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which, using the triangle inequality, is bounded by

L = j

N

i=1

Lij �

N

i=1

jLij (11)

L �
1

K

N

i=1

jwij: (12)
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On Kalman Smoothing With Random Packet Loss

Alex S. Leong, Subhrakanti Dey, and Jamie S. Evans

Abstract—This correspondence studies the performance of Kalman
fixed lag smoothers with random packet losses and its comparison with
the Kalman filter with packet loss. In terms of estimator stability via
boundedness of the expectation of the error covariance, we show that
smoothing does not provide any benefit over filtering. On the other hand,
it is demonstrated that using a probabilistic notion of performance,
smoothing can provide significant gains when compared to Kalman
filtering. An analysis of Kalman filtering using two simple retransmission
schemes and its comparison with Kalman smoothing is also made.

Index Terms—Kalman filtering, Kalman smoothing, missing observa-
tions, retransmissions, stability.

I. INTRODUCTION

Problems involving estimation over lossy communication networks
have received considerable attention in recent years, due to their
relevance in areas such as wireless sensor networks and networked
control systems. When measurements from sensors are located at
separate locations and have to be transmitted for processing through
unreliable (e.g., wireless) channels, losses can occur, and how these
packet losses affect the performance of the estimator is of significant
interest.

Early work on state estimation with measurements losses include [1],
where the optimal linear estimator for linear systems with independent
identically distributed (i.i.d.) Bernoulli losses was derived, where the
parameters of the loss process is known, but which of the individual
measurements are lost/received is not explicitly known. This was later
extended to the optimal linear smoother in [2]. More recently, in the
case where we know which measurements are lost/received, it was
shown in [3] that for an unstable system with i.i.d. Bernoulli losses
there exists a critical threshold such that the expected value of the error
covariance (which is randomly time varying due to the random losses)
will be bounded if the packet arrival rate exceeds this threshold, but will
diverge otherwise. Further avenues of research suggested in [3] include
studying multiple sensors [4], correlated loss processes such as Markov
[5], consideration of delays [6], and smoothing, which is the subject of
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this correspondence. A different notion of estimator performance using
probabilistic constraints was considered in [7]. A survey of these and
other related results can be found in [8].

If the sensor has local computation ability, which is sometimes re-
ferred to as a “smart sensor,” then an alternative scheme is to transmit
the state estimate instead of the raw measurements [9], which allows
estimator stability to be achieved with lower packet arrival rates. With
computation available at the sensors, distributed Kalman filtering with
quantized measurements [10] has also been considered. Other related
work include state estimation with random measurement losses for
jump linear systems [11], hidden Markov models [12], robust filtering
[13], and the problem of control over packet dropping links; see [8],
[14], and the references therein.

This correspondence considers the situation where we allow for
some additional delay and computational complexity so that Kalman
smoothing can be done on the measurements, and whether this provides
any advantages over filtering. We assume that the sensors transmit the
raw measurements directly as they do not have enough computation
ability to be a smart sensor. We first derive in Section II the equations
for the Kalman fixed lag smoother with random packet loss and use
these equations to analyze its performance. While intuitively we
might expect smoothing to perform better than filtering, in Section III,
we show that with the stability notion via expected error covariance
in [3], the use of Kalman smoothing does not actually provide any
improvement over the Kalman filter. However, using instead the
probabilistic notion of performance in [7], we will see in Section IV
that the Kalman smoother can provide significant performance gains
over the Kalman filter. In Section V, we analyze Kalman filtering
using two simple retransmission strategies, which we find provides
the same performance as a Kalman filter without retransmission, and
hence Kalman smoothing outperforms these retransmission strategies
with the probabilistic performance measure of [7].

II. DERIVATION OF KALMAN FIXED LAG SMOOTHER

WITH RANDOM PACKET LOSS

Let the discrete time linear system be

xk+1 = Axk + wk

yk = Cxk + vk (1)

with wk and vk being Gaussian with zero mean and covariance ma-
trices Q � 0 and R > 0, respectively. We will assume that the
system is detectable and stabilizable. Let fkg be the random packet
loss process that is equal to 1 if the measurement yk is received at time
k, and 0 otherwise. Define the state estimates and corresponding error
covariances as

x̂k jm = [xk j fY0; . . . ; Ym; 0; . . . ; mg]

Pkjm = (xk � x̂kjm)(xk � x̂k jm)T j

fY0; . . . ; Ym; 0; . . . ; mg] :

In [3], it is shown that the Kalman filter equations for the system (1)
when there is packet loss can be written as

x̂k+1 j k = Ax̂k j k�1 + kKk(yk � Cx̂k j k�1)

Pk+1 j k = APk j k�1A
T � kKkCPk j k�1A

T +Q (2)

where the Kalman gain Kk = APk j k�1C
T (CPk j k�1C

T + R)�1

(note that Kk here is defined slightly differently from [3]).

