1316 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 8, AUGUST 2002

Optimal Resource Allocation for Pilot Symbol
Aided Multiuser Receivers in Rayleigh
Faded CDMA Channels

Jamie S. EvandMember, IEEE

Abstract—We consider a synchronous code-division multiple- Received Single symbol Single user detected
access system where each user undergoes independent frequency- signal T LMMSE receiver | | datadetector | Symbols
flat Rayleigh fading, and where pilot symbols are periodically
inserted into the data stream of each user in order to assist in channel
the coherent demodulation of the data symbols. The motivating i estimate
question for this work is: for any given set of system parameters, pilot ____}  Single user
how often should we insert pilot symbols? Along the way to an- symbols channel estimator

swering this question, we: 1) derive and analyze the performance
of the linear minimum mean-squared-error channel estimator Fig.1. Overview of receiver structure.
and 2) study the performance of a linear minimum mean-squared-

error data estimator which is coupled to the channel estimator. ) . .
We are able to obtain a very compact expression for the average C€iver in a Rayleigh faded CDMA channel. The CDMA system

signal-to-interference ratio in terms of the key system parameters: is assumed to be synchronous, and each user’s signal under-

pilot insertipn period, channel fading rate, signal-tq-noisg ratio, goes independent frequency-flat Rayleigh fading as it propa-
and the ratio of the number of users to the spreading gain. The gates from transmitter to receiver.

average signal-to-interference ratio is numerically optimized and ) .
results are presented to illustrate the optimal rate of inserting  1ne rate of fading, as measured by the normalized Doppler

pilot symbols for a range of system parameters. spread, is assumed quite fast so that it is not reasonable to simply
Index Terms—CDMA, channel estimation, linear receivers, mul- assume that the char_mels of all users are kn_own_ perfectly. We
tiuser detection, pilot symbols, random spreading, Rayleigh fading. Will instead look explicitly at the channel estimation problem
and assess the impact of channel estimation errors on perfor-
mance.
|. INTRODUCTION
ODE-DIVISION multiple-access (CDMA) will be the A. Problem Statement
dominant multiple-access technique at the air-interface of A receiver structure of central importance to this paper is il-
third-generation cellular networks [1]-[4]. While second-geriustrated in Fig. 1. Variations on this basic structure have been
eration CDMA networks use coherent modulation only on theroposed by many authors developing multiuser receivers for
forward link (base to mobile), next-generation systems wiRayleigh fading channels [9]-[12].
employ coherent modulation on both forward and reverse links.To aid our discussion we briefly introduce the model for the
Coherent communication on the reverse link is aided by the useeived signal in symbol period
of a pilot signal for each mobile; it is the allocation of resources

K
to these pilot signals that is the subject of this paper.
=vP Pay . .
Some excellent work has been carried out in this area in t}rﬁ%m) \/_al(m)bl(m)sl +kz_2 VPa, (m)br(m)sy, +w(m)
case when the receiver is a single-user matched filter [5]-[7]. - Q)

Third-generation standards incorporate the option of using reherea, (m) is the channel of usérin symbolm, by, (m) is the
peated signature sequences so that more advanced multiusedata symbol for uset in symbolm, w(m) is a white Gaussian
ceivers can be employed [8]. This paper tackles the problemrufise vector, and, is the signature sequence of ugemhich
performance optimization for a pilot symbol-aided multiuser reve assume is repeated from symbol to symbol.
The received signal is first passed through a linear filter
, _ which aims to suppress interference and produce an es-
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IL et de2 13 (+DL by looking at a large system, we are able to get a final perfor-
‘ ‘ D ‘ ‘ [ ,,,,,, ‘ ‘ ‘ D ‘ ‘ mance measure which is independent of the signature sequences
/ \ and which depends only on the key system parameters.
Pilot L1 Data Pilot Pilot Optimization: Finally, in Section V, we look at opti-
Symbeol Symbols Symbel mizing the performance (as measured by the average SIR) over

the choice of pilot insertion period. Some surprising results are
uncovered when we examine the behavior of the optimal pilot

insertion period as the system loading is varied.
ai(m)bi(m), from observations corrupted by residual inter-
ference and noise. The problem at this stage is really that of II. RAYLEIGH FADING CDMA CHANNELS
receiver design for the single-user Rayleigh fading channel, and

our receiver uses well known pilot symbol-assisted techniques' "¢ Model for the received signal after down conversion

