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Exact Filters for Doubly Stochastic AR Models
with Conditionally Poisson Observations

Jamie Evans and Vikram Krishnamurthy

Abstract—In this paper the authors derive exact filters for the state of
a doubly stochastic auto-regressive (AR) process with parameters which
vary according to a nonlinear function of a Gauss–Markov process. The
observations consist of a discrete-time Poisson process with rate a positive
function of the Gauss–Markov process. The dimension of the sufficient
statistic increases linearly with the number of observed events.

Index Terms—Doubly stochastic models, exact filters, nonlinear filters,
Poisson observations.

I. INTRODUCTION

In this paper we derive optimal (minimum mean squared error)
recursive filters for random parameter auto-regressive (AR) models
in discrete time. The AR parameter varies as an exponential or
polynomial function of a linear Gaussian dynamical system—the
driving process. The observations form a doubly stochastic, discrete-
time Poisson process with rate proportional to the square of the
driving process.

The vector of statistics required to fully specify the filtered estimate
at a particular time is known as the sufficient statistic for the filter.
The new filters we derive here propagate a sufficient statistic with
a dimension which increases linearly with the number of observed
Poisson events.

Filtering of doubly stochastic Poisson processes has been con-
sidered in both continuous [1]–[5] and discrete time [6] for both
continuous and discrete-valued rate processes. General filtering re-
sults for doubly stochastic point processes in discrete time are
presented in [7]. Note that [7] uses a different interpretation of
a discrete-time Poisson process where in each time interval either
no events occur or one event occurs. Our model can be seen as a
generalization of this result which allows any number of events with
probabilities governed by the state of the driving process.

A key motivation for studying this problem stems from the authors’
recent study of random parameter AR models where the driving
process is observed in Gaussian noise [8], [9]. Several new finite-
dimensional filters were discovered for these models which is quite
surprising, considering the rarity of such filters. This paper provides
the analogs of these results for the Poisson observation case.

Doubly stochastic Poisson processes have been widely used in
many areas including optical communications and medical diagnosis
[1], teletraffic source modeling [10], and computer network analysis
[7]. The model we examine here also appears promising for appli-
cations to general multisensor applications such as image-enhanced
tracking [11]–[13]. In image-enhanced tracking a maneuvering target
is modeled by a Markov jump linear system (a random parameter
AR process driven by a finite state Markov chain). Image sensors
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are used to obtain target orientation measurements from which
information about the state of the Markov chain can be obtained.
These measurements are then used in conjunction with the noisy
observations of the state (position, velocity) of the target to estimate
the true state. It is usually impractical to implement the optimal filter
due to exponential growth in computational requirements with time
[14]. However, if the estimate is based solely on the image sensor
measurements then the optimal filter turns out to be finite-dimensional
[13], [15]. In the absence of state observations, we use the term
image-basedtracking.

In the model under consideration here the finite state Markov chain
representing the mode of the maneuvering target is replaced by a
continuous-valued random process. This more accurately reflects the
underlying continuum of possible modes or orientations of the target,
and in fact early work on tracking with orientation measurements did
not discretize the mode space [16], [17].

When a finite state Markov process is used to model the mode,
the mode is traditionally observed indirectly via a Markov (mode)
modulated vector Poisson process. This model is based on properties
of image sensors and image processing algorithms. In fact this is
also primary motivation for discretizing the orientation space. When
the orientation measurements are not discretized, the orientation
is assumed to be observed directly in Gaussian noise. While our
continuous mode and Poisson observation model does not exactly
match existing models, we believe there is much promise for other
“image-based” applications, especially considering the explicit form
of the optimal filters.

The paper is organized as follows. In Section II we define the
signal model followed in Section III by the introduction of a measure
change which simplifies derivation of the filters. In Section IV we
derive recursions for filtered densities of the linear Gaussian driving
process and the random parameter AR model. These recursions are
solved explicitly in Section V for the case when the AR parameter
is an exponential and a polynomial function of the driving process.
Section V contains the main contribution of the paper.

II. SIGNAL MODEL

All random processes are defined initially on the probability space
(
;F ;P ). We begin with the scalar linear stochastic difference
equation

xk+1 = Ak+1xk + wk+1 (1)

wherexk 2 R with x0 a Gaussian random variable with zero mean
and nonzero varianceQ0 andAk 2 R is deterministic. The process
fwkg is a sequence of independent, zero mean Gaussian random
variables andwk has nonzero varianceQk. The sequencefwkg is
assumed independent ofx0.