Now from [15, pp. 176–179], it is known that one way to derive a
fixed lag Kalman smoother for the system (1), with smoothing lag N ,
is to consider the “augmented” model
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where we make the identifications

P
(0;0)
k+1 j k = Pk+1 j k

P
(0;i)
k+1 j k = P

(i)
k+1 j k

P
(i;i)
k+1 j k = Pk�(i�1) j k:

Then, applying the result of [3] [(2) in this correspondence] to
the augmented model with x̂k+1 j k;Pk+1 j k;Kk in place of
x̂k+1 j k; Pk+1 j k;Kk , the Kalman smoother equations with packet
loss can be extracted after some computation as follows:

x̂k+1 j k = Ax̂k j k�1 + kKk(yk � Cx̂k j k�1)

x̂kjk = x̂k j k�1 + kK
(1)
k (yk � Cx̂k j k�1)

x̂k�ijk = x̂k�ijk�1 + kK
(i+1)
k (yk � Cx̂k j k�1);

i = 1; . . . ; N

Kk+1 = APk+1 j kC
T (CPk+1 j kC

T +R)�1

K
(i)
k+1 = P

(i�1)
k+1 j kC

T (CPk+1 j kC
T +R)�1

;

i = 1; . . . ; N + 1

Pk+1 j k = APk j k�1A
T � kKkCPk j k�1A

T +Q

P
(i)
k+1 j k = AP

(i�1)
k j k�1 � kKkCP

(i�1)
k j k�1;

i = 1; . . . ; N + 1 (3)
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with the error covariances of the filtered and smoothed estimates given
by

Pk j k = Pk j k�1 � kK
(1)
k
CPk j k�1

Pk�i j k = Pk�i j k�1�kK
(i+1)
k

CP
(i)
k j k�1; i=1; . . . ; N (4)

and with initial conditions as stated in [15].
When there are no packet losses at time k, we have k = 1 and

we see that the equations reduce to the standard fixed lag smoother
equations. However, when a measurement at time k is lost, i.e., k =
0, we have x̂k�i j k = x̂k�i j k�1 and Pk�i j k = Pk�i j k�1 and the
previous estimates and covariance matrices will get propagated.

III. STABILITY OF KALMAN SMOOTHING

In [3], the authors showed that for an unstable system (i.e., the matrix
A has an eigenvalue with magnitude � 1) with i.i.d. Bernoulli packet
losses, there exists a critical threshold such that the expected value of
the error covariance Pk j k�1 will be bounded if the packet arrival rate
exceeds this threshold, but becomes unbounded otherwise. In this sec-
tion, we will show the somewhat surprising result that for an unstable
system with Bernoulli packet losses, smoothing does not improve the
stability of the estimator, in the sense that the critical threshold for
keeping the expected error covariances bounded in the smoothing case
is the same as in the filtering case.

We first introduce some definitions. For fkg Bernoulli, let � =
(k = 1), then � will also be the arrival rate of the measurements.

For matrices P and Q; P � Q will mean that Q � P is positive
semidefinite. MatricesPk are said to be bounded if there exists a matrix
M < 1 such that Pk � M; 8k, and unbounded if such an M does
not exist. Then, we have the following.

Lemma 1: For unstable systems, as k ! 1; [Pk j k+N ] is un-
bounded if and only if [Pk j k�1] is unbounded.

Proof: First, from the smoother equations (4) and the definitions
of K(i)

k
in (3), it is not hard to see that Pk j k+N � Pk j k�1;8k, so

the implication that [Pk j k�1] bounded ) [Pk j k+N ] bounded, or
the equivalent statement [Pk j k+N ] unbounded ) [Pk j k�1] un-
bounded, immediately follows.

