ε
(

1 − Xt

xd

)
(G3 − 1)

)−1

,

where xd and Xt are defined as in the previous subsection

and for brevity, we denote: G1 = −�2
Q

(
β
∂�Q
ρC,Q

)−1
,G2 =

(1+�Q)
−2 and G3 = (1+ε�Q)

−2. The optimal bit allocation
can be found by solving the following optimization problem

max .
xd∈[Xt ,1] SINR∞

CBf,Q. (31)

The solution of (31) is summarized in the following theorem.
Theorem 7: For a fixed B̄t , the optimal bit allocation,

in term of xd = 2−B̄d , that maximizes SINR∞
CBf,Q is given by

x∗
d =

⎧
⎨

⎩
Xt , ε ≤ Xt (

1
γd

+1)

1−G3−Xt (2−G3)
= εth

Xd , otherwise.
(32)

where Xd is the positive (unique) solution of the quadratic
equation −x2

d (
1
γd

+ 1 + εG3)+ ε(G3 − 1)(2Xt xd − Xt ) = 0.
Proof: Differentiating the objective function (31), we get

∂SINR∞
CBf,Q

∂xd
= G1

Z

�

where Z = −x2
d(

1
γd

+1+εG3)+ε(G3−1)(2Xt xd − Xt ), � =
x2

d

(
1
γd

+ (1 − xd)(G2 − 1)+ ε
(

1 − Xt
xd

)
(G3 − 1)+ 1 + ε

)2
.

The stationary point x◦
d can be obtained by solving Z = 0

for xd . It can be verified that the sign of Z is the same as the
sign of

∂SINR∞
CBf,Q

∂xd
. Thus, Xd = x◦

d will be the unique positive
solution of the quadratic equation Z = 0.

It can be also checked that ∂Z
∂xd

= −2xd(
1
γd

+ 1 + εG3) +
ε(G3 − 1)(2Xt ) < 0 and thus, Z is decreasing in xd . Since
at xd = 1, Z < 0, we should never allocate x∗

d = 1. We will
allocate xd = Xt if Z ≤ 0 at xd = Xt (this condition is
satisfied whenever ε ≤ εth).

Unlike the MCP case where x∗
d = Xt only when ε = 0,

in the CBf, it is optimal for a user to allocate all Bt to the
direct channel when 0 ≤ ε ≤ εth. Note that x∗

d = Xt does
not imply that the cooperation breaks down or that both BSs
perform single-cell processing. It is easy to check that εth
increases when B̄t or γd is decreased. This suggests that when
the resource for the feedback bits is scarce or the received
SNR is low then it is preferable for the user to allocate all
the feedback bits to quantize the direct channel. So, in this
situation, quantizing the cross channel does more harm to the
performance the system. However, as ε increases beyond εth,
quantizing the cross channel will improve the SINR. We can
show that x∗

d , particularly Xd , is increasing in ε. In doing
that, we need to take the derivative of Xd over ε. It is easy to
show that �Q is decreasing in ε. Then, it follows that G3 is
decreasing in ε. Using this fact, we can then show ∂Xd

∂ε > 0.
So, as in the case of MCP, this suggests that more resources
are allocated to feedback the cross-channel when ε increases.

Once we have the optimal bit allocation, we can find the
optimal ρC,Q, as we did for the MCP. For that purpose, we can
rewrite (32) w.r.t ρC,Q as follows

x∗
d =

{
Xt , ρC,Q ≥ ρth

Xd , otherwise,
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where for given Xt , ε and γd , the threshold ρth satisfies
ε = εth. So, we have SINR∞

CBf,Q(Xd) for ρC,Q < ρth and
SINR∞

CBf,Q(Xt ) for other values of ρC,Q.
Now, let us investigate the optimal ρC,Q when x∗

d = Xd .

By evaluating
∂SINR∞

CBf,Q(Xd )

∂ρC,Q
= 0, we can determine the

stationary point, which is given by

ρ◦
Xd

= β
[
(1 − Xd)S − X ′

d (G2 + εG3)γe
]

X ′
dγe + (1 − Xd)

(
(1 − Xd)G′

2 + ε
(

1 − Xt
Xd

)
G′

3

) ,

where

S = (G′
2 + εG′

3)

[
1

γd
+ Xd + ε

Xt

Xd

]

+ε(G2G′
3 − G3G′

2)

[
−Xd + Xt

Xd

]
,

γe = 1
γd

+ 1 + ε + ε(G3 − 1)

(
1 − 2Xt

Xd
+ Xt

X2
d

)
, G′

2 = ∂G2
∂ρC,Q

,

and G′
3 = ∂G3

∂ρC,Q
.

We can show that the derivative is positive for ρC,Q ∈
[0, ρ◦

Xd
) and negative for ρC,Q ∈ (ρ◦

Xd
,∞). Since SINR∞

CBf,Q(Xd)
is defined for ρC,Q ≤ ρth, if ρ◦

Xd
< ρth then SINR∞

CBf,Q(Xd)
is increasing for ρC,Q ∈ [0, ρ◦

Xd
] and decreasing for ρC,Q ∈

[ρ◦
Xd
, ρth). If ρ◦

Xd
≥ ρth then SINR∞

CBf,Q(Xd ) is increasing for
ρC,Q ∈ [0, ρth).

Then, we move to the case when x∗
d = Xt . By setting

∂SINR∞
CBf,Q(Xt )

∂ρC,Q
= 0, the stationary point is then given by

ρ◦
Xt

= β(G′
2 + εG′

3)(Xt + 1/γd + ε)

(1 − Xt )G′
2

+ βε(G2G′
3 − G3G′

2)

G′
2

.

We can also show that the derivative is positive for ρC,Q ∈
[0, ρ◦

Xt
) and negative for ρC,Q ∈ (ρ◦

Xt
,∞). Since SINR∞

CBf,Q(Xt )

is defined for ρC,Q ≥ ρth, if ρ◦
Xt
> ρth then SINR∞

CBf,Q(Xt )
is increasing for ρC,Q ∈ [ρth, ρ

◦
Xt

] and decreasing for ρC,Q ∈
[ρ◦

Xt
,∞). If ρ◦

Xt
≤ ρth then SINR∞

CBf,Q(Xt ) is decreasing for
ρC,Q ∈ [ρth,∞).

In what follows, by knowing the stationary point in both
regions of ρ, we will investigate how to obtain the opti-
mal ρC,Q, denoted by ρ∗

C,Q, for ρC,Q ∈ [0,∞). By inspecting
∂SINR∞

CBf,Q(Xd )/∂ρC,Q and ∂SINR∞
CBf,Q(Xt )/∂ρC,Q we can see that

that SINR∞
CBf,Q(x

∗
d ) is continuously differentiable for the region,

ρC,Q ∈ [0, ρth) and ρC,Q ∈ [ρth,∞), respectively. To show
SINR∞

CBf,Q(x
∗
d ) is continuously differentiable for ρC,Q ∈ [0,∞)

we need to establish ∂SINR∞
CBf,Q(x

∗
d )/∂ρC,Q to be continuous at

Algorithm 1 Calculate ρ∗
C,Q and x∗

d

1: Compute ρth
2: if ρth ≤ 0 then
3: x∗

d = Xt .
4: ρ∗

C,Q = ρ◦
Xt

5: else
6: Compute ρ◦

Xt
7: if ρ◦

Xt
≥ ρth then

8: x∗
d = Xt

9: ρ∗
C,Q = ρ◦

Xt
10: else
11: x∗

d = Xd

12: ρ∗
C,Q = ρ◦

Xd
13: end if
14: end if

ρC,Q = ρth, or equivalently

lim
ρC,Q→ρ−

th

∂SINR∞
CBf,Q(Xd)

∂ρC,Q

= lim
ρC,Q→ρ+

th

∂SINR∞
CBf,Q(Xt )

