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On the Teletraffic Capacity of
CDMA Cellular Networks

Jamie S. Evans and David Everitt

Abstract—The aim of this paper is to contribute to the un- been an explosion in CDMA research mainly concentrating on
derstanding of the teletraffic behavior of code-division multiple- the design and performance ana|ysis of receiverS, Coding and
access (CDMA) cellular networks. In particular, we examine g ation techniques and power control algorithms. Higher
a technique to assess the reverse link traffic capacity and its . .. .
sensitivity to various propagation and system parameters. layer issues such as call admission control, analygls of soft

We begin by discussing methods of characterizing interference handoff, and the effects of gradual overload and imperfect
from other users in the network. These methods are extremely power control on capacity have also begun to receive attention
important in the development of the traffic models of later (see [7] and [8]). Yet to be properly examined, however, is the

sections. We begin with a review of several existing approaches to . . -
the problem of handling other-cell interference before presenting teletraffic behavior of cellular networks employing CDMA.

a novel characterization of the interference in the form of an The traffic modeling of orthogonally channe_lized reuse-
analytic expression for the interference distribution function in  based cellular systems, such as those employing frequency-
the deterministic propagation environment. division or time-division multiple access, is well developed

We then look at extending the capacity analyses that assume [9]. The behavior of networks employing fixed channel as-
a fixed and equal number of users in every cell to handle the )

random nature of call arrivals and departures. The simplest Signment and dynamic channel assignment has been studied
way to do this is by modeling each cell of the network as and several approaches to analyzing handoff have been put
an independent M/G/oc queue. This allows us to replace the forward. Much of the success in this area results from the
deterministic number of users in each cell by an independent geparation of traffic analysis from transmission issues which

Poisson random variable for each cell. The resulting compound . .
Poisson sums have some very nice properties that allow us tOallows the mobile network to be treated as a conventional

calculate an outage probability by analyzing a single random sum. Circuit switched or open queueing network. Unfortunately,
This leads to a very efficient technique for assessing the reversein CDMA the separation between traffic and transmission

link traffic capacity of CDMA cellular networks. issues is not so clear with capacity being determined by the
interference caused by all transmitters in the network.
l. INTRODUCTION The goal of this paper is to contribute to the development

) . of a deeper understanding of the traffic behavior of CDMA
ODE-DIVISION multiple access (CDMA) is an altermna-ciyjar networks through the determination of analytic tools
\_ tive multiple-access strategy to frequency-division anfl, nerformance analysis and design of these networks. Such
time-division multiple access. Provided the synchromzatl% understanding is vital to sensible network operation under
and power cgntrol prqblems can be overcome, CPMA the stochastically varying loads that characterize teletraffic.
a very attractive technique for wireless communications. ItsThe paper is organized as follows. In Section II, the system
advantages over other multiple-access schemes include higal}ﬁrlcture and propagation models used throughéut the paper
spectral reuse efficiency, greater immunity to multipath fadingre introduced. Section Il examines methods of quantifying

gradual overload capability, simple exploitation of sectorizatlﬁe interference produced by mobiles in other cells of the

tion and voice inactivity, and more robust handoff procedures . . . .
[l [21. network. The main result is an analytic expression for the

As early as 1978, a CDMA system had been proposg('ismbu“on function of the interference from a mobile whose

. - ) o Bosition is a random variable in another cell of the network.
for mobile communications [3], however, interest was limite

until Qualcomm demonstrated the feasibility of implementin%%'vIOSt of the literature on traffic modeling of CDMA cellular

such a system in the late 1980’s [4]-[6]. Since then, there h tworks is based on “.‘Ode"”g gach (?ell as an mde_pendent
/G/oo queue. This literature is reviewed in Section IV
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® Base Station the transmitter and the receiver raised to an exponent [10],
[11]. If the transmitter and receiver are separatedihynits,
then the received power is given by

Pr(d) = PrPod ™ 1)

where Py is the transmit power anffy and~ are independent

of distance.F, is a function of carrier frequency, antenna
heights, and antenna gains, and we assume it is constant for all
paths between a mobile and a BSis the path-loss exponent
(PLE) which varies with antenna heights and is typically in
the range two-six.

The simple model of (1) is accurate for distances from 1
to 20 km with BS antenna heights greater than 30 m and
in areas with little terrain profile variation. Thus, the model
is reasonable for conventional cellular systems in flat service
networks and for investigating its sensitivity to propagatiodreas but is not accurate in city microcells which employ small
and system parameters. Numerical examples are presentegeils and low antennas.

Section VII before the paper is concluded in Section VIII. Empirical results have illustrated that the deviation from (1)

Before proceeding, it is important to highlight that the ideis normally distributed on a log—log plot [12, pp. 105-107].
of modeling cells in a CDMA network by//G /oo queues is The errors are due primarily to variations in terrain contour and
not new and has indeed been proposed by several authorgoaghadowing from buildings. Incorporation of this deviation,
discussed in Section IV. The main contribution of this paper @mmonly calledognormal shadowingleads to
the concept of working with distribution functions of other-cell _ 10
interferencpe rather thgn just means and variances. This allows Pr(d) = PrPod "10¢/ (2)

the Chernoff bound to be employed in the cellular context alvﬂ]erepo andry are as before and is a zero-mean Gaussian
provides an alternative to the Gaussian approximation. We alg@dom variable with standard deviatien typically in the

state and prove limit theorems for the case of a random numbgfge six to twelve Px(d) is now a random variable with
of mobiles in the system which demonstrate the asymptotiggnormal density

accuracy of the Chernoff bound and Gaussian approximation.

Fig. 1. Standard cellular layout.