The observation process is the doubly stochastic, discrete-time
Poisson processfnkg; k � 0 with rate (Ckxk)

2 whereCk 2 R

is deterministic. We thus have

EfI(nk = n) j xkg =
(Ckxk)

2n

n!
exp[�(Ckxk)

2] (2)

whereE denotes expectation underP andI is an indicator function.
The processxk drives the scalardoubly stochasticAR process

sk+1 = fk+1(xk)sk + uk+1; s0 = 1 (3)

wheresk 2 R; fk : R ! R is a real valued function inx and k,
andfukg is a sequence of zero mean random variables independent
of x0 and the processeswk andnk.
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Define the sigma fields

Gk = �fx0; x1; � � � ; xk; n0; n1; � � � ; nkg

Yk = �fn0; n1; � � � ; nkg

with corresponding complete filtrationsfGkg andfYkg.
Aim: To derive a filter forsk, i.e., to compute the filtered estimate

ŝk = Efsk j Ykg. We assumes0 is known.
Remark 1: In the sequel we assume that for allk; uk = 0 a.s. so

that (3) is replaced by

sk+1 = fk+1(xk)sk; s0 = 1: (4)

No generality is lost due to the independence and zero mean con-
ditions on theuk process. This assumption and the fact thats0 is
known, means thatsk is Gk�1-measurable.

III. M EASURE CHANGE

In this section we introduce a change of measure which simplifies
derivation of the filtered densities. Similar methods are discussed for
both finite and continuous state-space models in [18].

Suppose on the probability space(
;F ; �P ); fxkg is a sequence
of independent Gaussian random variables with zero mean and
covariance matrixQk, andfnkg is a homogeneous Poisson process
with unit rate. Further assume that the processesxk and nk are
independent under�P .

For convenience define

 l(x) = (2�)�1=2Q
�1=2
l exp �

1

2
x
2
Q
�1

l ; x 2 R

�(y; n) =
yn

n!
exp(�y); y 2 R; n = 0; 1; � � � :

Write

�0 =
�((C0x0)

2; n0)

�(1; n0)

�l =
�((Clxl)

2; nl)

�(1; nl)

 l(xl � Alxl�1)

 l(xl)
; l � 1:

(5)

For k � 0 set

�k =

k

l=0

�l (6)

and define a new probability measureP on the premeasure space
(
;Gk) by setting theGk restriction of the Radon–Nikodym deriva-
tive of P with respect to�P to �k

dP

d �P
G

= �k:

The following result relating conditional expectations underP and
�P will be used repeatedly.

Lemma 2: If f�kg is aG-adapted integrable sequence of random
variables andH is a subsigma field ofGk, then

Ef�k j Hg =
�Ef�k�k j Hg
�Ef�k j Hg

(7)

where �E denotes expectation under measure�P .
Proof: See [18, Lemma 3.3].

We then have the following result which says that underP the
dynamic relations given in (1) and (2) hold. The proof is standard
(see [18] for example).

Lemma 3: Definewl = xl � Alxl�1; l � 1. Then under measure
P; fwlg is a sequence of independent Gaussian random variables with
zero mean and covariance matrixQl, andfnlg is a doubly stochastic
Poisson process with rate(Clxl)

2.
In this senseP represents thereal worldmeasure; however, we will

work with �P since the independence properties under�P simplifies
manipulations involving conditional expectations.

IV. RECURSIONS FORFILTERED DENSITIES

In this section we derive recursive expressions for unnormalized
conditional densities which will be used in the sequel to calculate
the finite-dimensional filters. While we will use the measure change
from Section III, these recursions can also be derived using standard
Bayesian techniques. We prefer the measure change approach as it is
somewhat simpler once the machinery of Section III is in place.

Let �k(x) and�k(x) denote the densities implicitly defined by

�Ef�kg(xk) j Ykg =
R

�k(x)g(x) dx (8)

�Ef�kskg(xk) j Ykg =
R

�k(x)g(x)dx (9)

for any measurable functiong : R ! R.
We then have the following theorem which gives recursive ex-

pressions for the above densities. The proof is simplified due to the
independence properties of thefxkg andfnkg sequences under�P .

The densities defined in (8) and (9) obey the following recursions
for k � 1:

�k(x) =
�((Ckx)

2; nk)

�(1; nk) R

 k(x� Akz)�k�1(z)dz (10)

�k(x) =
�((Ckx)

2; nk)

�(1; nk) R

 k(x� Akz)fk(z)�k�1(z)dz (11)

with initial values for the recursions given by

�0(x) =
�((C0x)

2; n0)

�(1; n0)
 0(x)

�0(x) = �0(x):

(12)

Proof: We prove the recursion for�k(x). The proof of (10) is
similar and hence omitted.