∂ρC,Q

= ∂SINR∞
CBf,Q(Xt )

∂ρC,Q

∣
∣
∣∣
ρC,Q=ρth

. (33)

When ρC,Q → ρ−
th , Xd → Xt and therefore the denominator of

∂SINR∞
CBf,Q(Xd )/∂ρC,Q and ∂SINR∞

CBf,Q(Xt )/∂ρC,Q are equal. Let
N ( f ) denote the numerator of f . As Xd → Xt , we have (34),
shown in the bottom of the page, where X ′

d = ∂Xd/∂ρC,Q. We
should note that limρC,Q→ρ−

th
X ′

d = − 1
2εG′

3
1−Xt

1
γd

+1+ε �= 0. This

shows that x∗
d is not continuously differentiable over ρC,Q. It

can be verified that the following holds

lim
ρC,Q→ρ−

th

γe = 1

γd
+1+ε+ε(G3 − 1)

(
−1+ 1

Xt

)

= 1

Xt

[(
1

γd
+1

)
Xt +ε(2Xt − 1)− εG3(Xt − 1)

]

= 0,

because as ρC,Q → ρ−
th , from the (equivalent) condition

ε = εth, the term in the bracket becomes 0. This concludes
(33) and therefore SINR∞

CBf,Q(x
∗
d ) is continuously differentiable

for ρC,Q ∈ [0,∞).
By using the property above and the facts that

the SINR∞
CBf,Q(Xd) and SINR∞

CBf,Q(Xt ) are quasi-concave
(unimodal), we can determine the optimal ρ∗

C,Q and x∗
d jointly as

described in Algorithm 1. We can verify the steps 6-13 in the
algorithm by using the following arguments: If ρ◦

Xt
> ρth, then

lim
ρC,Q→ρ−

th

N (
∂SINR∞

CBf,Q(Xd)/∂ρC,Q

) = [
β(G′

2 + εG′
3)(1/γd + 1 + ε − (1 − Xt ))+ βε(1 − Xt )(G2G′

3 − G3G′
2)

−ρth(1 − Xt )G
′
2

]
�Q(1 − Xt )− lim

ρC,Q→ρ−
th

X ′
d(βG2 + βεG3 + ρ)γe

= N
(
∂SINR∞

CBf,Q(Xt )

∂ρC,Q

∣
∣
∣
∣
ρC,Q=ρth

)

− lim
ρC,Q→ρ−

th

X ′
d (βG2 + βεG3 + ρ)γe, (34)
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Fig. 6. The total sum-rate difference for different system dimensions with
β = 0.6, ε = 0.5 γd = 10 dB and B̄t = 4.

the derivate of SINR∞
CBf,Q(Xt ) is positive at ρC,Q = ρth because

SINR∞
CBf,Q(Xt ) is quasi-concave. Since the SINR∞

CBf,Q(x
∗
d ) is con-

tinuously differentiable, then the derivative of SINR∞
CBf,Q(Xd)

is also positive when ρC,Q → ρth. Since SINR∞
CBf,Q(Xd) is also

quasi-concave, consequently SINR∞
CBf,Q(Xd) is increasing for

ρC,Q ∈ [0, ρth). This implies that ρ∗
C,Q = ρ◦

Xt
. Similar types of

arguments can be also used to verify that if ρ◦
Xt
< ρth then

ρ∗
C,Q = ρ◦

Xd
.

C. Numerical Results

The first two figures in this section are obtained by using a
similar procedure to that followed in the analog feedback case.
Figure 6 shows how well the limiting sum-rate (equivalently
the limiting SINR) approximates the finite-size system sum-
rate. The optimal regularization parameter and bit allocation
are applied in computing the limiting and average sum-rates.
As N grows, the normalized sum-rate difference become
smaller. For N = 60, K = 36, it is arleady about 3.1%
and 1.6% for MCP and CBf, respectively. Figure 7 shows
the normalized average sum-rate difference (�R∗

sum)3, with a
fixed regularization parameter, between the system that uses
B∗

d,FS and B̄d
∗

to feed back the direct channel states. B∗
d,FS

denotes the optimal bit allocation of the finite-size system.
For each channel realization, it is obtained by a grid search.
With N = 10, K = 6, the maximum normalized average sum-
rate difference reaches 0.22% for MCP. It is about four-times
bigger for CBf, which is approximately 0.86%. Thus, from
those simulations, similar to the analog feedback case, the
conclusions we can reach for the limiting regime are actually
useful for the finite system case.

In the following, we present numerical simulations that
show the behavior of the limiting SINR and optimal bit
allocation for MCP and CBf as ε varies. The optimal bit
allocation is illustrated in Figure 8(a). As shown in Section IV,

3We use the same notation for the normalized average sum-rate difference
as in (22).

Fig. 7. The (normalized) average sum-rate difference of the finite-size system
by using the B̄∗

d,FS and B̄∗
d with N = 10, β = 0.6, γd = 10 dB and B̄t = 4.

the optimal Bd for MCP is decreasing in ε and B∗
d = Bt

when ε = 0. For CBf, B∗
d = Bt when ε ≤ 0.19, and after

that decreases as ε grows. Overall, for given ε, B∗
d for CBf is

larger than for MCP, implying the quality of the direct channel
information is more important for CBf.

In Figure 8(b), the optimal values for the regularization
parameter and bit allocation are used. From that figure, it is
obvious that SINR∞

CBf,Q decreases as ε increases. In the case
of MCP, as predicted by the analysis, the limiting SINR is
decreasing until ε∗

M,RVQ ≈ 0.72 and is increasing after that
point. By comparing the limiting SINR for both cooperation
schemes, it is also interesting to see that for some values
of ε, i.e., in the interval when CBf has B̄∗

c = 0, the CBf
slightly outperforms MCP. We should note that within the
current scheme, when B̄∗

c = 0, CBf and MCP are not the
same as single-cell processing (SCP): under RVQ, there is still
a quantization vector in the codebook that is used to represent
the cross channel (although it is uncorrelated with the actual
channel vector being quantized).

Motivated by the above facts, we investigate whether SCP
provides some advantages over MCP and CBf for some (low)
values of ε. In SCP, we use Bk, j, j = Bt bits (∀k, j ) to quantize
the direct channel. The cross channels in the precoder are
represented by vectors with zero entries. By following the
steps in deriving Theorem 3 and 6, we can show that the
limiting SINR is given by

SINR∞
SCP,Q = γeg(β, ρS)

1 + ρS

β (1 + g(β, ρS))
2

γe + (1 + g(β, ρS))2
,

where ρS = N−1α and γe = 1−2−B̄t

2−B̄t +ε+ 1
γd

. It follows that

the optimal ρS maximizing SINR∞
SCP,Q is ρ∗

S = β
γe

and the

corresponding the limiting SINR is SINR∗,∞
SCP,Q = g(β, ρ∗

S ).
From Figure 8(b), it is obvious that the SCP outperforms

MCP and CBf for some values of ε, that is, ε ≤ 0.13.
Surprisingly, the CBf is still beaten by SCP until ε ≈ 0.82.
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Fig. 8. (a) Optimal bit allocation vs. ε. (b) Limiting SINR vs. ε. Simulation parameters: β = 0.6, γd = 10 dB and B̄t = 4.

Fig. 9. (a) SINR∗,∞
MCP,Q vs. ε and (b) SINR∗,∞

CBf,Q vs. ε, for different values of B̄t . Simulation parameters: β = 0.6, γd = 10 dB.

This means that the SCP still gives advantages over the CBf
even in a quite strong interference regime with this level of
feedback.

