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Error Exponents for Neyman–Pearson Detection of
Markov Chains in Noise
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Abstract—A numerical method for computing the error exponent
for Neyman–Pearson detection of two-state Markov chains in noise is
presented, for both time-invariant and fading channels. We give numerical
studies showing the behavior of the error exponent as the transition
parameters of the Markov chain and the signal-to-noise ratio (SNR) are
varied. Comparisons between the high-SNR asymptotics in Gaussian noise
for the time-invariant and fading situations will also be made.

Index Terms—Error exponent, fading channel, hidden Markov model
(HMM), Neyman–Pearson detection.

I. INTRODUCTION

The detection of random signals in noise is an important problem
in engineering and signal processing. In general, performance analysis
of detectors via closed-form expressions for the probability of error or
related quantities is intractible except for very simple test statistics. An
alternative is to study the rate of decrease of the probability of error
as the number of samples increases, or in the Neyman–Pearson for-
mulation, the probability of missed detection with a fixed false-alarm
probability constraint.

Let PM represent the probability of missed detection and PFA the
probability of false alarm. The error exponent for Neyman–Pearson
detection is defined as the limit (log will refer to the natural logarithm
unless stated otherwise)

K = lim
n!1

�

1

n
logPM (1)

and represents the rate at which PM decays for a fixed constraint on
PFA as the number of samples n ! 1. The error exponent K for
the Neyman–Pearson detection problem can be shown (see [1] and the
references therein) to be the following almost-sure limit (provided it
exists) under H0

1

K = lim
n!1

1

n
log

p0;n
p1;n

(yn) = lim
n!1

�

1

n
logLn(y

n) (2)

where p0;n and p1;n are the null and alternative joint densities, re-
spectively, of the measurements yn � (y1; . . . ; yn), and Ln(y

n) =
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1In the independent and identically distributed (i.i.d.) case, this is Stein’s
lemma, and (2) is equivalent to computing the Kullback–Leibler distance be-
tween the two densities.

(p1;n=p0;n)(y
n) is the likelihood ratio. Unfortunately, closed-form ex-

pressions for the error exponent are often still not possible except in rare
cases. The subject of this correspondence is the numerical computa-
tion of the error exponent for Neyman–Pearson detection of a two-state
Markov chain in noise. Such a detection problem can arise in the con-
text of hidden Markov models (HMMs), which have applications in
many areas, such as radar tracking and biology [2].

Some previous work, e.g., [3]–[6], have characterized the large
sample behavior of detectors using results from large deviations
theory such as the Gärtner–Ellis theorem to determine the rate func-
tions, though evaluating these numerically usually required further
optimization techniques. Moreover, often the minimum probability
of error criterion or detection with fixed thresholds is used instead
of the Neyman–Pearson criterion, so that limn!1�(1=n) logPe is
analyzed instead of (1). Neyman–Pearson detection of Gauss–Markov
processes is, however, considered in [1]. By studying (2) and using
properties of the innovations process and the state-space structure,
the authors managed to obtain a closed-form expression for the error
exponent and derived relationships between the error exponent and
parameters of the system.

On the other hand, in detection problems involving Markov chains,
the problem of trying to decide between two Markov chains with dif-
ferent transition parameters (but no noise) is treated in standard text-
books such as [7]. Likelihood ratios for detecting Markov chains in
noise are derived in [8]. Classification of HMMs with empirically ob-
served statistics is studied in [9]. Error exponents in HMM order esti-
mation are considered in, e.g., [10]. To the best of our knowledge, how-
ever, the problem of determining the error exponent associated with
detecting a Markov chain in noise, and how this error exponent be-
haves as system parameters vary, has not been previously treated in the
literature.

Moreover, apart from [6] the impact of fading has not been addressed
in these previous works, though likelihood ratios for various decentral-
ized detection schemes over fading channels have been derived recently
(see, e.g., [11] and [12]). Intuitively fading reduces detection perfor-
mance, and it is of interest to know what the error exponents are in
fading environments, for example in wireless sensor networks where
there are limited resources and delay constraints such that waiting to
collect too many data samples for a hypothesis test is not desirable.