[13], [14]. We assume that pilot symbols (symbols known tand chip-matched filtering was giv_en in (1). Referring to this
the receiver) are periodically inserted into the stream of dam:lOdil' each signature .sequer?_cE 'S a columndvlt(ector of Ienrg]]th
symbols of user one as illustrated in Fig. 2. These pilot symboil\é (t_ € plr:ocessTg gain), w KI: S assur_rllle nown hat the
are used in conjunction with the corresponding outputs frofficCIVEr. FOr performance analysis, we will assume t at the
the LMMSE receiver to obtain estimates of the channel of usgptries (chips) ok, are independent and identically distributed

one. These estimates are then passed to a standard det gpglom variables with mean zero and variarigey. Write

which compensates for the effect of the channel and makas. [s152... . sic] for the.N x K matrix of signature sequences,

decisions on the transmitted data. a_nd S1 = [s2s3...sk] for the N x K — 1 matrix with the
Clearly, inserting pilot symbols more frequently will improve> dnature sequence of user one removed.

the performance of the channel estimator. However, pilot sym-We further assume that

bols take up valuable resources such as power and bandwidthl) the channel procesga,} is a stationary, circularly

In this paper, we ask the question, how can we find the bestallo- ~ Symmetric, complex Gaussian random process with

cation of resources to pilot symbols? To be more specific, how Elax(m)] = 0 and Efax(m + n)ag(m)] = Ra(n) with

should we choose the pilot symbol insertion rate as a function R.(0) = 1;

of the key system parameters: spreading gain, number of users?) the vector noise procegsv(m)} is a stationary, circu-

signal-to-noise ratio (SNR), and the fading rate? larly symmetric, complex Gaussian random process with
Before moving on, we draw the readers’ attention to [15],  E[W(m)] = 0 andE[w(m + n)w*(m)] = 0?I6(n);

which examines similar problems when parallel pilot channels 3) the data proces$ } is a white random process with each

are employed. One main difference in this work (apart fromthe ~ bx(m) selected from ari/-ary phase-shift keying (PSK)

pilot structure) is that we explicitly consider the time-variation ~ alphabet withb, (m)| = 1 and E[bx(m)] = 0;

of the channel through a specified autocorrelation function or 4) the signature sequences, data, noise, and channel pro-

power spectral density. This allows us to include the normalized ~ cesses are independent.

Fig. 2. Frame structure.

signal is a circularly symmetric, complex random process with
B. Summary of Contributions E[r(m)|S] =0
The main contributions of the paper are outlined below. Efr(m + n)r*(m)|S] = [P SS* 1 021] §(n).

Channel Estimation:In Section lll, we derive and analyze
the LMMSE channel estimator for our system in the case wh@bserve thata, (m)b,(m) is a circularly symmetric, com-
the estimate is based on the entire sequence of pilot symbglsx Gaussian random variable, but that(m)b,(m) and
(and received signals at the pilot points). The resultant LMMSdg, ()b (n) are not jointly Gaussian. This means that (gi¥9n
estimator allows the simple implementation given in Fig. 1. We(m) is a complex Gaussian vector, but the procgssn)} is
derive expressions for the mean-squared-error (MSE) of the ot a Gaussian process.
timal estimator for finite-size systems and also for large sys-Another assumption that we have made is that the average
tems. In the latter case, the MSE is independent of the realizeeceived) power of each user is the same (s#ifier.(m)|?] =
tion of the signature sequences, depending only on the numbdor all £). This might correspond to a situation where there
of users, the processing gain, the rate of inserting pilot symbalks power control at the central receiver. Assume that the power
and the channel parameters. control operates on a time scale which is slow compared with

Data Detection: In Section IV, we first study the maximum- the Rayleigh fading, but fast compared to the changes in average
likelihood (ML) detector for a data symbol under the assumypower due to distance-based path loss and shadowing. Having
tion that the detector has perfect knowledge of the channelszfid that, the assumption is made only for ease of exposition and
the user in question, but of nothing else. Under this assumptiatl,results can be readily extended to the more general situation
the ML detector consists of a LMMSE front end followed by @f unequal average received powers. The term SNR is reserved
minimum distance detector. This motivates the receiver strifor the quantity?/o?.
ture of Fig. 1 when knowledge of the channel is replaced by ac-Remark 1: The model considered in this paper is one of the
cess to the pilot symbols of the user of interest. An expressisimplest models that includes the key ingredients of multiple-
for the average signal-to-interference ratio (SIR) is derived, aadcess interference and fading. The advantage of this model
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is that meaningful and insightful results can be obtained inigithe SIR for this estimate. The resulting MSE is given by
resonably straightforward manner. Importantly, the framework . .
presented in this work could be extended to an asynchronous A =Ez"(Na(l)] - B[Oy ()]