Figures 9(a) and 9(b) portray respectively the limiting SINR
of the MCP and the CBf for different values of the total bit
allocation, as well as for the perfect CSI case. As in the analog
feedback case, the initial decrease of the limiting SINR of the
MCP is still observed, even for B̄t = 14. The gap between the
limiting SINR with B̄t = 8 and that with the perfect CSI is
less than 3.5 dB. By increasing B̄t to 14 bits/antenna, the gap
becomes less than 0.65 dB. In Figure 9(b), we also include
the limiting SINR for the SCP. Our numerical simulations
hint that the limiting SINR’s for B̄t larger than 8 almost
coincide. Hence, we only show the limiting SINR for B̄t = 14.
Previously in Figure 8(b), the SCP outperformed the CBf for

ε ∈ [0, 1] and B̄t = 4. However, as shown in Figure 9(b), if
we double B̄t to 8 bits/antenna, the opposite situation occurs.
The CBf beats the SCP starting from ε ≈ 0.1. For larger B̄t ’s,
this occurs at smaller ε. Comparing the limiting SINR from
the perfect CSI case and that from B̄t = 8, the gap is less
than 1.6 dB. Increasing B̄t to 14 bits/antenna will make the
gap less than 0.3 dB.

V. ANALOG VERSUS DIGITAL FEEDBACK

In this section we will compare the performance of
the analog and quantized feedback for each cooperation
scheme. For the quantized feedback, we follow the approach
in [14], [21], [25], and [42] that translates feedback bits to
symbols for a fair comparison with the analog feedback. In this
regard, there are two approaches [14]:
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Fig. 10. Comparison of the limiting SINR of the analog and quantized feedback for different cooperation schemes. Parameters: β = 0.6, γd = 10 dB,
γu = 0 dB. (a) B̄t = 2 log2(1 + (1 + ε)γu). (b) B̄t = 2.

1) By assuming that the feedback channel is error free
and transmitted at the uplink rate (even though this
assumption could be unrealistic in practice), we can
write

B̄t = Bt

N
= 2κ log2 (1 + (1 + ε)γu) . (35)

This approach is introduced in [21] and [25]. (35) is
obtained by assuming that each feedback bit is received
by both base stations in different cells where the path-
gains from a user to its own BS and other BS are
different i.e, 1 and ε respectively. We can think of
the feedback transmission from a user to both BSs as
a Single-Input Multi-Output (SIMO) system. The BSs
linearly combine the feedback signal from the user and
the corresponding maximum SNR is (1+ε)γu (see [43]).
The pre-log factor 2κN for Bt in (35) represents the
channel uses (symbols) required for transmitting the
feedback bits which are the same as those for the analog
feedback. κ follows the discussion in Section II-C. Our
approach is different from the approach in [14] in which
the user k in cell j sends the feedback only to its own
BS j . In that case, (35) becomes B̄t = 2κ log2 (1 + γu).

2) Following [42], the second approach translates the feed-
back bits to symbols based on the modulation scheme
used in the feedback transmission. In the analog feed-
back, the feedback takes 2κN channel uses per user.
Let η be a conversion factor that links the bits and
symbols and it depends on the modulation scheme. As an
example, for the binary phase shift keying (BPSK),
η = 1. Thus, we can write (see also [14])

ηBt = 2κN. (36)

We should note that using this approach, for a fixed κ
there is no link between B̄t and γu as we can see in (35).

Let us assume that κ = 1. Thus, with the first approach,
we have Xt = 2−B̄t = 1

(1+(1+ε)γu)
2 . The comparison of the

limiting SINR based on the analog and quantized feedback
for MCP and CBf can be seen in Figure 10(a). It shows
that the quantized feedback beats the analog feedback in
both MCP and CBf for all values of ε ∈ [0, 2]. For the
MCP scheme, the limiting SINRs obtained from employing
analog and digital feedback schemes are almost identical for
ε in the interval [0.6, 1.6]. For the CBf, the two curves overlap
for ε approximately larger than 1.5. The comparison of the
analog and quantized feedback with the second approach, also
with κ = 1, is illustrated in Figure 10(b). In contrast to
the first approach, one can see that the quantized feedback
outperforms the analog one if ε is below a certain threshold.
Otherwise, the analog feedback gives better performance. Note
that since we use the same κ for both plots, the limiting SINRs
for the analog feedback do not change. However, for a fixed
γu = 0 dB, B̄t in the left plot is larger than that in the right and
thus results in a higher limiting SINR. This explains why the
quantized feedback outperforms the analog one with the first
approach. This also confirms that more feedback resources will
increase the system performance. We conclude this discussion
by verifying that the feedback scheme that provides better
CSIT will, as may be expected, give a better performance. This
is easier to check by looking at the MCP scheme because from
our discussions in Section III and IV, its performance can be
measured by the total CSIT quality, i.e., ωc +ωd in the analog
feedback and (1 + ε)d2 in the digital feedback. Plotting those
over ε, not shown here, will give the same behaviors for the
MCP as we observed in Figure 10.

Figure 11 depicts the limiting SINR of the analog and
quantized feedback for different values of feedback rate. For
the analog feedback, the values of feedback rate/bit is con-
verted by using the previous approaches: κ = B̄t

2 log2(1+(1+ε)γu)

and κ = B̄t/2 respectively. The limiting SINR behaviors in
Figure 11(a) are the same as in Figure 10(a). For both coop-
eration schemes, the quantized feedback gives higher limiting
SINRs. In Figure 11(b), we can also see for both cooperation
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Fig. 11. Comparison of the limiting SINR of the analog and quantized feedback for different cooperation schemes vs. the feedback rates. Parameters:
β = 0.6, ε = 0.6, γd = 10 dB, γu = 0 dB. (a) B̄t = 2κ log2(1 + (1 + ε)γu). (b) B̄t = 2κ .

strategies that the analog feedback performs better for B̄t less
than a certain threshold and the opposite occurs for other
values of B̄t . The explanations for those phenomena follow the
discussions for Figure 10. We should note that in generating
the figures, the values for B̄t are already determined. So,
the limiting SINRs for the digital feedback are the same in
both sub-figures. For the analog feedback, since κ with the
approach (36) is larger (with γu = 0 dB) than that with the
approach (35), then the training period in the former is longer
and will result in a better CSIT. Thus, the limiting SINRs for
the analog feedback in Figure 11(b) are larger compared to
those in 11(a).

VI. CONCLUSION

In this paper, we performed feedback optimization for
the analog and quantized feedback schemes in a symmetric
two-cell network with different levels of cooperation between
base stations. In both cooperation schemes, it was shown
that more resources are allocated to feeding back the inter-
fering channel information as the interfering channel gain
increases. Moreover, if the latter is below a certain threshold,
the conventional network with no cooperation between base
stations (SCP) is preferable. For the MCP scheme under
analog and limited feedbacks, and for a certain condition of
the cross channel gain, our analysis and numerical results
show a peculiar behavior of the limiting SINR as the cross
channel gain increases, initially decreasing then increasing
once a certain threshold is reached. For the CBf scheme under
both considered feedback schemes, our observations suggest
that the limiting SINR goes down as the cross channel gain
gets higher. When comparing the limiting SINR obtained
from analog and quantized feedbacks, we observe that the
latter always outperforms the former when we assume the
feedback bits are transmitted at the uplink rate. By using an
alternative approach, whereby the feedback bits are translated
to symbols based on the modulation scheme used in the

feedback transmissions, the opposite occurs for low feedback
rates (B̄t ) or when cross channel gains are larger than a certain
threshold. We should also note that although our analysis is
performed in the asymptotic regime, our numerical results hint
to their validity in the finite-size system cases. Future work
could consider a more general channel model such as analog
feedback through MAC channels. It may also be interesting
to explore feedback reduction problems in which the users or
groups of users have different path-loss gains.

APPENDIX I
SOME RESULTS IN RANDOM MATRIX THEORY

For clarity in presentation, in this section we list some
results in random matrix theory that have been used to derive
the large system results in this work.