In this correspondence, we will adopt a similar philosophy to [1]
in studying the error exponent via (2) and properties of the likelihood
ratio. While a closed-form expression cannot be obtained, numerical
methods for computing the error exponent when the Markov chain
has two states will be presented; this situation can occur when binary
data (e.g., the presence or absence of a target) is being detected over
a communication channel with noise. We first treat the case where the
channel is time invariant and known in Section III, and then extend
our methods to channels that are randomly time varying (e.g., a wire-
less link) in Section IV, for a Rayleigh fading channel with no instan-
taneous channel state information. We will numerically study the be-
havior of the error exponent as the transition parameters/probabilities
of the Markov chain are varied, and also as the noise variance is varied.
In particular, for Gaussian noise, we shall see that at high SNR, there
is a marked contrast between the time-invariant and fading scenarios,
with the scaling of the error exponent with SNR being linear and log-
arithmic, respectively.

II. SYSTEM MODEL

Let the null and alternative hypotheses be

H0 : yk =wk

H1 : yk =hksk + wk (3)
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Fig. 1. System model.

for k = 1; 2; . . . ; n (see Fig. 1). The noise process fwkg is assumed
to be independent and identically distributed (i.i.d.) and N(0; �2).2

The process fskg that we wish to detect is a homogeneous two-state
Markov chain, with state space f 1;  2g, and  2 = � 1. We use the
convention that aij = P (sk+1 =  j jsk =  i) for the transition prob-
abilities, with the assumption that 0 < aij < 1,8i; j. In Section III, the
process fhkg will be taken to be constant for all k, while in Section IV
fhkg will be a fading process.

III. ERROR EXPONENT COMPUTATION FOR

TIME-INVARIANT CHANNELS

We first consider time-invariant channels, where without loss of gen-
erality we take hk = 1, 8k in (3). We will calculate the error exponent
using the form (2), whereLn(yn) = (p1;n=p0;n)(y

n) is the likelihood
ratio. The likelihood ratio for the problem of detecting Markov chains
in noise (3) has been previously derived in, e.g., [8]. One can write
Ln(y

n) = n

k=1
l(ykjyk�1), where

l(ykjyk�1) = p1(ykjsk =  j ; y
k�1)

p0(ykjyk�1)
P (sk =  j jyk�1)
P (sk =  j jyk)

= exp
 jyk
�2

� 1

2

 2j
�2

P (sk =  j jyk�1)
P (sk =  j jyk)

for any j 2 f1; 2g. Here, we choose j = 1. We have the recursive
relations

P (sk= j jyk�1)=
2

i=1

aijP (sk�1= ijyk�1) (4)

P (sk= j jyk)= p1(ykjsk= j)P (sk= j jyk�1)
2

i=1
p1(ykjsk= i)P (sk= ijyk�1)

(5)

where p1(ykjsk =  j) is the density of yk under the alternative hy-
pothesis, i.e.,

p1(ykjsk =  j) =
1p
2��2

exp
�(yk �  j)

2

2�2
:

2The method presented here does not necessarily require the noise to be
Gaussian [13], though some of the expressions will change for different noise
distributions.

Thus, the error exponent can be written as

K = lim
n!1

� 1

n
log

n

k=1

l(ykjyk�1)

= lim
n!1

� 1

n

n

k=1

log l(ykjyk�1)

= lim
n!1

� 1

n

n

k=1

 1yk
�2

� 1

2

 21
�2

+ logP (sk =  1jyk�1)

� logP (sk =  1jyk)

provided that the limit exists. Now under H0, fykg is i.i.d. zero-mean
Gaussian. Thus

� 1

n

n

k=1

 1yk
�2

! 0 a.s.

by the strong law of large numbers. Since 0 < aij < 1, 8i; j by as-
sumption, the transition matrix for fskg will be primitive. From [14],
it then follows that P (sk =  1jyk�1) and P (sk =  1jyk) have in-
variant limiting distributions under H0 as k !1, by taking h� as the
zero mapping in [14, Example 1.1] and considering our situation as a
case of a misspecified hidden Markov model (HMM). Hence, by the
arguments above and the ergodic theorem:

K=
1

2

 21
�2
� log(sk= 1jyk�1)�logP (sk= 1jyk) a.s. (6)

We also note that an alternative way of showing the existence of the
almost-sure limit is by using [15, Proposition 3.2].