CDMA model and to include frequency-selective fading using (EyOy O ER Oy
techniques from [16] and [17], respectively. =1 - Ps} [PSS" + 071 s,
Before continuing, note that all expectations in the sequel 1

should be seen as expectations conditioned on the matrix of sig- =
(1+53).
nature sequences. For examph;] meansE[-|S] and E[-|] _ _ _
meansE[-|-, S]. Throughout, we denote vectors and matrices The performance of thg channel estimator is su.mmarlzed by
(random and deterministic) by boldface characters and usetBfi MSE or the SIR, which is a function of the signature se-
asterisk to denote the conjugate transpose operation. quences of all users, and the average SNR of each Biger’).
If we now look at a large system and model the signature se-

. PILOT SYMBOL-BASED LMMSE CHANNEL EsTiMATION ~ guences as random, then the dependence on the signature se-
. . .. guences disappears. We have the following result [17]-[19]:
We consider a structure where pilot symbols are periodically ragyit 1: Under our random spreading model, Bs— oo

inserted into the sequence of data symbols of user one. In R, , — K/N held constant, the SIR given in (4) converges

ticular, suppose that a pilot symbol is inserted after every blofglmost surely) to the nonrandom constaht which is the so-
of L — 1 data symbols at locations.,—2L,—L,0,L,2L, ...

. 7 lution to
as illustrated in Fig. 2.
Define the sampled and demodulated output sequence P (%)
. gt — }|14+a—2
y (1) =br(IL)r(IL) 2 1+ B
K
=V Px(l)s; + bi(IL) - Z VPay(IL)br (1L)sy, This is a quadratic equation with desired solution
k=2 1 P
+ b (IL)w(IL) @ B=3 [(1 - ) <§> —1
where we have defined(l) = a; (IL). Py p 1/2
1—a)? (= 2(1 —+1 :
A. Estimation Based on One Pilot Symbol + <( @) <02> +21+q) <02> + ) ®)

To begin, we consider the simple case of linearly estimating
the channel of user ong(l) = a;(IL), based solely og(!) in
such a way that the MSE is minimized. To be more explicit,
are concerned with estimates of the form

In a system with finite spreading gain, the MSK, is a

V\;é;mdom variable because of its dependence on the signature se-
guences of all users. This result tells us that whérs large,
almost all realizations db will lead to approximately the same

z(l) =hy(l) value of A. All that is important is the ratio of the number of
which minimize the MSE users and the spreading gain.
_ I The large system analysis underlying this result has been
A = E[(z(l) = 2))(=() = 2(1)"] used extensively in recent years to transform somewhat cum-

whereh is anN-dimensional row vector. Since we have alreadpersome expressions (for SIR, MSE, information capacity) into
removed dependence on the pilot symbols, we can assume uedy useful and compact performance measures. Examples can
h is time invariant without loss of generality. be found in the papers [15]-[18], [20]-[25]. The above result is
Remark 2: Before proceeding, note that the channel est@ll we require in order to develop large system versions of all
mates thus obtained will turn out to be a first step in obtainiref our performance measures.
estimates based on all pilot symbols. These “one-symbol” esti-Before proceeding, we note that/) andy(/) are jointly
mates should be viewed only as intermediate estimates, andg¢itgularly symmetric, complex Gaussian random vectors when
as candidates for the channel estimates to be used by the afwditioned on the pilot symbol of user one. The optimal linear
tector. estimator derived above is thus the minimum mean-squared
The well known LMMSE estimate of(l) is error (MMSE) or conditional mean estimator ofl), given

o N " -1 y(1), and we have the following result:
w0 =E Oy ONEY Oy O]y (D) Result 2: The random variables(l) and Z(I) are jointly

* * * -1 . . . .
=VPs} [Psis} + PS1S] +0%1]  y(I). circularly symmetric, complex Gaussian random variables
Making use of the Matrix Inversion Lemma, we have equiv¥ith parameterst[z(1)] = E[z(l)] = 0, E[l=()°] = 1,
lently E[lz(D]*] =1 - A, andE[z()z*())] = A.

A further consequence of this result is that the random vari-
ablesz(l) andxz(l) — z(l) are independent.