Theorem 8 ( [44, Lemma 1]): Let A be a deterministic
N ×N complex matrix with uniformly bounded spectral radius
for all N. Let q = 1√

N
[q1, q2, . . . , qN ]T where the qi ’s are

i.i.d with zero mean, unit variance and finite eighth moment.
Let r be a similar vector independent of q. Then, we have

qAqH − 1

N
Tr (A)

a.s.−→ 0, and qArH a.s.−→ 0.

In the following corollaries, A is defined as in Theorem 8.
Corollary 3: For the analog feedback, let ĥk, j,i and h̃k, j,i

follow the channel model (5). Then, the following holds:

(i) 1
N ĥk, j,i AĥH

k, j,i − ω j i
N Tr (A)

a.s.−→ 0,

(ii) 1
N ĥk, j,i AĥH

k, j,ī

a.s.−→ 0,

(iii) 1
N h̃k, j,i Ah̃H

k, j,i − δ j i
N Tr (A)

a.s.−→ 0,

(iv) 1
N ĥk, j,i Ah̃H

k, j,i
a.s.−→ 0.

Proof: From (5), we can write ĥk, j,i = √
ω j i gk, j,i and

h̃k, j,i = √
δ j idk, j,i , where gk, j,i and dk, j,i are independent and

distributed according to CN (0, IN ). Hence, ĥk, j,i AĥH
k, j,i =

ω j i ĝk, j,i ÂgH
k, j,i and (i) follows directly from Theorem 8. The

same arguments can be used to show (ii)-(iv).
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1

N
h̃k, j,i Ah̃H

k, j,i = τ 2
k, j,i‖hk, j,i ‖2

N‖vk, j,i�
⊥̂
hk, j,i

‖2

(

vk, j,i − (vk, j,i gH
k, j,i )gk, j,i

‖gk, j,i‖2

)

A

(

vk, j,i − (vk, j,i gH
k, j,i )gk, j,i

‖gk, j,i‖2

)H

= τ 2
k, j,i‖hk, j,i‖2

‖vk, j,i�
⊥̂
hk, j,i

‖2

(
1

N
vk, j,i AvH

k, j,i + | 1
N vk, j,i gH

k, j,i |2 1
N gk, j,i AgH

k, j,i
1

N2 ‖gk, j,i‖4
− 2�

[
( 1

N vk, j,i gH
k, j,i )

∗ 1
N vk, j,i AgH

k, j,i
1
N ‖gk, j,i‖2

])

.

(37)

Corollary 4: For the limited feedback, let ĥk, j,i and h̃k, j,i

follow the channel model (8). Then, the following holds:

(i) 1
N ĥk, j,i AĥH

k, j,i − ε j i
N Tr (A)

a.s.−→ 0,

(ii) 1
N ĥk, j,i AĥH

k, j,ī

a.s.−→ 0,

(iii) 1
N ĥk, j,i Ah̃H

k, j,i
i.p.−→ 0.

(iv) 1
N h̃k, j,i Ah̃H

k, j,i
i.p.−→ ε j i 2

−B̄ j i

N Tr (A),

where B j i = B̄d , ε j i = 1 for j = i and B j i = B̄c, ε j i = ε
otherwise.

Proof: Following (7), we can write ĥk, j,i = √
ε j igk, j,i ,

where gk, j,i ∼ CN (0, IN ). Thus, (i) and (ii) follow immedi-
ately. To show (iii), we can express

1

N
ĥk, j,i Ah̃H

k, j,i

=
1
N τk, j,i

√
ε j i‖hk, j,i‖

‖vk, j,i�
⊥̂
hk, j,i

‖
(

gk, j,i A�⊥̂
hk, j,i

vH
k, j,i

)

= τk, j,i
√
ε j i‖hk, j,i‖

‖vk, j,i�
⊥̂
hk, j,i

‖
(

1

N
gk, j,i AvH

k, j,i

− (
1
N gk, j,i vH

k, j,i )gk, j,i AgH
k, j,i

‖gk, j,i‖2

)

.

Since vk, j,i and gH
k, j,i are independent, we have

1

N
gk, j,i vH

k, j,i
a.s.−→ 0, and

1

N
gk, j,i AvH

k, j,i
a.s.−→ 0.

It is also straightforward to show that

1

N
‖hk, j,i ‖2 a.s.−→ ε j i , and

1

N
‖vk, j,i�

⊥̂
hk, j,i

‖2 a.s.−→ 1.

From Lemma 1, we have that τ 2
k, j,i

L2−→ 2−B̄ j i . Since
convergence in mean square implies convergence in probabil-

ity, τ 2
k, j,i

i.p.−→ 2−B̄ j i . Moreover, since almost sure convergence
also implies convergence in probability and by combining the

results above, we have 1
N ĥk, j,i Ah̃H

k, j,i
i.p.−→ 0.

To show (iv), we can write (37) as shown at the top of
the page. Since vk, j,i and gk, j,i are independent, the second
and third terms in the bracket converge to 0. The first term
converges almost surely to 1

N Tr (A). By using the same
arguments as those in deriving (iii), we have (iv).

Lemma 1: As N → ∞, the following holds

φk, j,i = 1 − τ 2
k, j,i

i.p.−→
{

1 − 2−B̄d j = i

1 − 2−B̄c otherwise.
(38)

Proof: By using the same lines as those in [16] we have
(38) with the convergence in mean square sense. Since it also
implies the convergence in probability, (38) holds.

Theorem 9 ([45]): Let H be a �cN�×�d N� random matrix
whose independent entries [H]i j are zero mean and variance
E
[|[H]i j |2

] = N−1Pi j , such that Pi j are uniformly bounded
from above. For each N, let

vN (x, y) : [0, c] × [0, d] → R

be the variance profile function given by

vN (x, y) = Pi j ,
i

N
≤ x ≤ i + 1

N
,

j

N
≤ y ≤ j + 1

N
.

Suppose that vN (x, y) converges uniformly to a limiting
bounded function v(x, y). Then, for each a, b ∈ [0, c], a < b,
and z ∈ C

+

1

N

�bN�∑

i=�aN�

[(
HHH − zI

)−1
]

ii

i.p.−→
ˆ b

a
u(x, z) dx

where u(x, z) satisfies

u(x, z) = 1

−z + ´ d
0

v(x,y)dy
1+´ c

0 u(w,z)v(w,y)dw

for every x ∈ [0, c]. The solution always exists and is unique
in the class of functions u(x, z) ≥ 0, analytic on z ∈ C

+
and continuous on x ∈ [0, c]. Moreover, almost surely, the
empirical eigenvalue distribution of HHH converges weakly
to a limiting distribution whose Stieltjes transform is given by´ 1

0 u(x, z) dx.
In the theorem above, x-axis and y-axis refer to the rows and
columns of the matrix H, respectively.

Corollary 5: Let

H =
[√

ζdH11
√
ζcH12√

ζcH21
√
ζdH22

]
∈ C

2N×2K

where ζc, ζd are some positive constants and the entries of
Hi j ∈ C

N×K are i.i.d. with zero mean and variance 1
N . Then

1

N

�bN�∑

i=�aN�

[(
HHH + ρI

)−1
]

ii

i.p.−→ (b − a)u◦

where u◦ satisfies

u◦ = 1

ρ + β(ζd+ζc)
1+u◦(ζd+ζc)

. (39)

Proof: The proof follows immediately from Theorem 9.
We replace c and d in Theorem 9 with 2 and 2β, respectively.
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The asymptotic variance profile is given by v(x, y) = ζd for
0 ≤ x < 1, 0 ≤ y < β and 1 ≤ x < 2, β ≤ y < 2β.
Otherwise, it is equal to ζc. Applying Theorem 9, we have

u(x,−ρ) = u1 = 1

ρ + βζd
1+u1ζd+u2ζc

+ βζc
1+u1ζc+u2ζd

for 0 ≤ x < 1, and

u(x,−ρ) = u2 = 1

ρ + βζc
1+u1ζd+u2ζc

+ βζd
1+u1ζc+u2ζd

for 1 ≤ x < 2. It is easy to show that u1 = u2 = u◦ where
u◦ is given by (39).