To calculate the above, it suffices to find the limiting distribution
of P (sk =  1jyk), since P (sk =  1jyk�1) is related by (4). We
apply a method from [13], which was originally used for the problem
of computing the probability of error in HMM filtering for two-state
Markov chains.3 Let qk � P (sk =  1jyk) and fk(q)dq � P (qk 2
(q; q + dq)). Then

P (qk 2 (q; q + dq); qk�1 2 (~q; ~q + d~q))

= P (qk 2 (q; q + dq)jqk�1 = ~q) fk�1(~q)d~q: (7)

Using (5) and recalling that  2 = � 1, we have the relation shown in
(8) at the bottom of the page. Thus

yk=� �2

2 1
ln

[a11qk�1+a21(1�qk�1)] (1�qk)
[a12qk�1+a22(1�qk�1)] qk �g(qk; qk�1)

and

dyk
dqk

=
�2

2 1qk(1� qk)
=

�2

2j 1jqk(1� qk)
:

3This method unfortunately does not appear to be extendable to Markov
chains with more than two states. The multi-state version of the problem
considered in [13] is difficult; the best result so far appears to be [16], which
requires certain transition parameters to be asymptotically small.

qk =
a11qk�1 + a21(1� qk�1)

a11qk�1 + a21(1� qk�1) + exp �2 y

�
[a12qk�1 + a22(1� qk�1)]

: (8)
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Then, by a change of variable, again noting that yk is N(0; �2) under
H0, we obtain

P (qk 2 (q; q + dq)jqk�1 = ~q) =
1p
2��2

exp �g(q; ~q)
2

2�2

� �2

2j 1jq(1� q)dq

�S(q; ~q)dq:
Hence, from (7), we can see that in the limit as k !1, fk(q) satisfies
the following integral equation:

f(q)dq =

1

0

S(q; ~q)f(~q)d~qdq: (9)

This integral equation may be solved numerically using a procedure
described in [17] (with slight modifications). Consider the eigenvalue
problem �f(q) =

1

0
S(q; ~q)f(~q)d~q, which corresponds to (9) when

� = 1. We can solve this eigenvalue problem using the Nyström method
[18]. Replacing the integral by anN -point quadrature rule, and defining

K �
w1S(t1; t1) . . . wNS(t1; tN )

...
. . .

...
w1S(tN ; t1) . . . wNS(tN ; tN )

we obtain

K [f(t1) . . . f(tN)]T = � [f(t1) . . . f(tN)]T

where wj represent the weights and tj the quadrature points of the
quadrature rule. The Gauss–Legendre quadrature rule is commonly
used for the Nyström method [18, p. 110]. In this correspondence,
we will use the Gauss–Legendre rule in a composite scheme [19, p.
113]; this allows a simple way to vary the precision by changing the
number of subintervals. In the following sections, we use 200 subin-
tervals, each subinterval using a fourth-order Gauss–Legendre rule.
Then, in order to obtain an approximation for f(q), we take the eigen-
vector that corresponds to the largest real eigenvalue of K, and nor-
malize so that 1

0
f(q)dq = 1 is satisfied. We may then calculate

[logP (sk =  1jyk)], and hence the error exponent via (6). Some
numerical properties of this method are described in [17].

A. Numerical Studies

First, we study how the error exponent varies when one of the transi-
tion parameters a12 is varied, while all other parameters are fixed.4 In
Fig. 2, we show plots for four different fixed values of a21, and a12 is
varied. We fix  1 = �1,  2 = 1, �2 = 1. For a12 small, the error ex-
ponent K is large. As a12 increases, K decreases until a certain point
at which it starts to increase again. Quantifying exactly where the point
with minimum K occurs, however, seems rather difficult. An intuitive
explanation as to why K is large when a12 is close to zero or one is
that in either of these situations the signal will have a certain amount of
“correlation,” which makes the signal easier to detect. This is because
if a12 is close to zero then when it is in state 1, it tends to stay in the
same state, whereas if a12 is close to one then when it is in state 1, at
the next time instant it is very likely to switch to state 2.