We now show that [Pk j k�1] unbounded ) [Pk j k+N ] un-
bounded. Let � < �c, where �c is the critical arrival rate such that
[Pk j k�1] will be unbounded as k ! 1 if and only if � < �c,

whose existence for unstable systems is shown in [3].1 Let A be the
event that measurements at time k; k + 1; . . . ; k + N are lost. Using
some elementary properties of positive–semidefinite matrices and the
smoother (4), we have

[Pk j k+N ] = [Pk j k+N jA] (A) + [Pk j k+N jA
c] (Ac)

� [Pk j k+N jA] (A)

= [Pk j k�1] (A)

= [Pk j k�1](1� �)N+1

and [Pk j k�1] by hypothesis is unbounded as k ! 1 for � < �c.
Hence, [Pk j k+N ] is also unbounded as k !1.

Since [Pk j k+N ] is unbounded if and only if [Pk j k�1] is un-
bounded, the critical threshold on the arrival rate of packets for the
Kalman smoother must, therefore, be the same as the critical threshold
�c for the Kalman filter derived in [3]. Thus, from the stability point
of view of keeping the expected error covariances bounded, there is
no advantage to be gained in smoothing. One can compare this result

1In the general vector case,� cannot be determined even numerically, though
upper and lower bounds can be derived [3], however exact knowledge of the
critical rate will not be required in the proof.

with the work in [6] where packets can be both lost or delayed, which
showed that stability of the Kalman filter (using constant gains) does
not depend on packet delay but only on the probability that the packet
eventually arrives.

IV. KALMAN SMOOTHING WITH PROBABILISTIC CONSTRAINTS

Rather than studying the expected error covariance, an alternative
notion of performance for Kalman filtering that has been considered is
putting probabilistic constraints on the error covariance [7], [16]. The
motivation for this is that low-probability events, such as a long se-
quence of measurement losses, can cause the expected error covariance
to become unbounded, even when the “typical” behavior is such that
the error covariance will lie below a certain value with high probability.

Given an upper bound M and an � 2 (0; 1), one can ask the ques-
tion as to what packet arrival rate � is required in order to satisfy the
constraint

(Pk j k�1 �M) > 1� � (5)

where � is usually chosen to be small so that the error covariance satis-
fies Pk j k�1 �M with probability close to one. This can be extended
naturally to Kalman smoothing as the constraint

(Pk j k+N �M) > 1� �: (6)

While we showed in Section III that estimator stability in the sense
of keeping expected error covariance bounded cannot be improved by
smoothing, the situation is different when we consider probabilistic
constraints. For instance, we will see that givenM and � the arrival rate
which is sufficient to satisfy (6) will be smaller than what is required
to satisfy (5).

Define

k1 � minfk 2 Z+ : hk( �M) 6�Mg

where hk(X) means that the operator h(X) � AXAT +Q is applied
k times to X . For C invertible (e.g., a scalar system), �M is defined as
�M � AC�1R(CT )�1AT +Q. When C is not invertible, the expres-

sion for �M is more complicated and may be found in [17], though the
arguments below will still hold.

It is shown in [7, Corollary 4] that if the losses are Bernoulli and the
packet arrival rate � satisfies the condition

� � 1� � (7)

then (5) will also be satisfied. The quantity k1 specifies the number
of successive packet losses that can be tolerated before the error co-
variance updates for Pk j k�1 applied to the matrix �M can no longer be
bounded by the thresholdM , which is then used to derive the condition
(7). Using the property of the smoother equations (4) that previous es-
timates will get propagated when no measurements are received, it can
be seen that an extraN+1 losses can be tolerated before the smoothing
error covariances (with lagN ) will exceed the thresholdM . Hence, re-
placing k1 with k1 +N + 1 allows us to translate the results of [7] to
the smoothing case, so that if

� � 1� � (8)

then the condition (6) will be satisfied. From the condition (8), it may
be seen that as the smoothing lag N increases, the packet arrival rate
� that is sufficient to guarantee (6) will be smaller, at the expense of
additional delay and computational complexity.
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TABLE I
ARRIVAL RATES � SUFFICIENT TO SATISFY PROBABILISTIC CONSTRAINTS (5)–(6) AND SIMULATED PROBABILITIES,

WITH A = 1:3; C = 1;Q = 0:5; R = 1;M = 6:25; � = 0:05

As an illustration, consider the scalar system A = 1:3; C = 1; Q =
0:5; R = 1, where it can be determined that k1 = 2. ChooseM = 6:25
and � = 0:05, so that we want the error covariances to lie below 6.25
for at least 95% of the time. The second row of Table I shows the ar-
rival rates required for several different smoothing lags N obtained
using the condition (8). The third row contains simulated probabilities
(Pk j k+N � M) using the corresponding � values, where we simu-

late the system over 100 000 time steps. We can see that in each case
we have (Pk j k+N � M) > 0:95.

