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On the Teletraffic Capacity of
CDMA Cellular Networks

Jamie S. Evans and David Everitt

Abstract—The aim of this paper is to contribute to the un-
derstanding of the teletraffic behavior of code-division multiple-
access (CDMA) cellular networks. In particular, we examine
a technique to assess the reverse link traffic capacity and its
sensitivity to various propagation and system parameters.

We begin by discussing methods of characterizing interference
from other users in the network. These methods are extremely
important in the development of the traffic models of later
sections. We begin with a review of several existing approaches to
the problem of handling other-cell interference before presenting
a novel characterization of the interference in the form of an
analytic expression for the interference distribution function in
the deterministic propagation environment.

We then look at extending the capacity analyses that assume
a fixed and equal number of users in every cell to handle the
random nature of call arrivals and departures. The simplest
way to do this is by modeling each cell of the network as
an independentM=G=1 queue. This allows us to replace the
deterministic number of users in each cell by an independent
Poisson random variable for each cell. The resulting compound
Poisson sums have some very nice properties that allow us to
calculate an outage probability by analyzing a single random sum.
This leads to a very efficient technique for assessing the reverse
link traffic capacity of CDMA cellular networks.

I. INTRODUCTION

CODE-DIVISION multiple access (CDMA) is an alterna-
tive multiple-access strategy to frequency-division and

time-division multiple access. Provided the synchronization
and power control problems can be overcome, CDMA is
a very attractive technique for wireless communications. Its
advantages over other multiple-access schemes include higher
spectral reuse efficiency, greater immunity to multipath fading,
gradual overload capability, simple exploitation of sectoriza-
tion and voice inactivity, and more robust handoff procedures
[1], [2].

As early as 1978, a CDMA system had been proposed
for mobile communications [3], however, interest was limited
until Qualcomm demonstrated the feasibility of implementing
such a system in the late 1980’s [4]–[6]. Since then, there has
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been an explosion in CDMA research mainly concentrating on
the design and performance analysis of receivers, coding and
modulation techniques and power control algorithms. Higher
layer issues such as call admission control, analysis of soft
handoff, and the effects of gradual overload and imperfect
power control on capacity have also begun to receive attention
(see [7] and [8]). Yet to be properly examined, however, is the
teletraffic behavior of cellular networks employing CDMA.

The traffic modeling of orthogonally channelized reuse-
based cellular systems, such as those employing frequency-
division or time-division multiple access, is well developed
[9]. The behavior of networks employing fixed channel as-
signment and dynamic channel assignment has been studied
and several approaches to analyzing handoff have been put
forward. Much of the success in this area results from the
separation of traffic analysis from transmission issues which
allows the mobile network to be treated as a conventional
circuit switched or open queueing network. Unfortunately,
in CDMA the separation between traffic and transmission
issues is not so clear with capacity being determined by the
interference caused by all transmitters in the network.

The goal of this paper is to contribute to the development
of a deeper understanding of the traffic behavior of CDMA
cellular networks through the determination of analytic tools
for performance analysis and design of these networks. Such
an understanding is vital to sensible network operation under
the stochastically varying loads that characterize teletraffic.

The paper is organized as follows. In Section II, the system
structure and propagation models used throughout the paper
are introduced. Section III examines methods of quantifying
the interference produced by mobiles in other cells of the
network. The main result is an analytic expression for the
distribution function of the interference from a mobile whose
position is a random variable in another cell of the network.

Most of the literature on traffic modeling of CDMA cellular
networks is based on modeling each cell as an independent

queue. This literature is reviewed in Section IV
before a new model based on this assumption is presented
in Section V. From the network operator’s point of view, the
model corresponds to a system where no calls are blocked
and no calls are terminated prematurely. From a mathematical
point of view, the number of users in each cell becomes a
Poisson random variable and the total interference can be mod-
eled as a compound Poisson sum. Methods for approximating
tail probabilities associated with these sums are discussed in
Section VI. These methods lead to a very efficient technique
for assessing the reverse link traffic capacity of CDMA cellular
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Fig. 1. Standard cellular layout.

networks and for investigating its sensitivity to propagation
and system parameters. Numerical examples are presented in
Section VII before the paper is concluded in Section VIII.