Once more letg : R ! R be a measurable test function. Using
(4)–(6) and the independence properties of thefxkg and fnkg
sequences under�P , we arrive at the following chain of equalities:

�Ef�kskg(xk) j Ykg

= �E �k�1
�((Ckxk)

2; nk)

�(1; nk)

 k(xk �Akxk�1)

 k(xk)

� fk(xk�1)sk�1g(xk) j Yk

=
1

�k(1; nk)
�E �k�1

R

�((Ckx)
2
; nk) k(x� Akxk�1)

� fk(xk�1)sk�1g(x)dx j Yk

=
1

�(1; nk) R R

�((Ckx)
2) k(x� Akz)

� fk(z)�k�1(z)g(x)dx dz

=
R

�((Ckxk)
2; nk)

�(1; nk) R

 k(x� Akz)

� fk(z)�k�1(z)dz g(x) dx: (13)

Sinceg is an arbitrary test function, equating the right-hand side of
(13) with (9) immediately yields (11).
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Now at k = 0 we have

�Ef�0g(x0) j Y0g = �E
�((C0x0)

2; n0)

�(1; n0)
g(x0) j Y0

=
1

�(1; n0) R

�((C0x)
2
; n0) 0(x)g(x)dx

which on equating with (8) gives (12). Similarly becauses0 = 1, it
can be shown that�0(x) = �0(x).

Remark 5: It is important to note that�k(x) is not the unnormal-
ized conditional density ofsk givenYk but is used for determining
the conditional mean estimate ofsk givenYk as follows.

Corollary 6:

ŝk = Efsk j Ykg =
�Ef�ksk j Ykg
�Ef�k j Ykg

= R
�k(x) dx

R
�k(x)dx

: (14)

Proof: The proof is immediate from Lemma 2 and the defini-
tions of�k(x) and�k(x).

Remark 7: The results we present can be readily extended to
derive finite-dimensional filters for the second moment ofsk. In
particular, if


k(x) dx = �E �ks
2

kI(xk 2 dx) Yk

then we have the recursion


k(x) =
�((Ckx)

2; nk)

�(1; nk) R

 k(x� Akz)f
2

k(z)
k�1(z)dz

+ Sk�k(x)

whereSk = Efu2kg is the covariance of the zero mean noise process
which we can no longer assume to be zero without losing generality.

V. FINITE-DIMENSIONAL FILTERS

We begin this section by giving an explicit solution to the recursion
of (10) for the unnormalized filtered density ofxk. This leads
immediately to a filter for estimating the rate of the discrete-time
Poisson process. This filter was derived in [6] where we refer the
reader for further details.

The main contribution of this paper appears in Theorems 10 and
12 where explicit solutions of (11) are given for the cases when
fk is an exponential (Theorem 10) and whenfk is a polynomial
(Theorem 12). These solutions are used to obtain optimal state
estimates for the doubly stochastic AR process of (3).

Theorem 8—Solution for�k(x): The unnormalized filtered den-
sity of xk is given by

�k(x) = x
M

L

j=0

Pk(j)x
j exp �

1

2
x
2
�1k (15)

where the sufficient statistic

(Mk; Lk; Pk(0); � � � ; Pk(Lk);
k)

is recursively computed fork � 1 as

Mk = 2nk; M0 = 2n0

Lk = Lk�1 +Mk�1; L0 = 0

Pk(j) = Uk

L

i=i

Pk�1(i)�(j +Mk�1; i);

P0(0) = (2�Q0)
�1=2

C
2n
0 e

�1


k = 2C2

k +Q
�1

k �RkA
2

kQ
�2

k
�1


0 = 2C2

0 +Q
�1

0

�1

where i� = max(0; j �Mk�1) and

�(r; s) =
r

s
(RkAkQk�1)

i
� r � s; R

1=2
k

Rk = 
�1k�1 +A
2

kQ
�1

k
�1

Uk = R
1=2
k Q

�1=2
k C

2n
k e

�1

with �(r; �) as defined in (21).
Further, the filtered estimate of the Poisson rate is

Ef(Ckxk)
2 j Ykg = C

2

k

L
j=0 Pk(j)� j +Mk + 2;


1=2
k

L
j=0 Pk(j)� j +Mk;


1=2
k

:

Proof: See [6].
Remark 9: The dimension of the sufficient statistic at timek is

the random variable4 + 2 k�1
j=0 nj . Strictly speaking this filter is

not finite-dimensional since there is a positive probability of the
dimension being arbitrarily large. The total computational cost for
filtering a block ofk observations isO(k( k�1

j=0 nj)
2). Note that
k

is independent of the data and can be calculated off-line.
A suboptimal filter with a fixed dimension sufficient statistic was

proposed in [6] using an Edgeworth series expansion to approximate
�k(x) by a fixed-order polynomial times a Gaussian. This reduces
the total computational cost toO(k).