V. KALMAN FILTERING WITH RETRANSMISSIONS

In this section, we analyze the performance of Kalman filtering using
some simple retransmission strategies. The packet losses will again be
assumed to be Bernoulli with packet arrival rate �.

A. Deterministic Retransmission Strategy

Consider the following retransmission strategy. If a measurement is
lost at time k, ask for retransmission of this measurement up toN times
(if the packet is still not received), while the measurements at times k+
1; k+2; . . . are discarded when retransmission is occurring. Note that
with this scheme only one packet is transmitted at any time instance and
there is no queueing of packets, other than the single packet waiting to
be transmitted. Assume that the probability of receiving a retransmitted
packet is still �. We are interested in the Kalman filtering performance
(which could be delayed by up to N ) of this retransmission scheme.

Recall the sequence fkg of 0’s and 1’s that specifies which mea-
surements are lost and received. With retransmission we will look at
the sequences of 0’s and 1’s together with whether the retransmitted
packets are successful. To introduce notation, such a sequence forN =
2 might look like

1 6 0601 6 0 600 1 1 6 01 1 � � � (9)

where “6 0601” represents that the retransmission is successful on the
second attempt, “ 6 0 600” that both retransmissions are not successful,
“ 6 01” that the retransmission succeeded on the first attempt, and “ ”
that the measurement is not sent (so will be assumed to be 0), so that
(9) is equivalent to the sequence 110000011101. . .. It is clear that the
number of 0’s and 1’s in both sequences are the same, hence the prob-
abilities of each occurring will be the same. The key idea in analyzing
the performance of this scheme is the following.

Lemma 2: Ignoring the first entry,2 there is a bijection between
sequences fkg that can be obtained without retransmission and se-
quences that can be obtained with retransmission. Moreover, they have
the same probabilities of occurring.

Proof: First, for any valid sequence of retransmissions, we will
clearly obtain a corresponding fkg that has the same probability of
occurring.

2The reason we ignore the first entry is that cases like 01 . . . cannot be ob-
tained using the retransmission strategy considered here since the second mea-
surement will always be discarded when we ask for retransmission of the first
measurement.

Now given a sequence fkg, the following procedure will allow us
to obtain a retransmission sequence that will match up with fkg.

If fkg starts off with 0, go to step 1), otherwise go to step 2).
Step 1) Let m count the number of 0’s before the first 1.

• If m = 1, then the first entry for the retransmission
sequence is 1. Go to step 2).

• If 2 � m � N , the sequence starts with 0, followed by
retransmissions with success at the (m � 1)th retrans-
mission. Go to step 2).

• If m > N , write this as m = a(N + 1)+ b, with a and
b being nonnegative integers and b < N + 1.
— If b = 0, the sequence consists of 0’s with all retrans-

missions failing repeated a times. Go to step 2).
— If b = 1, the sequence consists of a 1, followed by 0’s

with all retransmissions failing repeated a times. Go
to step 2).

— Else the sequence is 0 followed by retransmissions
with success at the (b�1)th retransmission, followed
by 0’s with all retransmissions failing repeated a

times. Go to step 2).
Step 2) Let n count the number of 0’s between two successive 1’s.

• If n = 0, the next entry in the retransmission sequence
is 1. Return to step 2).

• If 0 < n � N , the next entries are a 0, followed by
retransmissions with success at the nth retransmission.
Return to step 2).

• If n > N , write this as n = c(N + 1)+ d, with c and d
being nonnegative integers and d < N + 1.
— If d = 0, the next entries are a 1, followed by 0’s with

all retransmissions failing repeated c times. Return to
step 2).

— Else the next entries are a 0 followed by retransmis-
sions with success at the dth retransmission, followed
by 0’s with all retransmissions failing repeated c

times. Return to step 2).
Following this procedure, we can find a retransmission sequence that

will match up with any givenfkg, and the probabilities of obtaining
both sequences are the same. Uniqueness comes from the fact that lost
measurements are always retransmitted in this scheme.