1

o’z 2T

wherep = In PrPy — ylnd ando’ = ¢1n10/10.

h ThrouQT(l)Ut this WOLk' we cg_nsuier .tr]e s;andard _umfo[;m The spatial correlation between shadowing random variables
exagonal layout as shown in Fig. 1 with a base station ( @ significant over a distance of several meters [13] giving

at the center of every cell. The forward and reverse links u e to a local mean over small areas. Another important

gisjolint frequelncy baqgs aﬂd can thusllblc;:‘ ana}ly;ed indepl rr](')pagation effect is a fast fading about this local mean. The
ently. We only consider the reverse link as it is generaliy fading is due to the arrival of several replicas of the signal
accepted to be the_llmmng factor in capacity calculations. l\ﬂith varying time delays and is characterized by a Rayleigh
the sequel, all mention of path loss, signal to interference rafiguip, ion for the received signal amplitude. The fading is

(SIR), and capacity refers t_o th? reverse link. We also note tIT)acfsically independent over distances greater than half a carrier
we are solely concerned with direct-sequence CDMA syste velength

Unless otherwise stated, a mobile connects to the BS thaﬁn this paper, we do not model multipath fading
offers the least path loss at any given time. The chos ’ '

ef(lnzfu)z/ch'2

fr(z) =

Il. SYSTEM AND PROPAGATION ISSUES

It is
BS | | intain th ved si @nerally assumed that the use of techniques such as inter-
employs power control to maintain the received sign aving, diversity reception and equalization, as well as the

power at a constant level. We also assume t_he Sys.te_mellﬁployment of a RAKE receiver, greatly mitigate fast fading.
interference limited and that background noise is neghglblg\

) . t any rate, it is reasonable to assume that the effects of
In real systems, the background noise provides the referet&qg fast fading are encapsulated in thg/I, requirements
from which absolute signal powers are set.

of the system. This means that the propagation models used
Without loss of generality, we will work with normalized 4 bropad

X i : center on distance-driven path loss like (1) and the inclusion
values of distance, power, and interference. In particular,

8f lognormal shadowing as in (2).
power and interference values are normalized to the fixed value g g @

of the target received signal power. Furthermore, all distances
are normalized by the distance between closest BS’s in the
network of Fig. 1. Thus, the target received signal power is one
(normalized) unit of power and adjacent BS’s are separated 'ﬁy
one (normalized) unit of distance. In this introduction, we review several approaches to the

The simplest model for the mobile radio channel is eharacterization of interference in cellular CDMA networks.
propagation loss inversely proportional to the distance betwedafhile simulation studies allow a great deal of complexity

lll. | NTERFERENCECHARACTERIZATION

Introduction and Review
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to be included we are solely concerned with analytical arttamatic drop in the mean other-cell interference fribn= 1
numerical treatments of the problem. to M = 2 for typical values of the shadowing variance, while

The first paper to give an analysis of other-cell interferendbe improvement is small fod > 3.
in spread spectrum mobile systems was [3]. Although theln [19], there is no modeling of shadowing, but more de-
authors study a frequency hopped system their interfererteded and accurate versions of (1) are employed. The analysis
analysis in terms of SIR is applicable to direct-sequence syssumes a circular target cell plus wedge-shaped adjacent cells,
tems. The propagation model of (1) is assumed, which couplénis geometry allowing a fairly simple investigation into the
with perfect power control leads to a simple expression for tisensitivity of other-cell interference to user density profile
interference at the desired BS from a mobile station (MS) withariation. Power control errors are not examined and the results
known position in the network. The total interference from are all numerical.
cell other than the desired one is calculated by integratingln all of the above treatments, the randomness in user
the above interference expression mixed with a continuolaation within a cell has not been dealt with. Rather, some
and uniform user density over a circular region approximatirigsually uniform) continuous user density has been assumed
an hexagonal cell. An analytic result is only possible foand its product with an interference function integrated over
restricted values of the PLE and so the authors use numeride network. An alternative approach is to look at the inter-
integration to calculate the interference levels. The overdéirence as a function of a random position vector as in [20],
other-cell interference results after summing the contributioméere the MS location is assumed uniformly distributed over
from all interfering cells apart from the desired one. Thisach cell. In this paper, however, only the mean and variance
paper does not deal with the randomness of the user locatiofithe interference are required since a Gaussian approximation
and is equivalent to calculating expected values when edshused. This means the treatment is identical to [16], and it
user is independently and uniformly distributed over the cé$f only because of the slightly different angle taken that it is
of concern. mentioned here.

In [14], a very similar analysis to the above is presented Section IlI-B discusses a novel method of characterizing
with the exception that the fixing of the PLE at four leads tother-cell interference in CDMA cellular networks. As with the
analytic expressions for the interference from the circular celbove work, Rayleigh fading is not studied and perfect power
This is extended to an analytic result for the variance in [153ontrol is assumed. To begin, we work with the propagation

An extension of [3] which includes the effects of shadowingnodel of (1). Given uniformly distributed users and circular
and voice activity monitoring is found in [16]. A standardapproximation of the hexagonal cells, the distribution function
hexagonal cellular layout is assumed with the propagatiofi the interference from a MS in another cell is calculated
model of (2) that includes lognormal shadowing taken t@nalytically as a function of the PLE and the location of the
be independent on distinct paths. The total interference c&ll. The calculation of this distribution function compares to
a target BS is examined assuming that there are an eglddl] and [15], which assume a similar geometry and propa-
number of users per cell\) spread evenly and continuouslygation model yet only derive an expression for the mean and
over each cell. MS’s are initially assumed to connect teariance respectively for a fixed PLE of four. The results can
the BS offering the least path loss. If this BS is the targée extended to include lognormal shadowing similarly to [16],
then the interference is the fixed constant power specified gwever, unlike it, an expression for the distribution function
the power control, otherwise, the interference is a lognormell the interference is constructed. This distribution function
random variable with mean dependent on the position of theust be calculated numerically. Our numerical examples deal
MS. To simplify the analysis, an MS decides between thexclusively with the deterministic path-loss model, however,
closest BS (not including the target) and the target BS onlfigr completeness the details for the model including lognormal
An expression for the interference dependent upon the NsBadowing are given in Appendix II.
position is then multiplied by the user density (not a probability
density function) and integrated over the network to give tt® Deterministic Path Loss
total other-cell interference. This total interference is a random - «ider the situation shown in Fig. 2. Note that all coor-

variable due to the lognormal shadowing, and in the papghates and distances are normalized to the distance between

its mean and variance are calculated numerically as f“nCt'oéH]acent BS's as discussed in Section II. An MS is located at