Also note that as pointed out in [6], Theorem 8 can be extended
to the case wherexk is vector valued.

To obtain conditional mean estimates of quantities such asx2k and
sk we need the following normalization constant:

�k =
R

�k(x) dx

=

L

j=0

Pk(j)
R

x
j+M exp �

1

2
x
2
�1k dx

= (2�
k)
1=2

L

j=0

Pk(j)Efx
j+M g

wherex is a normal random variable with mean zero and variance

k on (
;F ; P ). Continuing on

�k = (2�
k)
1=2

L

j=0

Pk(j)� j +Mk;

1=2
k (16)

where�(r; �) is defined in (21).
We now turn to filters for the state of the random parameter AR

model starting with the case wherefk is an exponential.
Theorem 10—Solution for�k(x): Exponential Case:If fk : R !

R with

fk(x) = ek exp(akx
2 + bkx) (17)

then the solution to the recursion (11) is given by

�k(x) = x
M

L

j=0

Sk(j)x
j exp(Hkx

2 +Dkx) (18)

where the sufficient statistic

(Mk; Lk; Sk(0); � � � ; Sk(Lk);Hk;Dk)
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is recursively computed fork � 1 as

Mk = 2nk; M0 = 2n0

Lk = Lk�1 +Mk�1; L0 = 0

Sk(j) = Vk

L

i=i

j+M

l=j

Sk�1(i)�(i+Mk�1; l; j)

S0(0) = (2�Q0)
�1=2C2n

0 e�1

Hk = �
1

2
2C2

k +Q�1k �RkA
2

kQ
�2

k

H0 = �
1

2
2C2

0 +Q�10

Dk = RkAkQ
�1

k (bk +Dk�1); D0 = 0

where i� = max(0; j �Mk�1) and

�(r; s; t) =
r

s

s

t
Rs
k(AkQk�1)

t

� (bk +Dk�1)
s�t� r � s; R

1=2
k

Rk = A2

kQ
�1

k � 2ak � 2Hk�1
�1

Vk = R
1=2
k Q

�1=2
k C

2n
k e�1 ek exp

1

2
Rk(bk +Dk�1)

2

with �(r; �) as defined in (21).
Further, the minimum mean squared estimate ofsk is computed

from

ŝk = Efsk j Ykg = �k=�k

where

�k = �
�

Hk

1=2

e�D =4H
L

j=0

j+M

i=0

j +Mk

i

� Sk(j) �
Dk

2Hk

i

�(j +Mk � i; (�2Hk)
�1=2)

and�k is defined in (16).
Proof: The result follows inductively upon substitution of (18)

into the recursion of (11). For full details the reader is referred to
[19].

Remark 11: The form of�k(x) is a polynomial times a Gaussian
just as for�k(x). The dimension of the sufficient statistic at timek
is the random variable5+2 k�1

j=0 nj . Again the total computational

cost for filtering a block ofk observations isO(k( k�1
j=0 nj)

2). Note
thatHk andDk are independent of the data and can thus be calculated
off-line.

We next consider the situation wherefk is a polynomial.
Theorem 12—Solution for�k(x): Polynomial Case: If fk : R !

R with

fk(x) =

p

l=0

ek(l)x
l (19)

then the solution to the recursion (11) is given by

�k(x) = xM
N

j=0

Tk(j)x
j exp �

1

2
x2
�1k (20)

where the sufficient statistic

(Mk; Nk; Tk(0); � � � ; Tk(Nk);
k)

is recursively computed fork � 1 as

Mk = 2nk; M0 = 2n0

Nk = Nk�1 +Mk�1 + p; N0 = 0

Tk(j) = Uk

p

l=l

N

i=i

ek(l)Tk�1(i)�(l+ i+Mk�1; j)

T0(0) = (2�Q0)
�1=2C2n

0 e�1


k = 2C2

k +Q�1k �RkA
2

kQ
�2

k
�1


0 = 2C2

0 +Q�10
�1

and

l� = max(0; j �Mk�1 �Nk�1)

i� = max(0; j �Mk�1 � p)

�(r; s) =
r

s
(RkAkQk�1)

s� r � s; R
1=2
k

Rk = 
�1k�1 +A2

kQ
�1

k
�1

Uk = R
1=2
k Q

�1=2
k C

2n
k e�1

with �(r; �) as defined in (21).
Further, the minimum mean squared estimate ofsk is computed

from

ŝk = Efsk j Ykg = �k=�k

where

�k = (2�
k)
1=2

N

j=0

Tk(j)� j +Mk;

1=2
k

and�k is defined in (16).
Proof: The result follows inductively upon substitution of (20)

into the recursion of (11). For full details the reader is referred to
[19].