Before proceeding, it is important to highlight that the idea
of modeling cells in a CDMA network by queues is
not new and has indeed been proposed by several authors as
discussed in Section IV. The main contribution of this paper is
the concept of working with distribution functions of other-cell
interference rather than just means and variances. This allows
the Chernoff bound to be employed in the cellular context and
provides an alternative to the Gaussian approximation. We also
state and prove limit theorems for the case of a random number
of mobiles in the system which demonstrate the asymptotic
accuracy of the Chernoff bound and Gaussian approximation.

II. SYSTEM AND PROPAGATION ISSUES

Throughout this work, we consider the standard uniform
hexagonal layout as shown in Fig. 1 with a base station (BS)
at the center of every cell. The forward and reverse links use
disjoint frequency bands and can thus be analyzed indepen-
dently. We only consider the reverse link as it is generally
accepted to be the limiting factor in capacity calculations. In
the sequel, all mention of path loss, signal to interference ratio
(SIR), and capacity refers to the reverse link. We also note that
we are solely concerned with direct-sequence CDMA systems.

Unless otherwise stated, a mobile connects to the BS that
offers the least path loss at any given time. The chosen
BS employs power control to maintain the received signal
power at a constant level. We also assume the system is
interference limited and that background noise is negligible.
In real systems, the background noise provides the reference
from which absolute signal powers are set.

Without loss of generality, we will work with normalized
values of distance, power, and interference. In particular, all
power and interference values are normalized to the fixed value
of the target received signal power. Furthermore, all distances
are normalized by the distance between closest BS’s in the
network of Fig. 1. Thus, the target received signal power is one
(normalized) unit of power and adjacent BS’s are separated by
one (normalized) unit of distance.

The simplest model for the mobile radio channel is a
propagation loss inversely proportional to the distance between

the transmitter and the receiver raised to an exponent [10],
[11]. If the transmitter and receiver are separated byunits,
then the received power is given by

(1)

where is the transmit power and and are independent
of distance. is a function of carrier frequency, antenna
heights, and antenna gains, and we assume it is constant for all
paths between a mobile and a BS.is the path-loss exponent
(PLE) which varies with antenna heights and is typically in
the range two–six.

The simple model of (1) is accurate for distances from 1
to 20 km with BS antenna heights greater than 30 m and
in areas with little terrain profile variation. Thus, the model
is reasonable for conventional cellular systems in flat service
areas but is not accurate in city microcells which employ small
cells and low antennas.

Empirical results have illustrated that the deviation from (1)
is normally distributed on a log–log plot [12, pp. 105–107].
The errors are due primarily to variations in terrain contour and
to shadowing from buildings. Incorporation of this deviation,
commonly calledlognormal shadowing, leads to

(2)

where and are as before and is a zero-mean Gaussian
random variable with standard deviation typically in the
range six to twelve. is now a random variable with
lognormal density

where and .
The spatial correlation between shadowing random variables

is significant over a distance of several meters [13] giving
rise to a local mean over small areas. Another important
propagation effect is a fast fading about this local mean. The
fast fading is due to the arrival of several replicas of the signal
with varying time delays and is characterized by a Rayleigh
distribution for the received signal amplitude. The fading is
basically independent over distances greater than half a carrier
wavelength.

In this paper, we do not model multipath fading. It is
generally assumed that the use of techniques such as inter-
leaving, diversity reception and equalization, as well as the
employment of a RAKE receiver, greatly mitigate fast fading.
At any rate, it is reasonable to assume that the effects of
the fast fading are encapsulated in the requirements
of the system. This means that the propagation models used
center on distance-driven path loss like (1) and the inclusion
of lognormal shadowing as in (2).