?Jng':i?)nuzesr :egsa'xsiggpr&)gmoiﬂgg Ctg? ir?trgr?::)él:gedgn?&g’ y) within a hexagonal cell of the standard two-dimensional

h od -D) layout of Fig. 1. The MS is connected to the BS
characterized. with coordinates(0,0) and causes interference to the BS at

An extension of the reverse link analysis of [16] is discussed 0). Based on the power control assumptions and (1), the
in [17] and [18]. First, the propagation model is extended Zﬁorﬁalized) interference is '

take into consideration the dependence of the shadowing from
an MS to different BS’s. Second, rather than choosing between 22 4y v/2
the target BS and the closest BS, an MS can connect to any I(z,y) = <m)

of the nearesfi/ BS’s. This involves a fairly straightforward Y
extension of the analysis in [16] although the computationahd we would like to be able to calculate the distribution
complexity increases considerably to the extent that only mefumction of the random variabld(X,Y") given the joint
values for the interference are calculated. The results showliatribution functionf'x y- of the random variablex” andY’.

(3)
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Interfering MS >/\ 1 .
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Fig. 2. Interference in 2-D network.
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Fig. 4. Interference: approximation versus simulation.

In all future numerical calculationg, is chosen such that
This is in general a complicated problem, so to simplifg]e areas of th_e hexagona:l cell gnd apprommatlng circle are
. X . qual which givesbh =~ 0.53. Using this value forb, we
matters let us assume the joint density &f and Y is : AT, : .
mpare the approximate analytic distribution function with

. .CQ
un_lform_overthe hexagon. Due to the large number of possd%chet obtained via Monte Carlo simulation for the hexagonal
orientations of the hexagonal cell and to the dependence 0

cell in Fig. 4. The points shown on the graph are obtained

X andY, the anaIyS|s_ remains exceet;llngly tedious. The?r%lm simulation while the solid lines are the corresponding
problems can be eradicated by approximating the hexagoaa

cells by circles of (normalized) radidsas shown in Fig. 3. |st_ribution functiqns from (.4)' A.‘S the val_ues_ ofind PLE are
The orientation difficulty clearly vanishes and by havingnd ve_med., the a_nalytlc approximation remains in good agreement
b as parameters, a great deal of flexibility results. with simulation.
The derivation is carried out in the Appendix | and leads to
the distribution function of the interference received-at;, 0) IV. THE M/G /oo APPROXIMATION
from an MS that has a uniformly distributed location within
the circle of radiusb and center the origin. The distributionA- Introduction and Review
function is given below In this section, we present a technique that allows the tele-
0, 2 <0 traffic capacity of CDMA cellular networks to be estimated.
a(z), 0<z<(2+1)7" The simplicity of the technique arises from modeling each
Fo2) = ga(2), (& +1)—w <z<(2- 1)—”/ 241 cell of the network as an m_depen_deM/G/oo queue and
I ToNb .- b ’ consequently the theory of this section provides no input to the
. understanding of how calls should be admitted to the system.
L (5-1) "<= A more advanced network model which does impact on call
(4) admission control schemes is presented in [21] and [22].
We begin with a review of several papers [20], [23]-{25]
g1(z) = that employ theV/ /G/~c approximation and compare them to
b2(22/7 — 1)2 the model presented in this paper and in [26]. Note that in these
papers the generally distributed holding times are replaced by
holding times with a negative exponential distribution giving
1 2 a o M/M/oo queues. However, all their results apply in the
+ 20 [W = 222/ hy(2)ha(2) — 57 ha(2) geileréll case since it is only the stationary distribution of the
— arccos(hy(2)) — arcsin(zl/”hQ(z))} number of mobiles in the system that is used.
The first of the above papers to appear was [23]. The paper

P( Interference < z )

Fig. 3. Interference in 2-D network—approximation.

where
a2x2/v

9a(2) = %arccos(hl(z))

g3(z) = larccos(_l) + -2 Jar_ a2 looks only at the limiting reverse link and has as its aims
™ 26/ Arb? the development of a model that deals with variability in the
and number of users per cell, voice activity, and varialilg/ I,
—a? — b2 L p2p2/ requirements. Concentrating on a single cell (or sector), the
hi(z) = 2ab authors assume that no new call requests are denied and as
SN such model the cell as ai//M /oo queue. The number of
ha(z) = \/1 = hi(2). users in the celk is thus modeled as a random variable with
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a Poisson distribution having mean equal to the cell offeredsumption that each mobile is received at a fixed power
traffic. Voice activity is included simply by assuming eactevel involves calculating the probability that the interference
mobile is gated on with probability and off with probability gets too large. The total interference is calculated as the
1 — p. Voice activity is thus modeled by a Bernoulli randonsum of inner-cell interference and outer-cell interference. In
variable v. line with the AM/M /oo assumption, the contribution from
Based on fitting of empirical data on the receiveg/I, within the desired cell is taken as a Poisson random variable
values required to maintain frame error rates below 1%th mean equal to the cell offered traffic. The outer-cell
the authors model thés, /I, required by each mobile as ainterference is approximated as a Gaussian random variable
lognormal random variable. Since the data involves actuglth mean and variance obtained via simulation. A numerical
received values required for acceptable performance it mgghvolution of the Gaussian and Poisson densities then leads
include the effects of imperfect power control and varyingy the density function for the total interference. The traffic
propagation conditions. capacity corresponding to two QoS values is presented as a
With the above aims achieved, the authors essentially defig@ction of the PLE of the propagation model.
blocking to occur when the instantanealis/ I, requirements Many of the assumptions of [20] are as in [25]. Only the
of all users cannot be met. The blocking probability is boundggyerse link is considered, the QoS is based on a minimum SIR
for a range of cell offered traffics using a modified Chernoflguirement, perfect power control of received signal strength
bounq and (_:ompared to reSL_JIts froma\_Gaussian approximatjgrhssumed, and each cell acts as an indepentigit /oo
and simulation. Based on this comparison and the relative egggye. The internal and external interference are again treated
with which it is calculated, the Gaussian approximation is us%@parately—the internal a Poisson random variable and the

in the extension to multiple cells. external a Gaussian random variable. The mean and variance