P * * -
#(l) = 1—V+ﬁs-1- [PS18] + %1 "y (D) ©)
B. Estimation Based on All Pilot Symbols
where

) We now wish to make use of the entire sequence of pilot sym-
3 = Pst [PS1ST +0%I] " sy 4) bols to obtain a channel estimate for user one at any time. We
1 1
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emphasize at this point that the pilot sequence is assumed towRereh,(») is a row vector of lengttV. The optimal filter is
tend indefinitely in both directions (past and future). This wilinost easily expressed in terms of its transfer function
allow us to exploit classical linear smoothing results, and pro- o0 '
vides a bound on the performance of any linear channel esti- K, (w)= Z h,(n)e ",
mator. n=—00

To begin, observe that we must handle the general situati/e have the following theorem which follows froResult 3in
of estimating the channel during a symbol that does not necéise Appendix and from (7) and (8).
sarily coincide with a pilot point. Define the shifted and sampled Theorem 1: The optimal (MMSE) linear smoother is

channel process for user one
zp(1) = a1 (1L + p),

and note that:(1) = z¢(!). We wish to estimate ,(!) by lin-
early smoothing the (pilot) observation proc¢s$!)}. The op-
timal linear smoother will not depend érbut will vary with p.

To begin, we define, for the sampled channel process,
autocorrelation function

Ry, (n) =Ela,(I + n)a;(1)]
—E[a1(IL + nL + p)ai(IL + p)]
=R,(nL)

and the power spectral density

0<p<L-1

oo

> Ra(nL)e5m,

n=—o0

Sy, (w) = Z R%(n)e_j‘“'" =

The above expressions do not dependppso we will write
R, (n) = Ry(n) andS, (v) = S.(w). We will also need to
deal with the correlation function
Rypa(n) =E[zp(l +n)z™(1)]
=E[a1(IL +nL + p)ai(IL)]
=Rq(nL +p)
and corresponding spectral density function

oo

Z Ro(nL + p)e 9«m,

n=—0o0

Sepa = i Rmpm(n)efj“’" =

n=—o0

Turning to the pilot observation process, we have
Ry(n) =Ey(l+n)y" (D]
K

=R.(n)Psis] +6(n) | Ra(O)P>_ spsj, + 0”1
k=2
=R,(n)Psis} + 6(n) [PS1S} + 071]
R,y (n) =Elzp(l +n)y™ ()]
=R, .(n)VPs}.
Now observe that

Sy(w) = Z Ry(”)e_jwn

n=—oo

=5, (w)Psis} + [PS1ST + o71]

(6)

(7)
Sa,y(w) = i Rmpy(n)e_j“"" = Smpm(w)\/]_’sf. (8)

n=—oo

We wish to form the estimate

2,(1) = Z h,(n)y(l —n)

n=—0o0

K,(w) = Ky(w)VPst [PS;S] + 02T "

where
Sy, z(w)
taad/ is given in (4). The corresponding MMSE is
T 3 Sa; - 2
Ay =1- L [7 DS (10)

2 J_. 14 8S.(w)

1) Structure of Optimal Linear Smoothekife can examine
the structure of the optimal linear smoother using the inversion
formula

1 ™

o .

h,(n) K, (w)e!“"dw

which tells us that

h,(n) = hy(n)VPs} [PS:S] + 021

where
() = 5 [ Kyw)erna
P n)= o . p we W.
The optimal estimate is thus

2p(l) = i hy(n)VPs} PSS} + 021]71 v(l—n)

> hp(n)E(n —1)
wherez(n —1) = (1+ 8)Z(n — 1) andz(n — 1) is the LMMSE
estimate ofc(n — ) based ory(n — 1) as given in (3), and is
the one-symbol SIR of (4).

As illustrated in Fig. 3 (and also in Fig. 1), the optimal linear
smoother first obtains the LMMSE estimate of the channel
in each pilot symbol based only on the received vector corre-
sponding to that symbol, and then filters the resultant scalar
random process to take advantage of correlations over time.
The key to the decomposition is that the independence between
the data symbols of the interfering users makes the interference
white over time. The only structure in the interference is within
each received symbol, and a symbol-by-symbol multiuser
receiver is enough to fully exploit this structure. It should be
noted that the situation is very different when we assume that
the pilot symbols of all users are known, or if the data symbols
of the interfering users are not independent over time.

2) Large System Performancef we considefrTheorem 1in
conjunction withResult 1 then we arrive at the following the-
orem:

Theorem 2: Under the random spreading model with —

oo anda = K/N held fixed, the MSE in the channel estimate
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NE&"S%ZZ:“:T; fnp), the more frequently we must insert pilot symbols (the
/ [ spatticermbor smallerL).
" Single symbol ulti-symbol
Pilot ——> vector MMSE scalar MMSE — MMS]?: channel
Symbols estimator estimator estimates C. Summary of Results