III. I NTERFERENCECHARACTERIZATION

A. Introduction and Review

In this introduction, we review several approaches to the
characterization of interference in cellular CDMA networks.
While simulation studies allow a great deal of complexity
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to be included we are solely concerned with analytical and
numerical treatments of the problem.

The first paper to give an analysis of other-cell interference
in spread spectrum mobile systems was [3]. Although the
authors study a frequency hopped system their interference
analysis in terms of SIR is applicable to direct-sequence sys-
tems. The propagation model of (1) is assumed, which coupled
with perfect power control leads to a simple expression for the
interference at the desired BS from a mobile station (MS) with
known position in the network. The total interference from a
cell other than the desired one is calculated by integrating
the above interference expression mixed with a continuous
and uniform user density over a circular region approximating
an hexagonal cell. An analytic result is only possible for
restricted values of the PLE and so the authors use numerical
integration to calculate the interference levels. The overall
other-cell interference results after summing the contributions
from all interfering cells apart from the desired one. This
paper does not deal with the randomness of the user locations
and is equivalent to calculating expected values when each
user is independently and uniformly distributed over the cell
of concern.

In [14], a very similar analysis to the above is presented
with the exception that the fixing of the PLE at four leads to
analytic expressions for the interference from the circular cells.
This is extended to an analytic result for the variance in [15].

An extension of [3] which includes the effects of shadowing
and voice activity monitoring is found in [16]. A standard
hexagonal cellular layout is assumed with the propagation
model of (2) that includes lognormal shadowing taken to
be independent on distinct paths. The total interference at
a target BS is examined assuming that there are an equal
number of users per cell () spread evenly and continuously
over each cell. MS’s are initially assumed to connect to
the BS offering the least path loss. If this BS is the target
then the interference is the fixed constant power specified by
the power control, otherwise, the interference is a lognormal
random variable with mean dependent on the position of the
MS. To simplify the analysis, an MS decides between the
closest BS (not including the target) and the target BS only.
An expression for the interference dependent upon the MS
position is then multiplied by the user density (not a probability
density function) and integrated over the network to give the
total other-cell interference. This total interference is a random
variable due to the lognormal shadowing, and in the paper
its mean and variance are calculated numerically as functions
of the user density. Approximating the probability density
function as a Gaussian, the other-cell interference is fully
characterized.

An extension of the reverse link analysis of [16] is discussed
in [17] and [18]. First, the propagation model is extended to
take into consideration the dependence of the shadowing from
an MS to different BS’s. Second, rather than choosing between
the target BS and the closest BS, an MS can connect to any
of the nearest BS’s. This involves a fairly straightforward
extension of the analysis in [16] although the computational
complexity increases considerably to the extent that only mean
values for the interference are calculated. The results show a

dramatic drop in the mean other-cell interference from
to for typical values of the shadowing variance, while
the improvement is small for .

In [19], there is no modeling of shadowing, but more de-
tailed and accurate versions of (1) are employed. The analysis
assumes a circular target cell plus wedge-shaped adjacent cells,
this geometry allowing a fairly simple investigation into the
sensitivity of other-cell interference to user density profile
variation. Power control errors are not examined and the results
are all numerical.

In all of the above treatments, the randomness in user
location within a cell has not been dealt with. Rather, some
(usually uniform) continuous user density has been assumed
and its product with an interference function integrated over
the network. An alternative approach is to look at the inter-
ference as a function of a random position vector as in [20],
where the MS location is assumed uniformly distributed over
each cell. In this paper, however, only the mean and variance
of the interference are required since a Gaussian approximation
is used. This means the treatment is identical to [16], and it
is only because of the slightly different angle taken that it is
mentioned here.

Section III-B discusses a novel method of characterizing
other-cell interference in CDMA cellular networks. As with the
above work, Rayleigh fading is not studied and perfect power
control is assumed. To begin, we work with the propagation
model of (1). Given uniformly distributed users and circular
approximation of the hexagonal cells, the distribution function
of the interference from a MS in another cell is calculated
analytically as a function of the PLE and the location of the
cell. The calculation of this distribution function compares to
[14] and [15], which assume a similar geometry and propa-
gation model yet only derive an expression for the mean and
variance respectively for a fixed PLE of four. The results can
be extended to include lognormal shadowing similarly to [16],
however, unlike it, an expression for the distribution function
of the interference is constructed. This distribution function
must be calculated numerically. Our numerical examples deal
exclusively with the deterministic path-loss model, however,
for completeness the details for the model including lognormal
shadowing are given in Appendix II.