Step 1) in the proof of Lemma 2 takes care of the situation where
there is a possible mismatch in the first entry due to fkg starting
off with a 0. Step 2) of the proof is then repeatedly applied, and here
we can always find a matching set of retransmissions. Table II shows
some simple examples of fkg and the corresponding retransmission
sequences, withN = 3. The first three columns involve applications of
step 1), and we see that the only possible mismatch in the sequences in
the first and third columns is in the first entry. The last three columns
will involve step 2), and we can see that the sequences in the fourth
and sixth column are matched up. As an example of the procedure in
full, consider fkg = 0000000100001000001, and we want to find a
retransmission sequence equivalent to this, using N = 3. Then, in step
1), m = 7 = 1 � 4 + 3, so a = 1 and b = 3. The first time we run
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TABLE II
SOME SIMPLE f g AND RETRANSMISSION SEQUENCES, WITH N = 3

step 2), we have n = 4 = 1� 4 + 0, so c = 1 and d = 0. The second
time we run step 2), we have n = 5 = 1� 4+ 1, so c = 1 and d = 1.
Following the procedure, the retransmission sequence is constructed as

6 0601 6 0 60600 1 6 0 60600 6 01

6 060600 1

which agrees with the original fkg apart from the first entry.
Thus, apart from a possible mismatch in the first entry, we know

that there is always a sequence of retransmissions that will reproduce
the same behavior as a sequence fkg for the Kalman filter without
retransmission, with the same probability of occurring, so asymptot-
ically, the probability distributions when doing Kalman filtering with
retransmissions will be the same as that for Kalman filtering with no
retransmissions. Hence, stability properties are the same as that of [3],
i.e., the critical thresholds �c do not change. The probabilistic behavior
will also be the same as for Kalman filtering with no retransmissions so
the bounds in [7] will still apply. Therefore, this retransmission scheme
provides no advantages over filtering using both of the performance
measures considered in this correspondence, while at the same time
possibly introducing a delay up to N . This agrees somewhat with the
intuition that using new measurements for estimation is better than re-
transmitting old measurements, though here we actually showed that
their distributions are essentially the same. Consequently, comparing
smoothing with retransmissions, we find that Kalman smoothing will
outperform this retransmission strategy using the probabilistic notion
of performance as discussed in Section IV. We remark that this retrans-
mission scheme and Lemma 2 can also be applied to other estimators
such as the hidden Markov model filter [12], so long as the measure-
ment losses are restricted to be an i.i.d. Bernoulli process.

B. Random Retransmission Strategy

An extension of the deterministic retransmission strategy is for
retransmission requests to be random. Here, if a packet is not received,
then with probability p it asks for a retransmission independently up
to a maximum of N times (if retransmissions were unsuccessful),
otherwise it will wait for the next measurement. It turns out that
the distribution is again asymptotically the same as that for Kalman
filtering without retransmissions, hence the same conclusions on its
performance and comparison with Kalman smoothing applies.

To analyze this scheme, let us look at the case of a 1 followed by n

successive 0’s. Consider, for instance, n = 3 (i.e., the sequence 1000)
and N = 2. In contrast to the deterministic strategy, there are now
seven possible ways in which we can obtain this via retransmissions:
1 0� 0� 0�; 1 0� 6 00 ; 1 6 00 0�; 1 6 0 600 ; 6 01 0� 0�;
6 01 6 00 ; 6 0 601 0�, where the “�” here indicates that we did
not ask for a retransmission. The corresponding probabilities of these

events (here, we are ignoring the �(1 � �)3 term which results from
receiving a 1 and three 0’s) are (1 � p)3; (1 � p)p(1 � p); p(1 �
p)2; p2; p(1� p)2; p2(1� p); p2(1� p). However, one can check that
the sum of these probabilities is equal to one, so that considering all
these events as a whole gives a correspondence to the original sequence
1000, similar to Lemma 2. If we can show that this is true in general,
then by independence and similar arguments as in the proof of Lemma
2 the probability distributions for this scheme will asymptotically be
the same as for Kalman filtering without retransmissions.

To do this, we first look at the block of 0’s by themselves. Let f(n)
be the sum of the probabilities of the different ways in which we can
get n successive 0’s. Then, f(0) = 1; f(�1) = f(�2) = � � � = 0
and the following recursion holds:

f(n) = (1� p)f(n� 1) + p(1� p)f(n� 2)

+ p
2(1� p)f(n� 3) + � � �

+ p
N�1(1� p)f(n�N) + p

N
f(n�N � 1): (10)

This is because the term (1� p)f(n� 1) comes from not asking for a
retransmission after the first 0, the term p(1� p)f(n� 2) comes from
asking for retransmission once unsuccessfully, and then deciding not
to ask again, and so on with the last term pNf(n� (N + 1)) the case
where we asked for N retransmissions but all were unsuccessful.