APPENDIX II
LARGE SYSTEM RESULTS FOR NETWORK MIMO

First, we will expand the SINR expression in (2). Let
�k, j = diag{φk, j,1, φk, j,2}. Based on (1), we can write hk, j =
ĥk, j�

1
2
k, j + h̃k, j . The term

(
ĤHĤ + αI2N

)−1
in (2) can be

written as
(

ĤH
k, j Ĥk, j + ĥH

k, j ĥk, j + αI2N

)−1
and by applying

the matrix inversion lemma (MIL), we obtain
(

ĤHĤ + αI2N

)−1 =
(

ĤH
k, j Ĥk, j + αI2N

)−1

−
(

ĤH
k, j Ĥk, j + αI2N

)−1
ĥH

k, j ĥk, j

(
ĤH

k, j Ĥk, j + αI2N

)−1

1 + ĥk, j

(
ĤH

k, j Ĥk, j + αI2N

)−1
ĥH

k, j

.

(40)

Let ρ = α
N and Ok, j =

(
1
N ĤH

k, j Ĥk, j + ρI2N

)−1
. Then, we

can write (40) as 1
N Zk, j , where

Zk, j = Ok, j −
Ok, j

(
1
N ĥH

k, j ĥk, j

)
Ok, j

1 + 1
N ĥk, j Ok, j ĥH

k, j

.

Thus, (2) can be written as

SINRk, j =
c2

∣
∣
∣
∣
∣

Ăk, j + Fk, j

1 + Ak, j

∣
∣
∣
∣
∣

2

c2
(
Bk, j + 2� [Dk, j

]+ Ek, j
)+ σ 2

d

, (41)

where

Ăk, j = 1

N
ĥk, j�

1
2
k, j Ok, j ĥH

k, j

Ak, j = 1

N
ĥk, j Ok, j ĥH

k, j

Fk, j = 1

N
h̃k, j�

1
2
k, j Ok, j ĥH

k, j

Bk, j = 1

N
ĥk, j�

1
2
k, j Zk, j

(
1

N
ĤH

k, j Ĥk, j

)
Zk, j�

1
2
k, j ĥ

H
k, j

Dk, j = 1

N
ĥk, j�

1
2
k, j Zk, j

(
1

N
ĤH

k, j Ĥk, j

)
Zk, j h̃H

k, j

Ek, j = 1

N
h̃k, j Zk, j

(
1

N
ĤH

k, j Ĥk, j

)
Zk, j h̃H

k, j .

For brevity, let Qk, j = Ok, j
( 1

N ĤH
k Ĥk, j

)
Ok, j . We also use

the following presentation where for a 2N ×2N matrix X, we
can partition the matrix as follows

Xk, j =
[

X11
k, j X12

k, j
X21

k, j X22
k, j

]

,

where Xi j
k, j = [Xk, j ]lm with l = (i − 1)N + 1, (i − 1)N +

2, . . . , (i − 1)N + N and m = ( j − 1)N + 1, ( j − 1)N +
2, . . . , ( j − 1)N + N . In what follows, we write ĥk, j,i =
θ j igk, j,i , where gk, j,i ∼ CN (0, IN ), θ j i = θd for j = i and
θ j i = θc otherwise. In other words, θd and θc represent the
common scaling factors of direct and cross channel estimates,
respectively. Their actual values depend on the feedback
scheme used.

In the following, we will analyze the limiting result for each
term in (41) based on the above presentations. We should note
that when the type of the convergence is not mentioned in the
analysis then it depends on the employed feedback scheme
and will be elaborated in Appendices II-A and II-B.

1) Ăk, j : We can write it as

Ăk, j =
2∑

i=1

φ
1
2
k, j,i

2∑

=1

1

N
ĥk, j,i Oi

k, j ĥ
H
k, j, . (42)

By Lemma 8, 1
N ĥk, j,i Oi ī

k, j ĥ
H
k, j,ī

a.s.−→ 0, i = 1, 2 since ĥk, j,i

and ĥk, j,ī are independent. Furthermore, by the same lemma,
1
N ĥk, j,i Oii

k, j ĥ
H
k, j,i − θ j i

N Tr
(

Oii
k, j

)
a.s.−→ 0.

2) Ak, j : This term is Ăk, j with �k, j = I2N . Thus, we have
φk, j,i = 1,∀i in (42).

3) Fk, j : We expand the term as follows

Fk, j =
2∑

i=1

2∑

=1

1

N
h̃k, j,i Oi

k, j ĥ
H
k, j, .

From Corollaries 3 and 4, Fk, j converges to 0. For the analog
feedback, the convergence is almost sure while for the limited
feedback, it is in probability.

4) Bk, j : It can be rewritten as

Bk, j = 1

N
ĥk, j�

1
2
k, j Qk, j�

1
2
k, j ĥ

H
k, j +

| Ăk, j |2
(

1
N ĥk, j Qk, j ĥH

k, j

)

(1 + Ak, j )2

−
2�

[
Ă∗

k, j

(
1
N ĥk, j�

1
2
k, j Qk, j ĥH

k, j

)]

1 + Ak, j

= B(1)k, j + | Ăk, j |2 B(2)k, j

(1 + Ak, j )2
−

2�
[

Ă∗
k, j B(3)k, j

]

1 + Ak, j
.

Similar to (42), we can express B(1)k, j as follows

B(1)k, j =
2∑

i=1

φk, j,i

2∑

=1

1

N
ĥk, j,i Qi

k, j ĥ
H
k, j, (43)

and for i = 1, 2, we have 1
N ĥk, j,i Qi ī

k, j ĥ
H
k, j,ī

a.s.−→ 0, and
1
N ĥk, j,i Qii

k, j ĥ
H
k, j,i − θ j i

N Tr
(

Qii
k, j

)
a.s.−→ 0. It can be shown
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that Qk, j = Ok, j + ρ ∂
∂ρOk, j . Correspondingly, Tr

(
Qii

k, j

)
=

Tr
(

Oii
k, j

)
+ ρ ∂

∂ρTr
(

Oii
k, j

)
.

The large system analysis for B(2)k, j and B(1)k, j can be done

along the same lines as those for B(1)k, j . For B(2)k, j , we have

�k, j = I2N and therefore φk, j,i = 1,∀i in (43). For B(2)k, j , we

will have φ
1
2
k, j,i instead of φk, j,i in (43).

5) Dk, j : It can be written as

Dk, j = 1

N
ĥk, j�

1
2 Qk, j h̃H

k, j −
Ăk, j

(
1
N ĥk, j Qk, j h̃H

k, j

)

1 + Ak, j

−
F∗

k, j

(
1
N ĥk, j�

1
2 Qk, j ĥH

k, j

)

1 + Ak, j
+ Ăk, j F∗

k, j

( 1
N ĥk, j Qk, j ĥH

k

)

(1 + Ak, j )2

= D(1)
k, j − Ăk, j D(2)

k, j

1 + Ak, j
− F∗

k, j D(3)
k, j

1 + Ak, j
+ Ăk, j F∗

k, j D(4)
k, j

(1 + Ak, j )2
. (44)

For D(1)
k, j , we can write

D(1)
k, j =

2∑

i=1

φ
1
2
k, j,i

2∑

=1

1

N
ĥk, j,i Qi

k, j h̃
H
k, j, . (45)

From Corollaries 3 and 4, 1
N ĥk, j,i Qi

k, j h̃
H
k, j, → 0 where the

convergence is almost sure for the analog feedback and in
probability for the limited feedback. Using the same steps,
we can show D(2)

k, j → 0. The asymptotic results for D(3)
k, j and

D(4)
k, j follow those for B(3)k, j and B(2)k, j , respectively. As shown

previously, Fk, j → 0. Therefore, the third and the last terms
of (44) converge to 0.