B. Deterministic Path Loss

Consider the situation shown in Fig. 2. Note that all coor-
dinates and distances are normalized to the distance between
adjacent BS’s as discussed in Section II. An MS is located at

within a hexagonal cell of the standard two-dimensional
(2-D) layout of Fig. 1. The MS is connected to the BS
with coordinates and causes interference to the BS at

. Based on the power control assumptions and (1), the
(normalized) interference is

(3)

and we would like to be able to calculate the distribution
function of the random variable given the joint
distribution function of the random variables and .
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Fig. 2. Interference in 2-D network.

Fig. 3. Interference in 2-D network—approximation.

This is in general a complicated problem, so to simplify
matters let us assume the joint density of and is
uniform over the hexagon. Due to the large number of possible
orientations of the hexagonal cell and to the dependence of

and , the analysis remains exceedingly tedious. These
problems can be eradicated by approximating the hexagonal
cells by circles of (normalized) radiusas shown in Fig. 3.
The orientation difficulty clearly vanishes and by havingand

as parameters, a great deal of flexibility results.
The derivation is carried out in the Appendix I and leads to

the distribution function of the interference received at
from an MS that has a uniformly distributed location within
the circle of radius and center the origin. The distribution
function is given below

(4)
where

and

Fig. 4. Interference: approximation versus simulation.

In all future numerical calculations, is chosen such that
the areas of the hexagonal cell and approximating circle are
equal which gives . Using this value for , we
compare the approximate analytic distribution function with
that obtained via Monte Carlo simulation for the hexagonal
cell in Fig. 4. The points shown on the graph are obtained
from simulation while the solid lines are the corresponding
distribution functions from (4). As the values ofand PLE are
varied, the analytic approximation remains in good agreement
with simulation.

IV. THE APPROXIMATION

A. Introduction and Review

In this section, we present a technique that allows the tele-
traffic capacity of CDMA cellular networks to be estimated.
The simplicity of the technique arises from modeling each
cell of the network as an independent queue and
consequently the theory of this section provides no input to the
understanding of how calls should be admitted to the system.
A more advanced network model which does impact on call
admission control schemes is presented in [21] and [22].

We begin with a review of several papers [20], [23]–[25]
that employ the approximation and compare them to
the model presented in this paper and in [26]. Note that in these
papers the generally distributed holding times are replaced by
holding times with a negative exponential distribution giving

queues. However, all their results apply in the
general case since it is only the stationary distribution of the
number of mobiles in the system that is used.

The first of the above papers to appear was [23]. The paper
looks only at the limiting reverse link and has as its aims
the development of a model that deals with variability in the
number of users per cell, voice activity, and variable
requirements. Concentrating on a single cell (or sector), the
authors assume that no new call requests are denied and as
such model the cell as an queue. The number of
users in the cell is thus modeled as a random variable with
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a Poisson distribution having mean equal to the cell offered
traffic. Voice activity is included simply by assuming each
mobile is gated on with probability and off with probability

. Voice activity is thus modeled by a Bernoulli random
variable .

Based on fitting of empirical data on the received
values required to maintain frame error rates below 1%,
the authors model the required by each mobile as a
lognormal random variable. Since the data involves actual
received values required for acceptable performance it must
include the effects of imperfect power control and varying
propagation conditions.

With the above aims achieved, the authors essentially define
blocking to occur when the instantaneous requirements
of all users cannot be met. The blocking probability is bounded
for a range of cell offered traffics using a modified Chernoff
bound and compared to results from a Gaussian approximation
and simulation. Based on this comparison and the relative ease
with which it is calculated, the Gaussian approximation is used
in the extension to multiple cells.