Next, we look at how the error exponent behaves at different noise
levels for fixed Markov chain transition parameters. In Fig. 3, we plot
the error exponent as the noise variance �2 varies, for four different sets
of parameter values. We again set  1 = �1,  2 = 1. Observe that the
error exponent appears to scale linearly with the “signal-to-noise ratio”
 2

1=�
2. At high SNR, the error exponents also become very close to

4By the symmetry of the situation, we will get the same behavior when a
is varied and the other parameters are fixed.

Fig. 2. Error exponent K for various a , with a fixed.

Fig. 3. Error exponent K for various � .

each other in a relative sense, for all four sets of parameter values used.
We have the following result, which is proven in Appendix A.

Lemma 1: With Gaussian noise and as �2 ! 0

K �  2

1

2�2
(10)

where f � g means that lim�!0 f(�)=g(�) = 1 (see, e.g., [20, pp.
4–6]).

The dashed line in Fig. 3 is the asymptotic expression (10). By
Lemma 1, the scaling at high SNR is indeed linear. Moreover, the
asymptotic expression for K at high SNR does not depend on the
parameters a12 and a21, which completely specifies the two-state
Markov chain. It is known that when detecting a constant signal in
Gaussian noise, the error exponent scales linearly with SNR. In fact, it
can be easily shown that for a constant signal of amplitude 1, the error
exponent is exactly  2

1=2�
2. So from Lemma 1, the effect of Markov

chain state transitions on the performance of detectors become less
important at high SNR. Another potential use of Lemma 1 is to show
that the high-SNR performance of a detector does not degrade too much
even when the transition parameters may not be known exactly but only
estimates are available, which will be a subject for further investigation.
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IV. ERROR EXPONENT COMPUTATION WITH FADING

We now consider a randomly time-varying Rayleigh5 fading channel
in the detection problem (3). Without loss of generality, we will let the
process fhkg have unit power, with density p(hk) = 2hk exp(�h2k),
hk � 0 as in [12]. We assume that hk and hl are independent for k 6= l.
This is a reasonable assumption if the sampling time is greater than the
channel coherence time, as might occur in low data rate systems such as
wireless sensor networks (see also the block fading models commonly
used in the communications theory literature [21]). We assume that the
receiver knows the distribution of the fading process, but the instan-
taneous values of hk are unknown, i.e., has no instantaneous channel
state information (CSI). This is because acquiring channel knowledge
might be too expensive when resources are limited, and also because
the assumption of full CSI may not be appropriate in the context of a
signal detection problem, depending on the nature of the source of the
signal.

An inspection of the derivations in [8] shows that one can still
write the likelihood ratio for problem (3) in the form Ln(y

n) =
n
k=1 l(ykjyk�1), where

l(ykjyk�1) = p1(ykjsk =  j ; y
k�1)

p0(ykjyk�1)
P (sk =  j jyk�1)
P (sk =  j jyk)

for any j 2 f1; 2g (the explicit expressions for the terms will now be
different though). We have p1(ykjsk =  j ; y

k�1) = p1(ykjsk =  j)
if the fades are independent. The recursive relations (4) and (5) will
continue to hold. One also has, in a slight generalization of Lemma 1
in [12]

p1(ykjsk =  j) =
1p
2��2

2�2

 2
j + 2�2

e�y =2�

� 1 +
p
2�ajyke

(a y ) =2Q(�ajyk) (11)

where

aj �  j= �  2
j + 2�2

and

Q(x) =
1

x

1=
p
2� exp(�t2=2)dt

is theQ function. For brevity, call a � a1 =  1=(�  2
1 + 2�2). The

error exponent can be written as

K = lim
n!1

� 1

n

n

k=1

log
p1(ykjsk =  1)

p0(ykjyk�1)

+ logP (sk =  1jyk�1)� logP (sk =  1jyk) :

provided the limit exists. Note that under H0, fykg is still i.i.d. zero-
mean Gaussian. Then, by similar arguments as in Section III and again
using results from [14], we can show that the almost-sure limit does
exist and is equal to

�
1

�1

log 1+
p
2�ayke

(ay ) =2Q(�ayk) 1p
2��2

e�y =2� dyk

� log
2�2

 2
1 + 2�2

� log
P (sk =  1jyk�1)
P (sk =  1jyk) (12)