We now summarize the results presented in this section. To

Fig. 3. Structure of optimal channel estimator. obtain the LMMSE estimate af; ({L+p),0 < p < L—1, from
observation of the entire sequence of pilot symHglén) }, we

at the output of the optimal linear smoother converges (almdist form for all »

surely) to the nonrandom value 2 i1 (nL) = v/Ps! [PS,S7 + 071] -1 y(n).
A -1- — 7[3”5“’? (@) dw (11) Note that the MMSE estimate ofi(nL) from y(n) is
2 J_p 14515, (w) a1(nL)/(1 + ), whereg is given in (4).
wheregt is the limiting (one-symbol) SIR defined in (5). Secondly, we pass the sequeqeég(nL)} through a single-
Proof: Follows immediately from (10) anResult lupon input, single-output (5|SO) linear smoother to produce
observing that\, in (10) is a continuous function ¢f. [ |
3) Spectral Density of Sampled Channel Proce$he per- 1(L+p) = Z hy(n)ay(IL — nL).
formance of the optimal linear smoother as given in (10) and n=-—00
(11) depends on the spectral densitis(w) and S,,.(w). It The impulse response can be calculated from
is of interest to relate these to the power spectral density of the 1 /7 jwn
original channel procesgi; (m)}. = _/ Kp(w)e’™" dw

Re_call thatR, (n) = Ha(nL), S0 tha_t the autocorrelation o e he frequency response of the smoother is
function of {z(m)} results from decimating or down sampling S, ()
acpac W

the autocorrelation function dfa; () }. The resultant power Sw) =
spectral density is 1+ B5.(w)
andS,(w) andS, .(w) are defined in (12) and (13), respec-
S Z s, < m27r> ) (12) ftively.
"L =0 The resultant MSE is is given by (10).
Similarly, we have In a large system with random spreadirias given in (4)
1 converges t@' defined in (5), and all instances gfabove can
1 Z exp <Jpw - m27f) <w - m27f) ~ bereplaced by*. The MSE and the SISO linear smoother are
L L ¢ L thus independent of the signature sequences in a large system.

Sy,z(w) =

m=0

(13)
These expressions can be substituted into (10) and (11) to mEkeSpecial Cases and Results
explicit the dependence of the MSE on the spectral density ofin this section, we evaluate the performance of the optimal
the channel proces%, (w), the rate of insertion of pilot symbols linear smoother for two channel power spectral densities.
L, and the time shifp. Consider first the case when the channel is bandlimited and
We can simplify things greatly by making some assumptiomtgs a flat spectrum up to the normalized Doppler frequency
aboutS, (w) and L. In particular, suppose that WND

So(w) =0, wyp < |w| <7

and thatLwyp < . These conditions imply that there is no
aliasing, so that

s

; lw| < wn D
o = wnp! 14
5u(w) {07 plsowe (14)

Secondly, we will look at the Jakes’ model where the power

Sa(w) :lS (%) ’ w| < 7 spectral density of the channel is given by
_ 1 LW W S (W) = wz\,r)*uﬂ’ |(U| < WND (15)
Spa() P (pr) Sa (f) ’ ol < 7. @) {0, wyp 2 |w| < 7.
This allows us to write Fig. 4 shows the variation of the (normalized) MSE with frame
Ko = Cwy 15 (%) size for two values of the time shift The normalized MSE is

p(w) =exp (pr) 1+ 25, (2) defined as\,/R,(0) = A,,. For these plots, the channel power

1 ND g fw) L spectral densities are as given in (14) and (15), with, =
A=— / ‘;—dw. 0.027 and$ = 12 dB. The condition for no aliasing in this case

21 Jwonp 14 £Sa(w) is L < 50.

The impact of varying. on the MSE is clearly isolated in this Observe that for both channel spectra,ghe 0 andp = L /2
expression. Also observe that the MSE does not depend orplots coincide up until, = 50. After this point, thep = 0 curve
which means that the channel estimate in the middle of a frampproaches/(1+3) (the MSE resulting when the estimation is
is just as good as an estimate at a pilot symbol. based on a single pilot symbol), while the= L /2 curve heads

Note that the condition for no aliasing i > 2fnyp, quickly toward a normalized MSE of 1 (which corresponds to a
wherefyp = wnp/2n. Thus, the faster the fading (the biggeuseless channel estimate).
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0 Proof: The conditional density af(m) is
| p (x(m) | bi(m), ar(m))
8 xexp |~ (x(m) — VPay(m)by(m)s,)’
w
g * * -1
S5 (Plai(m)|*s1sf + PSS} + o°1)
s (x(m) — VPay(m)by (m)sl)]
S —— p=0(Fla) . .
i »sl bl | where the constant of proportionality does not depenfd om).
- o ,‘Z:E,‘:;"‘}ae.fés) The ML detector thus maximizes the real part of
M w aw W W by (m)* [\/Fa;{(m)s; (Play(m)|2s;s

* 2 -1
Fig. 4. Variation of (normalized) MSEZL, / R, (0)] with frame size {) for +PS18] +0°T) r(m)}

estimation at pilot pointsp( = 0) and in the middle of a framep(= L/2). . . L
Parameters aP@NDp: 0.6(2% an)d@ — 12 dB. @(= L/2- \yhich leads to the detector described above after application of

the Matrix Inversion Lemma.