The first assumption of the extension is that the number of
users in each cell remains equal. The second assumption is that
the users in every outer cell produce a combined interference
equivalent to users in the inner cell whereis an expected
outer-cell interference fraction obtained from [17]. Accepting
the assumptions the multiple cell case reduces to the single
cell problem with an equivalent number of active mobiles of

where as before is a Poisson random variable. The
analysis in the cellular situation is thus a combination of a
dynamic single cell capacity analysis with the static, multiple
cell capacity results of [17].

In [24], a computationally intensive procedure is presented
for the evaluation of the teletraffic capacity of both forward
and reverse links in a CDMA cellular system. Each cell is
modeled as an independent queue and the quality
of service (QoS) criterion evaluated is the outage probability
or the probability that the SIR of a link is below a certain
threshold. A uniform hexagonal layout, a uniform density for
the mobile location within each cell, and a propagation model
including lognormal shadowing are other features of the model
presented. The main disadvantage of the approach presented in
this paper is the extreme computational effort required and it
is debatable whether the approach is any more valuable then
a straight out simulation.

In [25], a teletraffic model of the reverse link is con-
sidered. The assumptions include uniform hexagonal layout,
equal traffic offered to every cell, uniform density for mobile
locations within cell, two layers of interfering cells considered,
deterministic propagation loss only, and perfect power control
of received signal strength.

Despite the initial discussion of a model including a finite
number of modems, trunk reservation for handovers, and
mobility, the subsequent analysis does not allow for mo-
bility and assumes traffic levels which reduce the new call
blocking probability to a negligible figure. Thus, the system
is actually modeled as a network of independent
queues. Once more the QoS measure concerns the probability
of the SIR being below a given threshold which with the

assumption that each mobile is received at a fixed power
level involves calculating the probability that the interference
gets too large. The total interference is calculated as the
sum of inner-cell interference and outer-cell interference. In
line with the assumption, the contribution from
within the desired cell is taken as a Poisson random variable
with mean equal to the cell offered traffic. The outer-cell
interference is approximated as a Gaussian random variable
with mean and variance obtained via simulation. A numerical
convolution of the Gaussian and Poisson densities then leads
to the density function for the total interference. The traffic
capacity corresponding to two QoS values is presented as a
function of the PLE of the propagation model.

Many of the assumptions of [20] are as in [25]. Only the
reverse link is considered, the QoS is based on a minimum SIR
requirement, perfect power control of received signal strength
is assumed, and each cell acts as an independent
queue. The internal and external interference are again treated
separately—the internal a Poisson random variable and the
external a Gaussian random variable. The mean and variance
of the external interference are calculated by analytical and
numerical methods based on the treatment in [16], which
includes lognormal shadowing in the propagation model. The
blocking or outage probability is then given in the form of a
convolution as in [25].

The analysis of reverse link traffic capacity for CDMA
cellular networks developed in this paper and in [26] shares
many of the features of the above papers. In particular, we
employ the independent queue model for each cell,
the service requirement is in terms of SIR, and each mobile is
power controlled to a fixed and equal power.

In the most general development [26], arbitrary network
layouts, user distributions, and traffic profiles are allowed, and
lognormal shadowing is included in the propagation model. If,
however, a symmetric structure is imposed, the calculation of
the service measure reduces to evaluating the probability of a
compound Poisson sum exceeding a certain threshold. If the
propagation model does not include shadowing, an analytic
expression is available for the distribution of the random
summands.

The service measure is approximated using a standard
Gaussian approximation and bounded with the Chernoff bound
and results are presented for various propagation environments
and system bandwidths.

The approach in [20] is closest in spirit to this work,
but differs in several aspects. First, [20] treats internal and
external interference separately thereby requiring a numerical
convolution at the last step. This is avoided in our approach
where there is no distinction made. Second, they give no
analysis of, or justification for, the Gaussian approximation
while we prove a central limit result for compound Poisson
sums. Third, our analysis is strengthened with the use of
the Chernoff bound and an illustration of its asymptotic
accuracy. Finally, we present several results that explore how
the service quality varies with the offered traffic per cell,
system bandwidth, and PLE. Such results are not given in
any of the above papers.
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B. Model Description

In this section, we discuss the assumptions leading to, and
justification for, modeling the CDMA cellular network as a
collection of independent queues. The assumptions
of the traffic model we will use are as follows.