The first assumption of the extension is that the number of yhe external interference are calculated by analytical and
users in each cell remains equal. The second assumption is erical methods based on the treatment in [16], which

thel_s users in every ou_ter ceI_I produce a com_bined interferenﬁfcludeS lognormal shadowing in the propagation model. The
equwalent_ tas users in the_lnner ce_II whergis an expectec_i blocking or outage probability is then given in the form of a
outer-cell interference fraction obtained from [17]. Acceptmanvoluti on as in [25]

the assumptions the multiple cell case reduces to the sing €rhe analysis of reverse link traffic capacity for CDMA

cell problem with an equ|yalent r_1umber of active _mob|Ies 0écellular networks developed in this paper and in [26] shares
(1+ f)k where as beforé is a Poisson random variable. The :

o T L many of the features of the above papers. In particular, we
analysis in the cellular situation is thus a combination of a

o ) o . ._employ the independerit//G /oo queue model for each cell,
dynamic single cell capacity analysis with the static, multipl . ; o S
: the service requirement is in terms of SIR, and each mobile is
cell capacity results of [17].

In [24], a computationally intensive procedure is present@é’ wer controlled to a fixed and equal power. .
for the evaluation of the teletraffic capacity of both forwar In the most_ge_nergl developme_nt [26.]’ arbitrary network
and reverse links in a CDMA cellular system. Each cell ii;ayouts, user d|str|_but|_0n_s, and traﬁlc profiles are_allowed, and
modeled as an independent/M /o queue and the quality ognormal shadowmg is mcluded.ln. the propagation modgl. If,
of service (QoS) criterion evaluated is the outage probabiliffVeVer. & Symmetric structure is imposed, the calculation of
or the probability that the SIR of a link is below a certair'€ Service measure reduces to evaluating the probability of a
threshold. A uniform hexagonal layout, a uniform density fofompound Poisson sum exceeding a certain threshold. If the
the mobile location within each cell, and a propagation modefopagation model does not include shadowing, an analytic
including lognormal shadowing are other features of the mod@fPression is available for the distribution of the random
presented. The main disadvantage of the approach presentegtffmands. _ _ _
this paper is the extreme computational effort required and it The Service measure is approximated using a standard
is debatable whether the approach is any more valuable iffigaussian approximation and bounded with the Chernoff bound
a straight out simulation. and results are presented for various propagation environments

In [25], a teletraffic model of the reverse link is con&nd system bandwidths.
sidered. The assumptions include uniform hexagonal layout,The approach in [20] is closest in spirit to this work,
equal traffic offered to every cell, uniform density for mobildut differs in several aspects. First, [20] treats internal and
locations within cell, two layers of interfering cells considerecgXternal interference separately thereby requiring a numerical
deterministic propagation loss only, and perfect power contr@®nvolution at the last step. This is avoided in our approach
of received signal strength. where there is no distinction made. Second, they give no

Despite the initial discussion of a model including a finit@nalysis of, or justification for, the Gaussian approximation
number of modems, trunk reservation for handovers, amdile we prove a central limit result for compound Poisson
mobility, the subsequent analysis does not allow for m@ums. Third, our analysis is strengthened with the use of
bility and assumes traffic levels which reduce the new cdlie Chernoff bound and an illustration of its asymptotic
blocking probability to a negligible figure. Thus, the systeraccuracy. Finally, we present several results that explore how
is actually modeled as a network of independénfAf/co  the service quality varies with the offered traffic per cell,
gueues. Once more the QoS measure concerns the probalsltstem bandwidth, and PLE. Such results are not given in
of the SIR being below a given threshold which with thany of the above papers.
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B. Model Description Let this number bel/. We have [20]

In this section, we discuss the assumptions leading to, and o0
justification for, modeling the CDMA cellular network as a P(M =m) = ZP(M =m| N =n) P(N=n)
collection of independend/ /G /oo queues. The assumptions n=0

of the traffic model we will use are as follows. i n! " e 4 AT

» The call initiation processes in each cell are modeled as B Z: ml(n — m)!z/} (L =g)ye nl
independent Poisson streams. . (Y™

e All arriving calls are accepted into the network and :e—wA—'
remain in the network for the full call duration (no m
blocked or dropped calls). which is again Poisson distributed but with reduced traffic

 Call durations are generally distributed and independdntd ¢ A. Thus, the gains from voice activity detection enter
of the arrival processes and other holding times. the formulation in a simple multiplicative manner.