6) Ek, j : Expanding this term gives

Ek, j = 1

N
h̃k, j Qk, j h̃H

k, j − 2�
⎡

⎣
Fk, j

(
1
N ĥk, j Qk, j h̃H

k, j

)

1 + Ak, j

⎤

⎦

+
∣
∣Fk, j

∣
∣2 1

N ĥk, j Qk, j ĥH
k, j

(1 + Ak, j )2

= E (1)k, j − 2�
[

Fk, j E (2)k, j

1 + Ak, j

]

+
∣
∣Fk, j

∣
∣2 E (3)k, j

(1 + Ak, j )2
. (46)

The large system limits for E (2)k, j and E (3)k, j follows those for

D(2)
k, j and D(4)

k, j , respectively. Since Fk, j → 0, the last two

terms of (46) converge to 0. For E (1)k, j , we can write it as

E (1)k, j =
2∑

i=1

2∑

=1

1

N
h̃k, j,i Qi

k, j h̃
H
k, j,. (47)

Applying Theorem 8, 1
N h̃k, j,i Qi ī

k, j h̃
H
k, j,ī

a.s.−→ 0 and from

Corollaries 3 and 4, 1
N h̃k, j,i Qii

k, j h̃
H
k, j,i − ψ j i

N Tr
(

Qii
k, j

)
a.s.−→ 0,

where ψ j i = δ j i for the analog feedback and ψ j i = ε j i 2−B̄ j i

for the limited feedback.

7) c2: The denominator of c2 can be written as follows

1

N
Tr

((
1

N
ĤHĤ + ρI2N

)−2 1

N
ĤHĤ

)

= 2
ˆ

λ

(λ+ ρ)2
d F 1

N ĤHĤ(λ)

= 2
ˆ

1

λ+ ρ
+ ρ

∂

∂ρ

1

λ+ ρ
d F 1

N ĤHĤ(λ),

where F 1
N ĤHĤ is the empirical eigenvalue distribution of

1
N ĤHĤ. From Theorem 9, F 1

N ĤHĤ converges almost surely to
a limiting distribution G∗ whose Stieltjes transform m(z) =´∞

0
1
λ−z dG∗(λ) = ´ 1

0 u(x, z) dx . Thus, the above converges

almost surely to m(−ρ) + ρ
∂

∂ρ
m(−ρ) =

ˆ 1

0
u(x,−ρ) +

ρ
∂

∂ρ
u(x,−ρ) dx . Note that u(x,−ρ) = u◦ where u◦ is given

by (39) in Corollary 5. So,

c2 a.s.−→
1
2 Pt

u◦ + ρ ∂
∂ρ u◦ . (48)

Now, we will derive the limiting SINR for the analog and
limited feedback schemes. Note that the limiting results for
each term in the SINR need the following result, which is
based on Corollary 5,

1

N
Tr
(

Oii
k, j

)
= 1

N

�i N�∑

l=�(i−1)N+1�

[
Oii

k, j

]

ll

i.p.−→ u◦. (49)

A. Proof of Theorem 1: Analog Feedback Case

First, let us consider (49). From the channel model for
this scheme (see (5)) and by applying Corollary 5 for 1√

N
Ĥ,

we have ζd = ωd and ζc = ωc. Thus,

u◦ = 1

ρ + β(ωd+ωc)
1+u◦(ωd+ωc)

.

Let g(β, ρ) be the solution of g(β, ρ) =
(
ρ + β

1+g(β,ρ)

)−1
.

Then, we can express u◦ as

u◦ = 1

ωd + ωc
g(β, ρ̄), ρ̄ = ρ

ωd + ωc
.

Also from (5), we have θ j i = ω j i , ψ j i = δ j i and φk, j,i = 1.
So, 1

N ĥk, j,i Oii
k, j ĥ

H
k, j,i

a.s.−→ ω j i u◦ and Ăk, j
a.s.−→ Ă∞, where

Ă∞ = (ω j1 + ω j2)u
◦ = g(β, ρ̄).

In the above we use the fact that ω j1 + ω j2 = ωd + ωc, ∀ j .
Note that the limit for Ăk, j is the same for all users.

As for Ak, j , it has the same asymptotic limit as Ăk, j

because Ak, j = Ăk, j in the current feedback scheme. For
Fk, j , as shown previously, it converges almost surely to 0.

For B(i)k, j , i = 1, 2, 3, since φk, j,i = 1, B(i)k, j = B̄k, j =
1
N ĥk, j Qk, j ĥH

k, j . It converges almost surely to
ω j1
N Tr

(
Q11

k, j

)
+

ω j2
N Tr

(
Q22

k, j

)
. Recall that Tr

(
Qii

k, j

)
= Tr

(
Oii

k, j

)
+

ρ ∂
∂ρTr

(
Oii

k, j

)
and 1

N Tr
(

O(ii)
k, j

)
i.p.−→ u◦. Since the almost
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sure convergence also implies the convergence in probability,
thus,

B̄k, j
i.p.−→ (ωd + ωc)

(
u◦ + ρ

∂u◦

∂ρ

)
.

It is easy to show that (ωd + ωc)ρ
∂u◦
∂ρ = ρ̄ ∂

∂ρ̄ g(β, ρ̄). Hence,

B̄k, j
i.p.−→ g(β, ρ̄)+ ρ̄ ∂

∂ρ̄ g(β, ρ̄) and it follows that

Bk, j
i.p.−→ 1

(1 + g(β, ρ̄))

(
g(β, ρ̄)+ ρ̄

∂

∂ρ̄
g(β, ρ̄)

)
.

For Dk, j , we have D(1)
k, j

a.s.−→ 0. For the second term in the

RHS of (44) , we have D(2)
k, j

a.s.−→ 0. However, Ăk, j and Ak, j

converge in probability to A∞. Therefore, that second term
converges in probability to 0. For the last two terms of (44),
D(3)

k, j and D(4)
k, j have the same limit as B̄k, j and Fk, j

a.s.−→ 0.
Thus, both terms converge to 0 in probability. Combining the

limiting results, we obtain Dk, j
i.p.−→ 0.

For Ek, j , by using the same arguments as those for Dk, j ,
we can show that the last two terms of (46) converge in prob-
ability to 0. By substituting ψ j i with δ j i , it is straightforward
to establish that E (1)k, j converges in probability to

(δd +δc)

(
u◦+ρ ∂

∂ρ
u◦
)

= δd +δc

ωd +ωc

(
g(β, ρ̄)+ρ̄ ∂

∂ρ̄
g(β, ρ̄)

)
.

Since other terms have asymptotic limit equal to 0, the above
is also the asymptotic limit for Ek, j .

For c2, it also straightforward to show

c2 − (ωd + ωc)P

g(β, ρ̄)+ ρ̄ ∂
∂ρ̄ g(β, ρ̄)

a.s.−→ 0.

To simplify the expression for the limiting SINRk, j , we need
the following result (see [41])

g(β, ρ̄)+ ρ̄
∂

∂ρ̄
g(β, ρ̄) = βg(β, ρ̄)

β + ρ̄(1 + g(β, ρ̄))2
.

By combining the large system results and also by denoting
ρM,AF = ρ̄, we can express the limiting SINR as in (12). This
completes the proof.

B. Proof of Theorem 3: Quantized Feedback (via RVQ) Case

For this feedback scheme, from (7) and Corollary 5 applied
to 1√

N
Ĥ we have ζd = 1 and ζc = ε. Hence,

u◦ = 1

ρ + β(1+ε)
1+u◦(1+ε)

.

Recall from Lemma 1 that φk, j,i converges in probability to
1 − 2−B̄d for j = i and to 1 − 2−B̄c otherwise. From (8),
we obtain θ j j = 1 and θ j j̄ = ε.