, . To determine the symbol error probability, we note that
Also observe that the performance of the channel estimator is

very similar for both channel spectral densities, especially when by(m) = |ay(m)|?Bby(m) + v(m)
there is no aliasing.

where
* * %« —1
IV. DETECTION OFDATA SYMBOLS v(m) = VPa}(m)s} [PS1S] + 071]
K
Consider our original signal model defined in (1) and repeated
here for convenier?ce ’ @ P : <Z \/ﬁak(m)bk(m)sk + W(m))
k=2

and g is defined in (4). Conditioned om;(m), v(m) is a
circularly symmetric, complex Gaussian random variable
with zero mean and variande, (m)|?3. The symbol error
In this section, we consider the detectionlgfm), the data probability is thus exactly the symbol error rate fdr-ary PSK

K
r(m) = VPay(m)bi(m)s1+» vV Pax(m)bi(m)s +w(m).
k=2

symbol of user one in symbol periad. modulation in Rayleigh fading with average SI¥Rremember
that Ef|a;(m)|?] = 1). The required result can be found in
A. An Optimal Detector [26]-[28]. []

The ML detector thus first forms the LMMSE estimate of
b1 (m) and passes this estimate to the minimum distance de-
tector. The key to optimality of the LMMSE receiver is that the

symmetric, complex Gaussian random variables with “lta symbols of interfering users are absorbed by the unknown

mean and unit variance. With these assumptiatsy) is a channels, and thus do not influence the likelihood function.
circularly symmetric, complex Gaussian random vector when

conditioned orb, () and B. Proposed Detector
E[r(m)|by(m), ar(m)]=VPay(m)by(m)s, Suppose now that we drop the assumption #agtn) is

E * b _p 2¢ < 4 PSS 4+ o2 known at the receiver and instead assume that the receiver is
[e(m)r* (m)lbs (m), a1 (m)]=Plaz (m)["s,1+ PS: 81 +o given the entire sequence of pilot symbols and received signals

Assume initially thata,(m) is known perfectly and that,
as before, az(m),...,ax(m) are independent, circularly

This leads to the following result: at the pilot points.
Theorem 3:The ML detector forb;(m), conditioned on Motivated by the above “optimal” detector and from practical
ai(m), first forms the estimate considerations, we propose the following detectorifgimn),

conditioned on the pilot information. The detector first forms
by (m) = VPa;(m)s; [PS1S] + 0T r(m)

wherea, (m) is the LMMSE estimate of(m) given the pilot
information. The detector then chooses the data symbol from
the M -ary PSK alphabet with phase closestiém).

by(m) = VPal(m)s: [PS1S; + 0’1 r(m)

and then chooses the data symbol fromtheary PSK alphabet
with phase closest thy (m).
The resultant symbol error probability is given by

1 VB sin( & The pilotinformation is used to obtain the best possible linear
Asin(+7) : A :
Pu={1- M) o . estimate of:; (m) as given in Section Ill. Because the detector
1+ Fsin”(g7) does not try to estimate the instantaneous power of the inter-

fering users g (m)|%, k = 2,..., K), the front-end LMMSE
(16) receiver is time invariant. Note that boi(mn) andb, (m) re-
1474 sinQ(%) quire the same front-end multiuser receiver and the complete
detector estimator can be implemented with the structure shown
whereg is the average SIR of (4). in Fig. 1.

%+1m_1 VB cos(§f)
i3
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C. Performance Analysis No pilot symbols
Let us first examine the output of the front-end LMMSE re- L] - [ [ T[] - [ 1|
ceiver in Fig. 1. Denoting this output ky (m), we have CTP - Los

1

ci(m) =V Ps} [PS1S] + %1 " r(m) <]

=ay(m)b(m)3 + v(m)

Data Data Pilot

where

Data Data

_ 2117t
v(m) = \/ﬁs’{ [PSIS’{ to I] Fig. 5. Impact of frame sizel() on processing gain.