» Mobility is not modeled, and, thus, the mobile is asso- Before proceeding to the next section, we make one final
ciated with the cell of its call initiation for the durationpoint. In the rest of this paper, it is assumed that the traffic
of the call. offered to every cell of the network is equal. We emphasize

The first and third points are standard assumptions froiat this equality applies to the parameters of a stochastic
teletraffic engineering that have been employed for sevefdpdel and is distinctly different to assuming an equal static
decades to model the stochastic nature of call arrivals l@Rd in every cell. This along with the infinite, symmetrical,
te|ephone exchanges and their Circuit h0|d|ng timeS. Tlﬁ:@”ular |ay0utS, and uniform user distributions that we have
second assumption iS reasonable for Systems Operating vﬂﬁ$umed allows all calculations to be performed for one cell of
CDMA since there is no theoretical hard limit on the numbdhe network only. The extension of this work to asymmetrical
of quasi-orthogonal codes available to assign to users. Froffyouts, offered traffic, and user distributions is straightforward
more practical point of view, it is reasonable to assume thi@Mm a theoretical point of view [26] and is not included here.
there are enough codes available so that the new call blocking

probability is negligible for moderate offered traffic. The final V. OUTAGE PROBABILITY: DEFINITION

assumption is a good approximation when the cell size is larg

compared to the distance a typical mobile will travel Olurin?hdicator which we call the outage probability. Calculation

a call. - .
The assumptions imply that each cell of our network bé)_f the outage probability reduces to the evaluation of the

haves like an independentf/G /oo queue [27]. This is one probability that a compound Poisson random variable exceeds

of the most basic queueing models and has a particulafl iven threshold. The analysis of such an expression is left

simple form for the steady-state distribution of the number the following section.

of active calls. If the mean time between call arrivals is L

1/xs and the mean call holding time it/us, then the A Definition

traffic to the system isA = A\/u Erlangs. LetN be the  The outage probability is defined as the probability that a
random variable representing the number of active calls inobile achieves an insufficient SIR. We recall that a similar
the system at steady state. Théh,has the Poisson distribu- performance measure is called blocking probability in [23],
tion however, we prefer to use the term outage so as not to confuse
this performance measure with that related to blocking of new
call requests.

To calculate the outage probabilify, we must determine
the stationary probability that an arbitrary mobile anywhere
in the cellular network receives a reverse link SIR that is
The independence of each cell in the network implies thésufficient for acceptable QoS. If certain symmetries exist,
the joint steady-state distribution for the number of activéenB will be the same for mobiles at any point in the network
calls in each cell is simply a product of Poisson distribilend we may just as well consider calls that are connected to

€ this section, we develop a simple expression for a QoS

AT
= C_A—

n!’

P(N =n)

tions. a particular BS. Associate with this target BS and its cell the
index 1.
Because of the standard power control assumptions, mobiles
C. Inclusion of Voice Activity Effects are received at BSwith one unit signal power. We can thus

sily translate the SIR requirement into a constraint on the

. . e
Now let us suppose that once a mobile call is connect(leoaaI interference at BS That is

to the network the mobile user is ON with probabilityand
OFF with probabilityl — . This model results when voice B=PI>T) (5)
activity monitoring is included and the subsequent suppression

of transmission by a mobile after voice inactivity is detectedvhere I is a random variable representing the total power
We are now interested not in the number of mobiles connectexteived at an arbitrary BS in the netwoikis a measure of
to a BS, but in the number of mobiles in a cell that are ONhe capacityof the CDMA system and is related to the system
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bandwidth ¥V Hz), the data rateR bps), and the required bit BS we havel = Zf;llj, where N is a Poisson random
energy to interference density rati@, /) by [16] variable with meanl9A4 and thel, are a sequence of iid
random variables with distribution function

W/R
~ By F(z) = 197 (u(z = 1) + 651 "(2) + 6" (2) + 67 "(2)).
(8)
B. Interference . : . b
In the aboveu(z) is the unit step function and’;”"(z) are

Suppose that there at®/ — 1 cells apart from cefl that . oo i (4)
generate significant interference at the target BS with Iabequ0 calculéte the outage probability as a function of the

2,---, M. Assume that the interference random variables f%rf“l‘ered traffic per cell we are faced with evaluating (7). Two

mobiles in cel] are independent and identically distributeq o, of approximating this probability are described in the
(iid) with distribution functionF; and the interference randomnext section

variables from different cells are independent. Remember that
for our model the possible sources of randomness in the Vi

interference include location, shadowing and voice activity. _ ) _ ) o
In the example of Section V-C and in the numerical re- !N this section, we consider techniques for approximating

. OUTAGE PROBABILITY: APPROXIMATIONS

sults of Section VII we focus on randomness due to position Na
only with voice activity readily incorporated as discussed in P Z X;>Tr
Section IV-C. J=1
giv(::r:/et?yNi calls in cell, the total power received at BSs whgre Xy, X are id r:_;mdom variab_le_s and’, is a
Poisson random variable with meahthat is independent of
M N the X;.
I=Y"3"1; Let us defineSy, = Y/ X; and denote the mean and
i=1y=1 variance of Sy, by E[Sx,] = ps and var(Sy,) = o2,

where;; is the interference from thgth mobile in celj and respectively. Then, iZ[X1] = px andvar(X:) = o%
the NV; are independent Poisson random variables with mean
A.

It is readily shown using characteristic functions that

ps = Apx
ot = Aok + i),

X A. Normal Approximation
I= Z:IIj () 1) The Approximation:The normal approximation is
Jj=
. . . . SNA—NS;NO]_
where N is a Poisson random variable with parameter T e (0,1)

MA and I; is a random variable with distribution function
M~ F; being a finite mixture of the original distribu-
tion functions. The symbak indicates equality in distribution.

where N'(0,1) is a zero-mean unit variance normal random
variable. We thus have

In (6), the interfering cells are combined and the total traffic [ N4 T — s
into the conglomeration considered. P X;>I'| =P(Sy, 21) =05~ erf( - )
Combining (6) and (5), we arrive at a simple expression for \J=1
the outage probability in the network where
r 1 * 2
N ) _ —t2/2
erf(x) = — e dt.
B=P|Y I;>T|. (7) () \/27r/0
i=l1 2) Asymptotic Behavior: Integral ATo  examine the

We now present an example to illustrate and clarify the ide@SYMPtotic behavior of this approximation as — oo, we
of the last sections. first assume thatd takes nonnegative integral values only.