5Our method should also work for other fading distributions, provided that
after “averaging” over h [12], p (y js =  ) still has a tractible closed
form such as (11).

where the first term (the integral) can be evaluated numerically. For
calculation of the other terms, again let qk = P (sk =  1jyk) and
fk(q)dq = P (qk 2 (q; q + dq)). The relation (7) still holds, but we
now have from (5) after some rearranging that

1�p2�ayke
(ay ) =2Q(ayk)

1 +
p
2�ayke(ay ) =2Q(�ayk)

=
a11qk�1 + a21(1� qk�1)

a12qk�1 + a22(1� qk�1)
� 1� qk

qk
: (13)

Given qk and qk�1, (13) can be solved for yk numerically. The solution
obtained can be shown to be unique by the following argument. Since
the right-hand side of (13) is positive, for a > 0,

1�p2�ayke
(ay ) =2Q(ayk)

1 +
p
2�ayke(ay ) =2Q(�ayk)

! 1; y ! �1
0; y ! +1.

Moreover, we obtain after some calculations

d

dyk

1�p2�ayke
(ay ) =2Q(ayk)

1 +
p
2�ayke(ay ) =2Q(�ayk)

=
�p2�ae(ay ) =2

1 +
p
2�ayke(ay ) =2Q(�ayk) 2 < 0

so that the left-hand side of (13) is strictly decreasing in yk , and hence
a unique solution will be obtained. A similar argument holds if a < 0.

Next, using implicit differentation on (13) and rearranging, we
obtain

dyk
dqk

=
1 +

p
2�ayke

(ay ) =2Q(�ayk)
2

p
2� jaj e(ay ) =2q2k

�a11qk�1 + a21(1� qk�1)

a12qk�1 + a22(1� qk�1)
: (14)

By a change of variable

S(q; ~q)dq �P (qk 2 (q; q + dq)jqk�1 = ~q)

=
1p
2��2

e�y =2� dyk
dqk

jq =q;q =~qdq

where yk is the numerical solution to (13) and dyk=dqk is
given by (14). We will then need to solve the integral equation
f(q)dq =

1

0
S(q; ~q)f(~q)d~qdq using the same numerical procedure

as in Section III.

A. Numerical Studies

In Fig. 4, we show plots for four different fixed values of a21, and
a12 is varied. We fix  1 = �1,  2 = 1, �2 = 1. Similar behavior
to the case without fading in Fig. 2 can be observed, though the error
exponents are smaller due to the presence of fading.

In Fig. 5, we plot the error exponent with fading as the noise variance
�2 varies, for four different sets of parameter values. We again set 1 =
�1,  2 = 1. The error exponent now appears to scale logarithmically
with the SNR. As in Fig. 3, at high SNR, the error exponents approach
each other (in a relative sense) for all four sets of parameter values used.
We have the following.
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Fig. 4. Error exponentK with Rayleigh fading for various a , with a fixed.

Fig. 5. Error exponent K with Rayleigh fading for various � .

Lemma 2: With Gaussian noise and Rayleigh fading, as �2 ! 0

K � log
 2
1

2�2
: (15)

The proof is in Appendix B. The dashed line in Fig. 5 is a plot of the
expression (15). Note that we do not plot for smaller values of 1=�2 as
then the asymptotic expression takes on negative values. We see that the
asymptotic expression is logarithmic, where again there is no depen-
dence on the parameters a12 and a21. The error exponent for detecting
a constant signal of amplitude  1 with the Rayleigh fading model used
here can be shown to be asymptotic to log( 2

1=2�
2), so that as in the

time-invariant case, state transitions of the Markov chain have a less
significant effect on performance at high SNR.

The difference in behavior in the scaling of the error exponent with
SNR in Figs. 3 and 5 can possibly be attributed to the discrete nature
of the states in the signal fskg in the case without fading, whereas
with fading the received signal fhkskg (even without noise) can take
on a continuous range. Other situations where logarithmic scaling in
the error exponent has also been observed include (see, e.g., [1]) the
detection of Gaussian signals in Gaussian noise, and the detection of
Gauss–Markov systems in noise, where in both cases the signals to be
detected have a continuous range.