K
: <Z VPay(m)bi(m)sy, + W(m)> : V. PILOT SYMBOL OPTIMIZATION
k=2

We are now in a position to consider the optimization of the

This quantity should be seen as the (scaled) LMMSE estimaterafe of inserting pilot symbols into the data stream of user one.
the product:., (m)b, (m). Observe that(m) is a circularly sym-  We will assume that the power spectral density of the channel
metric, complex Gaussian random variable wifv(m)] = processS,(w) is bandlimited towyp = 27fnp, and that
0 and E[jv(m)[*] = A. This residual interference plus noisepilot symbols are inserted frequently enough to avoid aliasing
process is also white, in the sense thé(m)r*(n)] = 0 for (2Lfyp < 1). Recall that under these conditions, the MSE
m # n. The finite dimensional distributions dfv(m)} are in the channel estimate does not depend on the position of the
not jointly Gaussian, however, and hence, the process is gata symbol in the frame.
Gaussian. The first question to consider is, what system parameters

Suppose for the moment that the residual interference pkisould be held constant as the frame sizds varied? It makes
noise process is, in fact, Gaussian, it will then be an independsahse to demand that the total spread bandwidth remains fixed,
and identically distributed sequence of circularly symmetrisp we will assume that the chip rate is constant. We would also
complex Gaussian random variables, each having mean zero Ekelto fix the rate that each user transmits data symbols and the
variances. In this case, we are left with nothing other than &ransmitted energy per data symbol.
standard, single-usé¥/-ary PSK system in a Rayleigh fading As L is varied, the symbol period and transmitted energy per
channel. Assuming that = IL + p with 1 < p < L, we ob- symbol will need to change (see Fig. 5). L&t,, Pr, andwy,
serve the following. be, respectively, the spreading gain, the transmitted energy per

1) The LMMSE estimator of; (), given the pilot informa- symbol, and the normalized Doppler frequency with frame size
tion{c; (IL), b1 (1L) : —o0 < I < oo}, is alsothe MMSE L- ThenPp, = (1 —1/L)Po, N = (1 = 1/L)No andwy, =
or conditional-mean estimator, and is precisely the esfil—1/L)woc, andNy, Pr, andwy, all decrease witlh.. Note that
mator presented in Section Ill. The MSK,, is also as the subscripto corresponds to a reference system with no pilot
given in Section III. symbols. We will drop the subscript for our reference system,
2) The optimal (ML) detector fo, (m) based om; (m)and and writeN' = Noo, P = Poo, aNdwnp = Woo.
the pilot information would select the symbol from the In this modeling framework, we are able to vakywhile

M-ary PSK constellation with phase closesbi¢m) = keeping the data rate of each user fixed along with the overall
at(m)ci(m). This is exactly the detector proposed eaSystem bandwidth. Asl. decreases, however, the effective

lier. spreading gain decreases, and this lessens the ability of the
3) The symbol error probability would be given by (16) witHeceiver to mitigate interference.
3 replaced with the modified average SIR Under the above assumptions, the average SIR of (17) is a
function of L defined as
— /3(1 — Ap)
1484,

3r.(1 - A
a7 Ay = P 2r) 7 AZ)

where
Under the Gaussian assumption, the error probability is a
. . i . 1 [t Sa(w)
monotonically decreasing function of the average SiRjiven Ap = — P\ e
in (17). Even when the residual interference plus noise process 2m o, 14 B2 S, (w)

Is not Gaussian, we W'.” assume thats a_useful pe”"m.‘aﬁ‘?e andjy, is given in (4) with P replaced byP;, and where the
measure. In the following section, we will look at mammmmqength of the signature sequencag)(is N
L-

~ over the rate of inserting pilot symbols. S

We conjecture that, in a large system, the residual noiseln the large system limitj;, — /32 where
plus interference process does indeed converge to a GausgiLan__ 1 [(1 —ar) <&> 1
process. Note that [29] studies the convergence of the distribu= 2 o?
tion of the residual interference at one point in time. We need to P2 p 1/2
establish the convergence of all finite dimensional distributions ~ + <(1 —ar)? <—§> +2(1+ar) <—§> + 1)
to multivariate Gaussian distributions. ¢ ¢
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14 : : ! , 7 . v

Average SIR (dB)
P

f=

Minimum Loss in SIR (dB)

; ; ; ; 0 ;
0 10 20 30 40 50 10° 107 107!
Frame Size (L) Normalised Doppler Frequency

Fig. 6. Variation of average SIRyJ with frame size ). Parameters are Fig. 8. Loss in average SIR from perfect knowledge case versus normalized
fvp = 0.01, = 0.7, andp/o? = 20 dB. Doppler (fxp). For all plots,a = 0.7.

60

SNR =20 dB i L 5o

Optimal Frame Size
Optimal Frame Size
@ IS
g 3

B
=3
T

10 0 0.5 1 1.5 2

Normalised Doppler Frequency System Loading (ct)

Fig. 7. Variation of optimal frame size with normalized Doppléx ¢ ). For

Fig. 9. Variation of optimal frame size with system loading.(For all plots,
all plots,ar = 0.7.