• The call initiation processes in each cell are modeled as
independent Poisson streams.

• All arriving calls are accepted into the network and
remain in the network for the full call duration (no
blocked or dropped calls).

• Call durations are generally distributed and independent
of the arrival processes and other holding times.

• Mobility is not modeled, and, thus, the mobile is asso-
ciated with the cell of its call initiation for the duration
of the call.

The first and third points are standard assumptions from
teletraffic engineering that have been employed for several
decades to model the stochastic nature of call arrivals to
telephone exchanges and their circuit holding times. The
second assumption is reasonable for systems operating with
CDMA since there is no theoretical hard limit on the number
of quasi-orthogonal codes available to assign to users. From a
more practical point of view, it is reasonable to assume that
there are enough codes available so that the new call blocking
probability is negligible for moderate offered traffic. The final
assumption is a good approximation when the cell size is large
compared to the distance a typical mobile will travel during
a call.

The assumptions imply that each cell of our network be-
haves like an independent queue [27]. This is one
of the most basic queueing models and has a particularly
simple form for the steady-state distribution of the number
of active calls. If the mean time between call arrivals is

s and the mean call holding time is s, then the
traffic to the system is Erlangs. Let be the
random variable representing the number of active calls in
the system at steady state. Then,has the Poisson distribu-
tion

The independence of each cell in the network implies that
the joint steady-state distribution for the number of active
calls in each cell is simply a product of Poisson distribu-
tions.

C. Inclusion of Voice Activity Effects

Now let us suppose that once a mobile call is connected
to the network the mobile user is ON with probabilityand
OFF with probability . This model results when voice
activity monitoring is included and the subsequent suppression
of transmission by a mobile after voice inactivity is detected.
We are now interested not in the number of mobiles connected
to a BS, but in the number of mobiles in a cell that are ON.

Let this number be . We have [20]

which is again Poisson distributed but with reduced traffic
load . Thus, the gains from voice activity detection enter
the formulation in a simple multiplicative manner.

Before proceeding to the next section, we make one final
point. In the rest of this paper, it is assumed that the traffic
offered to every cell of the network is equal. We emphasize
that this equality applies to the parameters of a stochastic
model and is distinctly different to assuming an equal static
load in every cell. This along with the infinite, symmetrical,
cellular layouts, and uniform user distributions that we have
assumed allows all calculations to be performed for one cell of
the network only. The extension of this work to asymmetrical
layouts, offered traffic, and user distributions is straightforward
from a theoretical point of view [26] and is not included here.

V. OUTAGE PROBABILITY : DEFINITION

In this section, we develop a simple expression for a QoS
indicator which we call the outage probability. Calculation
of the outage probability reduces to the evaluation of the
probability that a compound Poisson random variable exceeds
a given threshold. The analysis of such an expression is left
to the following section.

A. Definition

The outage probability is defined as the probability that a
mobile achieves an insufficient SIR. We recall that a similar
performance measure is called blocking probability in [23],
however, we prefer to use the term outage so as not to confuse
this performance measure with that related to blocking of new
call requests.

To calculate the outage probability, we must determine
the stationary probability that an arbitrary mobile anywhere
in the cellular network receives a reverse link SIR that is
insufficient for acceptable QoS. If certain symmetries exist,
then will be the same for mobiles at any point in the network
and we may just as well consider calls that are connected to
a particular BS. Associate with this target BS and its cell the
index 1.