Since the sum of Poisson random variables is also Poisson,

C. Example we have N N
Y A
Consider the standard 2-D layout of Fig. 1 widhErlangs of SN, = ZXJ' - ZYJ
traffic offered to each cell. Assume the mobile locations within It =1

each cell are iid random variables uniformly distributed over . .
. . . hereY:,Ys,---,Y, are iid random variables and
each cell and that the propagation environment is governed\%y

(). The interference resulting at some target BS from a mobile ) N
randomly located in a cell of the network is characterized by Yi = ZXJ'
the approximate distribution function of (4). If only the target J=1

cell and the first two surrounding rings of cells are taken to EYi] = py = px

contribute significantly to the total interference at the target var(Y1) = o5 = 0% + i
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The sum with a random number of summands has beehere® is real and

transformed into a standard deterministic sum of iid random oy, Mx(8)
variables for which we can apply the central limit theorem My(0) =log E[c""] = "> — 1
(CLT) in its simplest form. The CLT [28] states that provide

d . . :
1y is finite ande2. is positive and finite is the log moment generating function (LMGF) of thigwhich

is related as shown to the LMGF of the;, Mx(6).
Snay — Apy _ SNy — ks = N(0,1) asA — oo ProvidedMy (8) < oo for all 6 and thatY; is not a bounded
oy VA o5 ’ ' random variable in the sense thBtY; € (a,b)) < 1 for all
The symbol= refers to convergence in distribution. finite o andb, then from Cramer's Theorem [29]
3) Asymptotic Behavior: Real AWe now consider the 1 1
case whenA is a positive real. As no appropriate result Jim ~log P <ZSNA > 77) =—1(n) ©)
could be found in the literature we prove the required CLT
here using characteristic functions. For convenience, we use n > uy. Moreover, for all positive integralt
the following notation:

1 1
E[X] = my 1 10gP<ZSNA > 77) < —I(n).
B[x7] =

The above bound is commonly called the Chernoff bound and

VA=a is directly applicable for any positive real value df. To
so thatus = Am; ando? = Am2. extend the limit result of (9) to the case whehis real is
Theorem 1:1f m; is fiﬁgite and72nQ is positive and finite more involved, but is readily accomplished either by modified
then " use of Cramer's Theorem or by direct application of the more
S — Am powerful Gartner—Ellis Theorem [30], [31].
% = N(0,1) asA — cc. Applying the above to our problem, we have
2
—Am . 1 F
Proof: Let Z4 = SVZT:I with ZlogP(SNA >T) < _I<Z>
¢z, (t) = Ele"?4] . r
_ e—iozrnl/rnz eA(qSX(t/ozrnz)—l) = Helf |:MY(9) - QZ:|
where ¢x(s) = E[c!**1]. This follows by conditioning and —inf {@MX@) —1— 95}
use of elementary properties of characteristic functions. o A

2
Becausem; < oo and from Cramer's Theorem the bound becomes tight as

itmy 2 t2 A — oo with T'/A held constant.
t =1 - - _ o (+
¢x(t/am2) + ams 24 2A4Am3 e2(t/ams)
wheree(s) — 0 ass — 0. Thus VII. NUMERICAL EXAMPLES

In this section, we use our previous results to examine
the traffic performance of our CDMA cellular system. After
describing the network models used, we compare calculated
outage probabilities by simulation with both the Chernoff

+2
2 —EQ(t/arng)
—t /262m§ )

Pz, (t) =
Fix t € (—o0,+o0) so that

I P zjw—zzez(t/anzz) bound and Gaussian approximation for some representative

Al $74(t) = ¢ o cases. The variation in performance with both PLE and system
— /2 size (I') is then investigated.

by continuity of the exponential at zero. A. Network Model

Finally, by the Continuity Theorem for characteristic func-

tions Z1 = A(0,1) as required. The network model used in calculations is as in

Section V-C. In particular, the distribution function of
the interferers is given by (8) witth = 0.53. It should

_ N “be remembered that this distribution function is implicitly
We now give an upper bound on the outage probability usiRgpendent on the PLE.

discussed in the context of elementary large deviations theopynge 0.01% to 10% with the offered traffic limits altered to
Consider first the case when takes on positive integer produce this range for each scenario considered. The two main
values and the Pmison sum can be rewritten as the dete”’?)&rameters we have to vary are the PLE Endhe PLE used
istic sum Sy, = > 7, ;. The large deviation rate functionjies in the set{2,3,4,5} with four being a typical value for
is defined by existing macrocellular systemis takes values if20 100 500}
I(t) = sup[6t — My (6)] which might correspond to systems with,/I, = 7 dB,
6 R =10 kbps, andW = 1, 5, and 25 MHz, respectively.

B. Large Deviations Bound
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Fig. 5. Outage probability versus normalized traffic per ¢&ll = 100, Fig. 6. Outage probability versus normalized traffic per qdll = 20,
PLE = 4). PLE = 4).

In all plots, the ordinate represents the base 10 logarithm -1 ; ' ; ERE
of outage probability while the abscissa corresponds to the kS A
offered traffic per cell divided byl’. The traffic axis is . -15 ¢ // c Fa
thus normalized by the size of the system making capacity= “ 7
comparisons for different straightforward. Simulation points '_g 2f / )
are accurate to within plus or minus 20% with 95% confidence:2 / T

For a given set of system parameters and an offered trafficc 25 S |
value, the simulation point is generated directly using a . 7 ? X
Monte Carlo technique. This involves repeatedly generating*g ) { iy 1
a random (Poisson) number of users for each interfering celf® 35 f ; |
and a random location (uniform over each cell) for eachd =7 [PLE=2 - ! D x
mobile. In each trial, the total interference at the target BS is 4 ZPLE =3 v/ |
determined from which the outage condition can be checked. PLE=4 = T
The simulated outage probability is then obtained by taking 4 5 [PLE=5 = ,
the ratio of the number of outage events to the total number ' 0.3 0.4 05 0.6
of trials. Normalised Traffic per Cell

. L . : . Fig. 7. Variation of out bability with PLEE (= 100, Chernoff bound).
B. Comparison of Bound and Approximation with Simulation ' anation otoutage probabiity wi ( emoff bound)

In Figs. 5 and 6, we compare the Chernoff bound al
Gaussian approximation to simulation for the 2-D networ,
with PLE = 4, I' = 100, andI" = 20, respectively.