The steps in obtaining the large system limit for each term
are the same as those for the analog feedback. We will thus
only be summarizing the limiting result of each term.

For Ăk, j , it follows easily that

Ăk, j
i.p.−→

(√
1 − 2−B̄d + ε

√
1 − 2−B̄c

)
u◦

=
√

1 − 2−B̄d + ε
√

1 − 2−B̄c

1 + ε
g(β, ρ̄)

where, as in the analog feedback, we can show that g(β, ρ̄) =
(1 + ε)u◦ and ρ̄ = ρ

1+ε .
For Ak, j , its limiting result follows directly from Ăk, j ’s

because it is Ăk, j with φk, j,i = 1. Thus, Ak, j
i.p.−→ g(β, ρ̄).

For Fk, j , it has been mention previously that Fk, j
i.p.−→ 0.

For B(1)k, j , we have

1

N
Tr
(

Q(ii)
k, j

)
i.p.−→ u◦+ρ ∂

ρ
u◦ = 1

1+ε
(

g(β, ρ̄)+ρ̄ ∂
∂ρ̄

g(β, ρ̄)

)
.

Thus,

B(1)k, j
i.p.−→ 1 − 2−B̄d +ε(1 − 2−B̄c)

1+ε
(

g(β, ρ̄)+ρ̄ ∂
∂ρ̄

g(β, ρ̄)

)
.

Along similar lines, we can show that

B(2)k, j − g(β, ρ̄)+ ρ̄
∂

∂ρ̄
g(β, ρ̄)

i.p.−→ 0,

B(3)k, j −
√

1 − 2−B̄d + ε
√

1 − 2−B̄c

1 + ε

×
[

g(β, ρ̄)+ ρ̄
∂

∂ρ̄
g(β, ρ̄)

]
i.p.−→ 0.

Combining the results together, we obtain

Bk, j −
(

1 − 2−B̄d +ε(1 − 2−B̄c)

1+ε − d2(2+g(β, ρ̄))g(β, ρ̄)

(1+g(β, ρ̄))2

)

×
[

g(β, ρ̄)+ρ̄ ∂
∂ρ̄

g(β, ρ̄)

]
i.p.−→ 0,

where

d =
√

1 − 2−B̄d + ε
√

1 − 2−B̄c

1 + ε
.

For Dk, j , by using the same arguments as those in the

analog feedback, we can show Dk, j
i.p.−→ 0.

For Ek, j , it follows easily that the last two terms of
(46) converge to 0 in probability. From (47), by applying
Corollary 4, we can show

E (1)k, j
i.p.−→ 2−B̄d + ε2−B̄c

1 + ε

(
g(β, ρ̄)+ ρ̄

∂

∂ρ̄
g(β, ρ̄)

)

which is also the asymptotic limit for Ek, j .
For c2, it is easy to show from (48) that

c2 a.s.−→ P(1 + ε)

g(β, ρ̄)+ ρ̄ ∂
∂ρ̄ g(β, ρ̄)

.

Since
a.s.−→ implies

i.p.−→ then c2 also converges in probability
to the same quantity as above.

Combining the results, (23) follows immediately with
ρM,Q = ρ̄.
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APPENDIX III
LARGE SYSTEM RESULTS FOR THE

COORDINATED BEAMFORMING

For brevity in the proofs, we define the following
(see also [17])

A j =
(

ρIN + 1

N

2∑

m=1

K∑

l=1

ĥH
l,m, j ĥl,m, j

)−1

Akj =
⎛

⎝ρIN + 1

N

∑

(l,m) �=(k, j )

ĥH
l,m, j ĥl,m, j

⎞

⎠

−1

Akj,k′ j ′, j =
⎛

⎝ρIN + 1

N

∑

(l,m) �=(k, j ),(k′, j ′)
ĥH

l,m, j ĥl,m, j

⎞

⎠

−1

.

From above, we can write the numerator of the SINRk, j (3)
excluding c2

j , as follows

|hk, j, j wkj |2 =
∣
∣
∣
∣
∣

√
φk, j, j

N
ĥk, j, j Akj ĥH

k, j, j

∣
∣
∣
∣
∣

2

+
∣
∣
∣
∣

1

N
h̃k, j, j Akj ĥH

k, j, j

∣
∣
∣
∣

2

+2�
[

1

N2 (̃hk, j, j Akj ĥH
k, j, j )(̂hk, j, j Akj ĥH

k, j, j )

]

= φk, j, j

∣
∣∣S(1)kj

∣
∣∣
2 + |S(2)kj |2 + S(3)kj .

In the denominator, let us consider the term |hk, j, j ′wk′ j ′ |2
which can be expanded as follows

|hk, j, j ′wk′ j ′ |2 = 1

N2 φk, j, j ′
∣
∣
∣̂hk, j, j ′Ak′ j ′ĥH

k′, j ′, j ′
∣
∣
∣
2

+ 1

N2

∣
∣
∣̃hk, j, j ′Ak′ j ′ ĥH

k′, j ′, j ′
∣
∣
∣
2

−2�
[√

φk, j, j ′

N2 h̃k, j, j ′Ak′ j ′ ĥH
k′, j ′, j ′ ĥk′, j ′, j ′Ak′ j ′ ĥH

k, j, j ′

]

= 1

N
I (1)kj,k′ j ′ + 1

N
I (2)kj,k′ j ′ − 1

N
I (3)kj,k′ j ′ = 1

N
I. (50)

Now, we are going to derive the large system limit for
1
N Tr

(
A j
)

since it will be used frequently in this section.
Let Ĥ j = [̂h1,1, j · · · ĥK ,1, j ĥ1,2, j · · · ĥK ,2, j ]T and ĥk,i, j ∼
CN (0, ωi j I). Then, A j =

(
ρIN + 1

N ĤH
j Ĥ j

)−1
and

1

N
Tr
(
A j
) =
ˆ

1

λ+ ρ
d FĤH

j Ĥ j

where FĤH
j Ĥ j

is the empirical eigenvalue distribution of ĤH
j Ĥ j .

From Theorem 9, this distribution converges almost surely to
a limiting distribution F with Stieltjes transform mF(z). Thus,

1

N
Tr
(
A j
) a.s.−→ mF(−ρ) =

ˆ 1

0
u(x,−ρ) dx

where

u(x,−ρ) = u(−ρ) = 1

ρ + βω1 j
1+ω1 j u(−ρ) + βω2 j

1+ω2 j u(−ρ)

= 1

ρ + βωd
1+ωd u(−ρ) + βωc

1+ωcu(−ρ)
(51)

for 0 ≤ x ≤ 1. Based on Theorem 9, the solution
for (51), denoted by �, always exists and is unique. Thus,
1
N Tr

(
A j
) a.s.−→ �.

A. Analog Feedback

Based on the channel model (1), we have φk, j, j =φk, j, j ′ =1.
The definitions for other terms such as ω• and δ• can be seen
in Section II-C. Now, let us first derive the large system limit
for the numerator of the SINRkj . We start with the term S(1)kj .
From Lemma 8, we can show that

S(1)kj − ωd

N
Tr
(
Akj

) a.s.−→ 0.

By applying the rank-1 perturbation lemma (see e.g.,
[17, Lemma 3], [46, Lemma 14.3]), we have

S(1)kj − ωd

N
Tr
(
A j
) a.s.−→ 0 (52)

where 1
N Tr

(
A j
) a.s.−→ �.

Since ĥk, j, j , Akj and h̃k, j, j are independent then it follows
that

h̃k, j, j Akj ĥH
k, j, j

a.s.−→ 0.

Consequently, S(2)kj
a.s.−→ 0 and S(3)kj

a.s.−→ 0. In summary,

|hk, j, j wkj |2 − ω2
d�

2 a.s.−→ 0.