P/o? = 20 dB.

anda; = K/N;p = (1 — 1/L) ' In a large system, we
can thus express the average SIR of the proposed receiver as a
function of the system loading and SNR of the reference system,
the power spectral density of the channel process, and the rate
of inserting pilot symbols.

To proceed further, we assume ti$q{w) has the flat power
spectral density given in (14) witby p replaced byvy.. In this
case, the large system average SIR takes the simple form

—1
|4 Ler 1+iT .
™ /jL

Fig. 6 shows howy (L) varies with L for some typical pa-
rameter values. The main feature of the curve is that perf(']flig- 10. Loss in average SZIR_from perfect knowledge case versus system
mance is quite sensitive tb for values smaller than the op- oading {v). For all plots,P/o* = 20 dB.
timum value, and relatively insensitive for larger values. Also o o _
shown in Fig. 6 are equivalent simulation points for finite siz@Ptimal frame size increases significantly (less pilot symbols)
systems. These points are obtained by averaging 1000 real#&ihe SNR is increased. . _
tions of the average SIRy(L)) over the random signature se- [N Fig. 8 we examine the loss in average SIR for the opti-
quences. As the spreading gain increases, the mean valuét#ed pilot scheme compared to the case when the channel of
~(L) is observed to approach the asymptotic value from aboyger one is known perfectly. The loss in average SIR is defined
with close agreement even for moderate size systéms (50).  as the ratio ofs, (the average SIR with no estimation error and
Fig. 7 illustrates the variation in the optimal valuelofas a Nno pilot symbols) toy?(L). The loss was found to be quite in-
function of the speed of the fadingx p) and the SNRP/s?).  sensitive to SNR, so we show the results for one value only. The
As one would expect, the optimal value bfdecreases (more performance loss is quite significant for normalized Doppler fre-
pilot symbols) as the fading rate increases. We also see thatdquencies beyond 0.01.

Minimum Loss in SIR (dB)

Yi(L) = 8],

System Loading (o)
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In Figs. 9 and 10, some rather curious behavior is evideand the corresponding spectral density matrices
Fig. 9 maps the variation in optimdl as a function of the

o>
system loading«) and the normalized Doppler frequency. For Sy(w) = Z Ry(n)e*"‘“"
all values offn pp, the optimal frame size firstincreases and then n=—00
decreases asis increased, the turning point lying near= 1. o0 ,
Increasingw increases the multiaccess interference, and we Sxy(w) = Z Ry (n)e™*".
might guess that this would have the same effect as increasing n=—o0

the noise level or lowering the SNR. Far< 1 thisis clearly =~ We wish to estimatex(m) based on the entire observation
not the case. A larger system loading calls for a lower rate séquence as
insertion of pilot symbols. Of course, the key difference between

o>
the noise and interference is that the interference has structure, x(m) = Z H(n)y(m —n).
structure that our multiuser front end tries to exploit. Anincrease n=oo
in L corresponds to an increase in effective processing gain agh sequence of matrices. , H(—1), H(0), H(1) is the
t ) ) 1t

an increased ability to combat interference. The turning pOiﬁ‘ﬁpuIse response of a multi-input, multi-output linear time-in-

on the plot occurs when the effective system loading= 1. yariant (LTI) system. The frequency response of the system is
It is at this value of system loading that the single-symbol SIR, -

fr, is most sensitive to changes in system loading. K(w) = Z H(n)e9em,
n=co

We wish to select the LTI filter so as to minimize the trace of

We have considered a synchronous CDMA system whelfee error covariance matrix
each user’s signal propagates over a Rayleigh fading channel A—E . o *

. ) . = Xim) — X{(m X{m) —Xi(m .

before reaching the receiver. In order to aid the coherent de- [( (m) (m)) (x(m) (m)) ]
modulation of the data symbols, prearranged pilot symbols aiée have the following result [30]-{32]:
inserted into each user’s data stream.

We assumed a receiver structure as in Fig. 1, where tfle Result 3
front-end LMMSE receiver depends only on the signature The LMMSE smoothing filter is the time-invariant filter
sequences and average SNR of the users and is thus time 1
invariant. The output of the LMMSE receiver is then treated as K(w) = Sxy (w)Sy 7 (w)
a single-user Rayleigh fading channel. The pilot symbols ag@d the corresponding error covariance matrix is
used to obtain an estimate of the channel of the user of interest, -
and this estimate is passed to the data detector which makes A = o (Sx(w) = Sxy(w)Sy H(w)Shy (w)) dw.
decisions on the transmitted data symbols. T
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