Remark 13: The form of�k(x) is once more a polynomial times
a Gaussian. The dimension of the sufficient statistic at timek is the
4 + 2 k�1

j=0 nj + kp which grows linearly with time and with the
number of observed events. The total computational cost for filtering
a block ofk observations is nowO(k( k�1

j=0 nj)
2 + k3).

VI. CONCLUSION

In this paper we derive exact filters for the state of a random
parameter AR process when the random parameter is either an
exponential or a polynomial function of a linear Gaussian driving
process. The observations consist of a discrete-time Poisson process
which has its rate modulated by the square of the driving process.
The new filters are specified by a sufficient statistic which increases
with time. In the exponential case, the growth is linear in the number
of observed events while in the polynomial case, the increase is linear
in both time and the number of events.

We note that it is also possible to derive a filter whenfk(x) is
a polynomial times an exponential. For generalfk(x) one could
approximate the function by a polynomial times an exponential
and develop suboptimal approaches along the lines of the extended
Kalman filter. This is a subject for future research.

APPENDIX I
NONCENTRAL MOMENTS OF GAUSSIAN RANDOM VARIABLES

Assume thatZ is a Gaussian random variable on(
;F ; P ) with
meanm and variance�2 and letE denote expectation with respect
to P . We are interested in evaluating the moments

mn = EfZ
ng = (2��2)�1=2

R

zn exp �
1

2
(z �m)2��2 :

We will use a binomial expansion to expressmn in terms of the
central moments ofZ which are then readily expressed in a simple
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recursive form. We have

mn = Ef(Z �m+m)ng = E

n

j=0

(Z �m)n�jmj

=

n

j=0

Ef(Z �m)n�jgmj =

n

j=0

�(n� j; �)mj

where

�(r; �) =
1; r = 0
0; r > 0 and odd
1 � 3 � � � (r � 1)�r; r > 0 and even

(21)

is the well-known expression for therth central moment of a normal
random variable [20, p. 24]. The moments can also be computed
recursively from

�(r; �) =
1; r = 0
0; r > 0 and odd
(r � 1)�2�(r� 2; �); r > 0 and even:

(22)
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An Exponentially Stable Adaptive Control for Force
and Position Tracking of Robot Manipulators

Luigi Villani, Carlos Canudas de Wit, and Bernard Brogliato

Abstract—The problem of controlling a robot manipulator while the
end effector is in contact with an environment of finite but unknown
stiffness is considered in this paper. An exponentially stable control law
is derived starting from a passivity-based position control algorithm. The
original position trajectory is scaled along the interaction direction so as to
achieve force tracking as well as position tracking along the unconstrained
directions. A passivity-based adaptive algorithm is designed to avoid the
explicit computation of the scaling factor, which depends on the unknown
stiffness of the environment, leading to time-varying PID control actions
on the force error.

Index Terms—Adaptive control, force control, manipulators, position
control.

I. INTRODUCTION

For the execution of robotic tasks requiring interaction with the
environment it is necessary to control not only the position of a
manipulator but also the force exerted at the contact. A controlled
interaction with the environment can be sought by imposing a suitable
dynamic behavior or impedance between contact force and manipu-
lator end-effector position [1]. Explicit force feedback measurements
are not strictly required in such a case, but a desired force cannot
generally be specified. If force regulation or tracking is desired, then
explicit control strategies making a proper use of force measurements
must be adopted. Hybrid [2] and parallel [3] position/force control
belong to this category.

For the design of force/position control algorithms the environment
may be assumed either rigid or compliant. In the rigid case, kinematic
constraints are imposed on the robot motion, and thus a desired
position trajectory and a desired time-varying force can be realized
by means of state feedback laws relying on the analytic description
of the environment geometry [4]. When the environment is not
rigid, its compliance characteristics must be properly taken into
account. Asymptotic stability of a force/position regulator without
exact knowledge of the environment stiffness has been proved [5]
by using a PI-force plus PD-position scheme. It must be pointed
out, however, that the transient behavior is uncertain as long as the
stiffness of the environment is not known. Adaptive algorithms with
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