Now, let us move to analyzing the interference term.
By using the MIL, we can rewrite I (1)kj,k′ j ′ as

I (1)kj,k′ j ′ =
1
N φk, j, j ′

∣
∣∣̂hk, j, j ′Ak′ j ′,kj, j ′ ĥH

k′, j ′, j ′
∣
∣∣
2

(
1 + 1

N ĥk, j, j ′Ak′ j ′,kj, j ′ ĥH
k, j, j ′

)2 .

By applying Lemma 8, [47, Lemma 5.1] and the rank-1
perturbation lemma twice, we can show that

max
j, j ′=1,2,k,k′≤K ,(k, j ) �=(k′, j ′)

∣∣
∣
∣

1

N
ĥk, j, j ′Ak′ j ′,kj, j ′ ĥH

k, j, j ′

−ω j j ′

N
Tr
(
A j ′

)∣∣
∣

a.s.−→ 0.

Similarly,

max
j, j ′=1,2,k,k′≤K ,(k, j ) �=(k′, j ′)

∣
∣∣
∣

1

N

∣∣
∣̂hk, j, j ′Ak′ j ′,kj, j ′ ĥH

k′, j ′, j ′
∣∣
∣
2

−ω j j ′ωd

N
Tr
(

A2
j ′
)∣∣
∣

a.s.−→ 0.

Since 1
N Tr

(
A j ′
) → � and 1

N Tr
(

A2
j ′
)

→ − ∂�
∂ρ , we have

max
j, j ′=1,2,k,k′≤K ,(k, j ) �=(k′, j ′)

∣
∣
∣I (1)kj,k′ j ′

−ωd

(
− ω j j ′

(1 + ω j j ′�)2
∂�

∂ρ

)∣∣
∣
∣

a.s.−→ 0.

By using the same steps as above, we obtain

max
j, j ′=1,2,k,k′≤K ,(k, j ) �=(k′, j ′)

∣
∣
∣
∣I
(2)
kj,k′ j ′ −

(
−δ j j ′ωd

∂�

∂ρ

)∣∣
∣
∣

a.s.−→ 0.

and
max

j, j ′=1,2,k,k′≤K ,(k, j ) �=(k′, j ′)

∣∣
∣I (3)kj,k′ j ′

∣∣
∣

a.s.−→ 0.
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Combining the results, we have the large system limit for I
in (50)

max
j, j ′=1,2,k,k′≤K ,(k, j ) �=(k′, j ′)

∣
∣
∣I

−ωd

(
− ω j j ′

(1 + ω j j ′�)2
− δ j j ′

)
∂�

∂ρ

∣
∣
∣
∣

a.s.−→ 0. (53)

Using (53), the large system result for the interference term
can be written as follows

∑

(k′, j ′) �=(k, j )

|hk, j, j ′wk′ j ′ |2

=
K∑

l=1,l �=k

|hk, j, j wl j |2 +
K∑

l=1

|hk, j, j̄ wl j̄ |2

a.s.−→ −βωd

(
ωd

(1 + ωd�)2
+ ωc

(1 + ωc�)2
+ δd + δc

)
∂�

∂ρ
.

Now, we just need to derive the large system limit for

c2
j = P

(∑K
k=1 ‖wkj ‖2

)−1
, where we can express ‖wkj ‖2 =

1
N2 ĥk, j, j A2

kj ĥH
k, j, j . We can show that

max
j=1,2,k≤K

∣
∣∣
∣

1

N2 ĥk, j, j A2
kj ĥH

k, j, j − ωd

N
Tr
(

A2
j

)∣∣∣
∣

a.s.−→ 0.

Thus,

c2
j

a.s.−→ P

−βωd
∂�
∂ρ

,

where

−∂�
∂ρ

= −�′ = �

ρ + βωc
(1+ωc�)2

+ βωd
(1+ωd�)2

. (54)

To sum up, from the analysis above, we can express the
limiting signal energy as

1

β
Pωd�

(
ρ + βωc

(1 + ωc�)2
+ βωd

(1 + ωd�)2

)

and the limiting interference energy as

P

(
ωd

(1 + ωd�)2
+ ωc

(1 + ωc�)2
+ δd + δc

)

Finally, the limiting SINR can be expressed as (18), with
�A = � and ρC,AF = ρ.

B. Proof of Theorem 6: Quantized Feedback via RVQ

In the derivation of the limiting SINR in this section, we use
some of the results presented in the previous section. Here,
we have ω j j = ωd = 1 and ω j j̄ = ωc = ε. From (1), we have
φk, j,i = 1 − τ 2

k, j,i .
First, let us consider the numerator of the SINR. By using

the same steps as in obtaining (52), we have

S(1)kj − 1

N
Tr
(
A j
) a.s.−→ 0

where 1
N Tr

(
A j
) a.s.−→ � and � satisfies

� = 1

ρ + β
1+� + βε

1+ε�
.

As stated in [16], we have,

φk, j, j
L2−→ 1 − 2−B̄d .

Since almost sure convergence and convergence in mean
square imply convergence in probability, it follows that

φk, j, j |S(1)kj |2 i.p.−→ (1 − 2−B̄d )�2.

From Corollary 4, we have

S(2)kj
i.p.−→ 0, and S(3)kj

i.p.−→ 0.

Thus, for the numerator, we obtain

|hk, j, j wkj |2 i.p.−→ (1 − 2−B̄d )�2.

Now, let us consider the interference terms. Following a
similar approach to that used in the analog feedback case,
we can show

max
j, j ′=1,2,k,k′≤K ,(k, j ) �=(k′, j ′)

∣
∣
∣I (1)kj,k′ j ′

−
(

− (1 − 2−B̄ j j ′ )ω j j ′

(1 + ω j j ′�)2
∂�

∂ρ

)∣∣
∣
∣
∣

i.p.−→ 0,

max
j, j ′=1,2,k,k′≤K ,(k, j ) �=(k′, j ′)

∣
∣
∣
∣I
(2)
kj,k′ j ′ − ε j j ′2−B̄ j j ′ ∂�

∂ρ

∣
∣
∣
∣

i.p.−→ 0,

and
max

j, j ′=1,2,k,k′≤K ,(k, j ) �=(k′, j ′)
|I (3)kj,k′ j ′ | i.p.−→ 0,

where B̄ j j ′ = B̄d when j = j ′ and otherwise B̄ j j ′ = B̄c.
Combining the results, we have

max
j, j ′=1,2,k,k′≤K ,(k, j ) �=(k′, j ′)

∣
∣∣
∣
∣
I −

(

− (1 − 2−B̄ j j ′ )ω j j ′

(1 + ω j j ′�)2

−ε j j ′2−B̄ j j ′
) ∂�
∂ρ

∣
∣∣
∣

i.p.−→ 0. (55)

Using (55), the large system result for the interference term
can be written as follows

∑

(k′, j ′) �=(k, j )

|hk, j, j ′wk′ j ′ |2

=
K∑

l=1,l �=k

|hk, j, j wl j |2 +
K∑

l=1

|hk, j, j̄ wl j̄ |2

i.p.−→ −β
(

1 − 2−B̄d

(1 + �)2
+ ε(1 − 2−B̄c)

(1 + ε�)2
+ 2−B̄d + ε2−B̄c

)
∂�

∂ρ
.

We can also show that c2
j

a.s.−→ P
−β ∂�∂ρ

. Putting all the large

system results for each term together, we can show that the
limiting signal strength is

1

β
Pφd�

(
ρ + βε

(1 + ε�)2
+ β

(1 + �)2

)
(56)

and the limiting interference energy becomes

P

(
φd

(1 + �)2
+ εφc

(1 + ε�)2
+ δd + δc

)
. (57)

Let ρC,Q = ρ and �Q = �. Then, we can obtain the limiting
SINR from (56) and (57).
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