The following points gre evident. . C. Variation of Bound with System Parameters
« The bound overestimates outage probability by about an

order of magnitude in both cases. This translates to under” igs.; and 8 S_hO\?’ ?owhthe traffic capl)(acity r:/aries IWith
estimating traffic capacity by about 10% in Fig. 5 ang’l‘E andl’ respectively for the 2-D ne_twor - In these plots,
15% in Fig. 6. the Chernoff bound was used to obtain values for the outage

« The accuracy of the approximation decreases as tR@Pability. We make the following points.
offered traffic, and, thus, the outage probability decreases® The capacity (for a fixed outage probability) is signifi-
The effect is less severe for the largesince in this case cantly reduced as the PLE decreases. .
we are effectively summing a larger number of random ¢ The economy of scale for systems with ladgeesults in

tail of the sum. is important in comparing narrow-band CDMA (loit)

to wide-band CDMA (highl’).

teriorate rapidly. In the latter case, the bound is a much
afer and more robust technique.

The above points give some heuristic tips on when the
Gaussian approximation is reasonable. Clearly, for large values
of I and high-outage probabilities, the approximation is ex-
cellent, however, for low values df(<20) and or low-outage  In this paper, we have presented an analysis for the reverse
probabilities(<0.1%) the accuracy of the approximation mayink traffic capacity of CDMA cellular networks.

VIIl. CONCLUSION
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1 : , origin, the interference caused at the BS with locatjarr)
7/ is given by
-15 ¢ /JI m R ~
>~ ; ; T
= * 7 I(r,¢) =
;:s 2 * ” . (r.¢) <\/7’2 + a? + 2ar cos d))
F.é 25+ / o and the problem now is to calculate the distribution function of
% : the random variabld(R, ®) where R and ® are independent
g 3 [ random variables with readily calculated distributions. The
5 l,f' i problem is formalized below.
o0 -3.5 r /Gamma= 20 —— / 5 1
3 Gamma = 100~ / A. Problem Formulation
-4 1 Gamma =500 - ¢ | Define the nonnegative, real valued functibioy
-4.5 : : : : 9

r

v/2
—_ 0 10
1+27‘COS(/)+7’2> e (10)

0.3 0.4 0.5 0.6 I(r,¢) = <
Normalised Traffic per Cell

Fig. 8. Variation of outage probability with (PLE = 4, Chernoff bound). where}r € [0,3] and ¢ € [0,]. We will always assume that
0 < p <1

N _ o ~ Let R and® be independent random variables with marginal
Initially, we provided a characterization of other-cell injstribution functions

terference in CDMA cellular networks that was crucial to
the development of the subsequent traffic analysis. The end 072 y r<0
products were expressions for the distribution functions of the Fr(r)y=<r/p%, 0<r<p (11)

interference when a mobile’s location is a random variable 1, psr
within a cell. These expressions are analytic for the determinigs
tic propagation environment, but involve numerical integration
when shadowing is introduced. 0, » <0
The remaining analysis and results contributed toward the Fo(p)=<S ¢/m, 0<Pp<m (12)
understanding the traffic capabilities of CDMA cellular net- L, T < ¢

works. The key assum_ption was that each cell can me.an")gfn: Find the distribution function of the random variable
fully be modeled as an independevit/ G /oo queue. After dis- I(R, ®)

cussing the justification for and consequences ofith&7 /oo Solution: Fix ¢ € [0, 7] and definel,(r) = I(r, $)
model, an expression for outage probability was developed inLemma 2: I,(r) is s’trictly increasing or{0, /] f’or all ¢ €

terms of a compound Poisson random variable. Two techniqiﬁs
were then applied to approximate the outage probability along Proof:
with corresponding asymptotic results. The numerical results '
gave an initial estimate of the traffic capacity of CDMAdI,(r) yr7 (1 + 7 cos )
o . = >0, for re(0,7.
networks and demonstrated the sensitivity to propagationdsr (14 2rcos¢ + r2)1+7/2)

parameters and system processing gain.

The primary shortcoming of the preceding analysis is that it _ i i i -
provides no information on how a network operator should #("") is strictly increasing from/;,(0) to I,(5), and stan-
control call admissions to the network so as to provide dard transformation techniques can thus be applied to calculate

more robust quality of service. This issue is addressed in [2{1f distribution function off,(£), where & is distributed as

and [22]. in" (11). In particular, we have
0, z<0
APPENDIX | Fr(z) = P(I4(R) < 2) = { FR(1;'(2)), 0<z<I4(B)
DERIVATION OF INTERFERENCEDISTRIBUTION FUNCTION 1, 1(8) < =

Before proceeding, note that by symmetry it is only NeCeRhere the inverse functiod; *(z) is well defined onz €

sary to consider the upper semicircle in Fig. 3. Furthermorg, - N
only the ratio ofe andb is relevant and in this Appendix we tff));lsél/\il)i%gecause of the monotonicity 8f(r). Itis calculated

seta = 1 and b = 3 without loss of generality. The final
distribution function is readily transformed back in termsaof 2 v/2
andb by setting = b/a. It is also expedient to work in polar Iy(r) = <m> =z

coordinates since the random variablesand ¢ defined by

R=+vX?2+Y?and® = arctan(Y/X) are then independent.for r taking into consideration the allowed values of the
The situation is then as shown in Fig. 3. If the MS is at locatiorariables involved.