V. CONCLUSION

We have presented numerical methods to compute the error expo-
nent associated with Neyman–Pearson detection of a two-state Markov
chain in noise, both with and without fading. Numerical studies relating
the error exponent to the parameters of the system have been presented.
In particular, with Gaussian noise, at high SNR, the error exponents
scales linearly without fading but logarithmically with fading.

While the results presented in this correspondence have dealt with
Gaussian noise, the methods to compute the error exponent will in
principle still work with other noise distributions. However, in general,
the high-SNR behavior of the error exponent in non-Gaussian noise
is likely to be strongly dependent on the nature of the distributions.
For instance, consider the generalized Gaussian distribution [22] with
density

f(x) =
c�(�; c)

2�(1=c)
exp f� [�(�; c)jxj]cg

where �(�; c) � ��1[�(3=c)=�(1=c)]1=2, �2 is the noise variance,
and c > 0 is a parameter that controls the rate of decay of the tails. For
c = 2, this reduces to the Gaussian density, and for c = 1 the Lapla-
cian density. Using this density for the noise, preliminary results for the
time-invariant case suggest a O(1=�c) scaling of the error exponent at
high SNR, so that for larger c (faster decaying tail probabilities), the
rate of increase of the error exponent is greater than for distributions
with heavier tails. Future work will include a more thorough investiga-
tion of the generalized Gaussian distribution and other types of noise
and fading processes.

APPENDIX A
PROOF OF LEMMA 1

Note that  2
1=2�

2 is just the first term on the right-hand side of (6),
so it suffices to show that

log
P (sk =  1jyk�1)
P (sk =  1jyk) = o

1

�2

for small �. Denote po(yk) � (1=
p
2��2) exp(�y2k=2�2). Suppose

P (sk =  1jyk�1) = p. Then, from (5)

P (sk= 1jyk)=
exp �(y � )

2�
p

exp �(y � )

2�
p+exp �(y + )

2�
(1�p)

and so

log
P (sk =  1jyk�1)
P (sk =  1jyk) = log p+ (1� p) exp �2 1yk

�2
:

Suppose  1 > 0 (the calculations for  1 < 0 are similar). For yk > 0,
one can easily show that

log p � log p+ (1� p) exp �2 1yk
�2

� 0

and so 1

0
log(p+ (1� p) exp(�2 1yk=�2))p0(yk)dyk= O(1).
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For yk < 0

0

�1

log p+ (1� p) exp �2 1yk
�2

p0(yk)dyk

=

1

0

log p+ (1� p) exp
2 1yk
�2

p0(yk)dyk

=

1

0

log e2 y =� p exp �2 1yk
�2

+ (1� p)

� p0(yk)dyk

=

1

0

2 1yk
�2

+ log p exp �2 1yk
�2

+ (1� p)

� p0(yk)dyk

=
2

�

 1

�
+

1

0

log p exp �2 1yk
�2

+ 1� p p0(yk)dyk

and the term 1

0
log(p exp(�2 1yk=�

2)+1� p)p0(yk)dyk isO(1)
by a similar argument to the case when yk > 0. So

log
P (sk= 1jyk�1)

P (sk= 1jyk) p =O(1) +O
1

�
+O(1)=o

1

�2

for small �.
Hence

log
P (sk= 1jyk�1)

P (sk= 1jyk) = log
P (sk= 1jyk�1)

P (sk= 1jyk) p

is also o(1=�2).

APPENDIX B
PROOF OF LEMMA 2

Referring to (12), for small � we have

� log
2�2

 2
1 + 2�2

� log
 2
1

2�2
:

Denote po(yk) � (1=
p
2��2) exp(�y2k=2�2). We first show that

1

�1

log 1+
p
2�ayke

(ay ) =2Q(�ayk) p0(yk)dyk=o log
1

�2
:

Assume  1 > 0 (again the calculations for  1 < 0 are similar), which
implies a is positive. We can write

1

�1

log 1 +
p
2�ayke

(ay ) =2Q(�ayk) p0(yk)dyk

=

1

0

log 1 +
p
2�ayke

(ay ) =2Q(�ayk) p0(yk)dyk

+

1

0

log 1�
p
2�ayke

(ay ) =2Q(ayk) p0(yk)dyk:

First, we have

1

0

log 1 +
p
2�ayke

(ay ) =2Q(�ayk) p0(yk)dyk

�
1

0

log 1 +
p
2�ayke

(ay ) =2 p0(yk)dyk

=

1

0

log e(ay ) =2 e�(ay ) =2 +
p
2�ayk p0(yk)dyk

�
1

0

(ayk)
2

2
+ log(1 +

p
2�ayk) p0(yk)dyk

�
1

0

(ayk)
2

2
+
p
2�ayk p0(yk)dyk

=
a2�2

4
+ a� = O(1)

since a � a1 =  1=(�  2
1 + 2�2). Next, note that

log 1�
p
2�ayke

(ay ) =2Q(ayk)

� log 1 +
p
2�ayke

(ay ) =2Q(�ayk)

using the result previously shown in Section IV that

(1�
p
2�ayke

(ay ) =2Q(ayk))=(1+
p
2�ayke

(ay ) =2Q(�ayk))

is decreasing with yk , and is equal to 1 when yk = 0. So 1

0
log[1 �p

2�ayke
(ay ) =2Q(ayk)]p0(yk)dyk is also O(1). Hence

1

�1

log 1 +
p
2�ayke

(ay ) =2Q(�ayk) p0(yk)dyk

= O(1) +O(1)

= o log
1

�2
:

Using the bounds just derived, together with the same arguments as
for the proof of Lemma 1, we can show that the remaining term in (12)

log
P (sk =  1jyk�1)

P (sk =  1jyk) = O(1) = o log
1

�2
:
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A Generalized Subspace Approach for Mobile Positioning
With Time-of-Arrival Measurements

H. C. So, Member, IEEE, and Frankie K. W. Chan

Abstract—The problem of locating mobile terminals has received con-
siderable attention particularly in the field of wireless communications. In
this correspondence, a simple subspace-based algorithm for mobile posi-
tioning with the use of time-of-arrival measurements deduced from signals
received at three or more reference base stations is derived and analyzed.
It is shown that the proposed approach is a generalization of the mobile
localization method based on multidimensional similarity analysis. Com-
puter simulations are included to contrast the estimator performance with
Cramér–Rao lower bound.

Index Terms—Fast algorithm, mobile terminal, position estimation,
range measurements.

I. INTRODUCTION

Mobile terminal (MT) positioning has been receiving considerable
interest, especially after the Federal Communications Commission in
the United States has adopted rules to improve the Emergency 911
(E-911) services by mandating the accuracy of locating an E-911 caller
to be within a specified range, even for a wireless phone user [1]. Apart
from emergency assistance, mobile position information is also the key
enabler for a large number of innovative applications such as personal
localization and monitoring, fleet management, asset tracking, travel
services, location-based advertising, and billing [2].

Common positioning approaches [3] are based on time-of-arrival
(TOA), received signal strength, time-difference-of-arrival, and/or
angle-of-arrival measurements determined from the MT signal re-
ceived at several reference base stations (BSs) with known locations.
In this correspondence, we focus on two-dimensional (2-D) MT local-
ization given the TOA information. In the TOA method, the one-way
propagation time of the signal travelling between the MT and each of
the BSs is measured. Each TOA measurement then provides a circle
centered at the BS on which the MT must lie. With three or more BSs,
the measurements are converted into a set of circular equations, from
which the MT position can be determined with the knowledge of the
BS geometry.

The optimum TOA-based localization approach involves solving the
nonlinear circular equations in an iterative manner, and commonly used
techniques [4] include linearization via Taylor-series expansion, the
steepest descent method, and Newton-type iteration. However, this ap-
proach is computationally intensive and sufficiently precise initial es-
timates are required to obtain the global solution. On the other hand,
computationally efficient but suboptimum position estimators, which
allow real-time realization as well as ensure global convergence, have
also been proposed in the literature [5]–[9]. In the least-squares (LS)
calibration method [5], the nonlinear equations are reorganized into a
set of linear equations via introduction of an extra variable, which is
a function of the source position, and these linear equations are then
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