Returning to the case of a 1 followed by n successive 0’s, let g(n)
be the sum of the probabilities of the different ways in which we can
do this. Then, g(n) satisfies the relation

g(n) = f(n)+pf(n�1)+p
2
f(n�2)+ � � �+p

N
f(n�N): (11)

The term f(n) represents the situation where we successfully received
the first measurement, and the other terms represent cases where there
is retransmission of the first measurement until a success, similar to
how (10) is derived. Substituting (10) into (11), we find that

g(n) = f(n� 1) + pf(n� 2) + p
2
f(n� 3) + � � �

+ p
N
f(n�N � 1):

Comparing this with (11), we see that g(n)must be constant, and hence
g(n) = � � � = f(0) = 1.

VI. CONCLUSION

In this correspondence, we have derived the Kalman smoother in the
presence of random packet losses, and compared it against the Kalman
filter with packet losses as well as a simple retransmission scheme. We
found that the Kalman smoother provided gains over the Kalman filter
in the probabilistic sense of [7], but not in terms of the stability notion of
[3]. We also found that the simple retransmission schemes considered
here will statistically perform in the same way as the Kalman filter
without retransmission, while also introducing additional delay. Future
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work will involve analysis of retransmission strategies where more than
one packet can be sent at a time.
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Modified Pisarenko Harmonic Decomposition for
Single-Tone Frequency Estimation

Kenneth Wing Kin Lui and Hing Cheung So

Abstract—In this correspondence, based on an alternative derivation of
the Pisarenko harmonic decomposition (PHD) method, a new asymptoti-
cally unbiased estimator for the frequency of a single real tone in white noise
is devised with the use of novel sample covariance expressions. Further-
more, extension to sample covariances with higher lags for performance en-
hancement is investigated while a simple and effective scheme is suggested
to resolve the corresponding frequency ambiguity problem. The variance
of the modified Pisarenko’s method is also derived, which is then utilized
to find the best estimate among all admissible solutions from various sets of
sample covariances. Computer simulations are included to corroborate the
theoretical development and to demonstrate that the proposed approach
outperforms several existing low-complexity frequency estimators in terms
of nearly uniform performance and estimation accuracy.

Index Terms—Frequency estimation, Pisarenko’s method, sample
covariance, single real sinusoid.

I. INTRODUCTION

Frequency estimation of sinusoidal signals in noise is a frequently
addressed problem in the signal processing literature [1]–[5] because
of its wide applicability in control theory, digital communications,
biomedical engineering, instrumentation and measurement, and so on.
In this work, we address the fundamental problem of single sinusoidal
frequency estimation, and its discrete-time signal model is

x(n) = s(n) + q(n); n = 1; 2; . . .N (1)

where
s(n) = � cos(!n+ �): (2)

The �, ! 2 (0; �), and � 2 [0; 2�) are unknown but deterministic
constants that represent the tone amplitude, frequency, and phase, re-
spectively, while the noise q(n) is assumed to be a zero-mean white
process with unknown variance �2. The task is to find ! given the N
samples of fx(n)g.

Under Gaussian noise assumption, the maximum-likelihood (ML)
estimate of frequency [6], with estimation accuracy of order N�3=2

in standard error, is obtained by maximizing a highly nonlinear
and multimodal cost function, and thus extensive computations are
involved. Apart from the ML method, some relatively fast algorithms
such as the discrete Fourier spectrum (DFS) interpolator [7], con-
traction mapping [8], [9], and weighted subspace fitting [10] can
achieve this accuracy. It is worthy to note that the efficient methods
for complex tone frequency estimation [11]–[14] generally cannot
be employed to real-valued data. For applications where real-time
estimation is required, more computationally efficient but suboptimal
frequency estimators such as notch filtering, Capon methods, linear
prediction [15]–[17], Yule-Walker methods [18] and subspace-based
approaches [19] are widely used choices. In this correspondence, we
focus on fast frequency estimation of a single real tone. Our main
contributions are summarized as follows: 1) proposal of novel sample
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