(r, ¢) in polar coordinates and is connected to the BS at theWe are thus led to the following lemma.
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Lemma 3: 1 1 1
2) = —a )+ VA -1
. oo g3(z) - fchcos< 2/3> + oz L
Fr,(z) = { 1(z), 0= 2<14(f) and
1, I,(8) L 2
+8) 1= %4 B2
where ha(z) = 20
i) = B30 = 222 cos? 211 = 22) ha(e) = \/1- 1202,
+22%/7 cos p(1 — 22/ sin? $)H/?)
with the provision that wherds(8) > 1, Fy, (1) = 1/(45> APPENDIX II
cos? ). ‘ INCLUSION OF LOGNORMAL SHADOWING

We can considet;, (») as a distribution function condi- In the following, we takex as the position vector an- ||
tioned on the value of. That is, I, (2) = Fre(z | ¢). A as the Euclidean norm. Equation (3) becomes
simple unconditioning then allows us to write

= i}
B 1w = (=)
:/ Fre(z | ¢)Fe (do) which represents the interference in the non shadowing envi-
1‘;5:077 ronment to a BS ak; (BS;) from an MS atx connected to
= —/ Fro(z | ¢)d¢ a BS atx; (BS;).
T Je=0 We are interested in extending the interference results of
0, z<0 Section 1lI-B and Appendix |, which were based on the
)Ly (= 9) de, 0 < 7z < Io(p3) propagation model of (1), to include shadowing effects as
T 2 (f2(2) + f;;(z) fi(z ) de), Io(B) < z<I:(B) givenin (2). With reference to the latter equation, we assume
1, L(3) <=~ Fy, v, ande are constant over all paths and that the shadowing

random variables are independent for different paths.
. Initially assume that an MS at connects to the closest
faolz) = arccos(ﬁ (= -1)- 1). _BS, BS, and suppose we are interested in the subsequent
2p interference’; ;(x), produced at a target BS, BSf x; = x;
then the interference is clearly one unit since the MS will
connect to the target BS and be power controlled to one unit

where

If I,(8) > 1, then

1 & signal power. Ifx; # x;, then
Fr(1) = = <f2(1) +/ 1/(4/3% cos® ¢) d¢>. K
£2(1) Jij(x) = L; ;(x)10&—¢)/10
The integrals involve terms that can be integrated using :]ijj(x)mC/lO (14)
elementary techniques. We leave the details to the interested
reader. We are thus led to the following result: where ¢ as the difference of two independent zero-mean

Theorem 4: The distribution function ofl(R,®), where Gaussian random variables is a zero-mean Gaussian random
I(-,-) is defined in (10) and wher& and ® are independent variable with varianceo?.
random variables with marginal distributions given in (11) and Suppose, however, that rather than connecting to the closest

(12), is given by BS, an MS is linked to the BS offering the least path loss. It
3 is practically infeasible to allow connection to any BS in a
Fr(z) = P(I(R,®) < 2) large network and it is sensible to consider choosing between
0, z<0 only the M closest. In any cask/ can be chosen so that there
a1(2), 0<z< (B is an arbitrarily high probability of théestBS belonging to
=q92(2), Io(B) < 2<Iz(B), 2#1 (13) the M closest. This is the approach taken in [17] and [18]
g3(2), 1<), z= although as already mentioned, a fairly complicated analytical
I, L:(B) < 2 and numerical procedure, results only in mean values for the
where other cell interference. We prefer the simpler approach of [16]
2/ and [20], where the choice is made between the closest BS
az)=——— and the target BS. As most of the other cell interference to
32 (227 = 1) the target BS comes from MS’s near its cell boundaries this
1 seems a reasonable approximation.
g2(z) = —arccos (h1(2)) Once more we assume that if the target BS; BS the
1 o2/ 1, closest BS, then the MS connects to it and causes one unit
- ng(z) T = 227 hy (2)ha(2) 3° ha(z) of interference. Failing that and with B$he closest BS, the

interference produced by an MS =tis given by

— arccos(h(z)) — arcsin(z'/Vhy(z))
Jij(x) = min(1, I; ;(x)10¢/*°) (15)



164

which is simply a truncated version of (14). One significant
advantage of (15), apart from being a more accurate model of
the system operation, is that the moment generating function &
the interference exists only in the truncated case. The momepj
generating function is used for obtaining bounds on sums of
interferers in later sections. 3]

Given (15) our aim, just as in the last sections, is to allow
the position vectox to be a random variable taking values
in the cell corresponding to the BS ®{. Denote this random
position vectorX and assume it has distribution functid®;
defined on cell Our problem then is to find the distribution
function of J; ;(X), which means calculating the distribution [5]
function of I; ;(X)10¢/0.

Given the position vectax, the distribution function of the
random variabld; ;(x)10¢/1°, which we treat as a distribution
function conditioned onX, is

(4]

(6]

[7]
(8]
El

1 Inz — InT;;(x)
F(z|x)==-+ erf<—’J> (16)
2 V280
[10]
where [11]
erf(y) = L r et /2dy
\/ﬂ o : [12]

Alternatively, we can view (16) as a distribution functiorPs]

conditioned onl; ;(X) [14]
1 ofInz—Inl;; (15]
F(Z | I%]) = 5 +elf<\/_24/30> (17)
[16]
In the above,# = In10/10 and v/20 is the standard
deviation of ¢ in (15). [17]
Equation 16 can be unconditioned & given Fx
(18]
P = [ PGP (@ 18)
cell;

[19]
while (17) can be unconditioned ah ;(X) given its distri-
bution function F7, . [20]

F() = [ PG ), D). (19)
I [21]

In the abovef7;, ; comes from (4) (remembering that this

is an approximation and is only valid wheX is uniformly [22]
distributed) witha replaced by||x; — x;||.
The final form for the distribution function of; ;(X) is [23]
given by
0, 2<0 [24]
Fj (2)=4F(2), 0<z<1 (20)
1, 1<% [25]
and results because of thein operator in (15). [26]

In summary, (20) gives the distribution function of the
interference produced at BSrom one MS with location in
cell; distributed asfx. It is equivalent to (3) when lognormal 27]
shadowing is modeled as above.
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