Because of the standard power control assumptions, mobiles
are received at BSwith one unit signal power. We can thus
easily translate the SIR requirement into a constraint on the
total interference at BS. That is,

(5)

where is a random variable representing the total power
received at an arbitrary BS in the network.is a measure of
thecapacityof the CDMA system and is related to the system
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bandwidth ( Hz), the data rate ( bps), and the required bit
energy to interference density ratio by [16]

B. Interference

Suppose that there are cells apart from cell that
generate significant interference at the target BS with labels

. Assume that the interference random variables for
mobiles in cell are independent and identically distributed
(iid) with distribution function and the interference random
variables from different cells are independent. Remember that
for our model the possible sources of randomness in the
interference include location, shadowing and voice activity.
In the example of Section V-C and in the numerical re-
sults of Section VII we focus on randomness due to position
only with voice activity readily incorporated as discussed in
Section IV-C.

Given calls in cell , the total power received at BSis
given by

where is the interference from theth mobile in cell and
the are independent Poisson random variables with mean

.
It is readily shown using characteristic functions that

(6)

where is a Poisson random variable with parameter
and is a random variable with distribution function

being a finite mixture of the original distribu-
tion functions. The symbol indicates equality in distribution.
In (6), the interfering cells are combined and the total traffic
into the conglomeration considered.

Combining (6) and (5), we arrive at a simple expression for
the outage probability in the network

(7)

We now present an example to illustrate and clarify the ideas
of the last sections.

C. Example

Consider the standard 2-D layout of Fig. 1 withErlangs of
traffic offered to each cell. Assume the mobile locations within
each cell are iid random variables uniformly distributed over
each cell and that the propagation environment is governed by
(1). The interference resulting at some target BS from a mobile
randomly located in a cell of the network is characterized by
the approximate distribution function of (4). If only the target
cell and the first two surrounding rings of cells are taken to
contribute significantly to the total interference at the target

BS we have , where is a Poisson random
variable with mean and the are a sequence of iid
random variables with distribution function

(8)

In the above, is the unit step function and are
given in (4).

To calculate the outage probability as a function of the
offered traffic per cell we are faced with evaluating (7). Two
methods of approximating this probability are described in the
next section.

VI. OUTAGE PROBABILITY : APPROXIMATIONS

In this section, we consider techniques for approximating

where are iid random variables and is a
Poisson random variable with meanthat is independent of
the .

Let us define and denote the mean and
variance of by and ,
respectively. Then, if and

A. Normal Approximation

1) The Approximation:The normal approximation is

where is a zero-mean unit variance normal random
variable. We thus have

where

2) Asymptotic Behavior: Integral A:To examine the
asymptotic behavior of this approximation as , we
first assume that takes nonnegative integral values only.
Since the sum of Poisson random variables is also Poisson,
we have

where are iid random variables and
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The sum with a random number of summands has been
transformed into a standard deterministic sum of iid random
variables for which we can apply the central limit theorem
(CLT) in its simplest form. The CLT [28] states that provided

is finite and is positive and finite

as

The symbol refers to convergence in distribution.
3) Asymptotic Behavior: Real A:We now consider the

case when is a positive real. As no appropriate result
could be found in the literature we prove the required CLT
here using characteristic functions. For convenience, we use
the following notation:

so that and .
Theorem 1: If is finite and is positive and finite,

then

as

Proof: Let , with

where . This follows by conditioning and
use of elementary properties of characteristic functions.

Because

where as . Thus

Fix so that

by continuity of the exponential at zero.
Finally, by the Continuity Theorem for characteristic func-

tions as required.

B. Large Deviations Bound

We now give an upper bound on the outage probability using
the Chernoff bound. The asymptotic behavior of this bound is
discussed in the context of elementary large deviations theory.

Consider first the case when takes on positive integer
values and the Poisson sum can be rewritten as the determin-
istic sum . The large deviation rate function
is defined by

where is real and

is the log moment generating function (LMGF) of thewhich
is related as shown to the LMGF of the .

Provided for all and that is not a bounded
random variable in the sense that for all
finite and , then from Cramer’s Theorem [29]

(9)

for . Moreover, for all positive integral

The above bound is commonly called the Chernoff bound and
is directly applicable for any positive real value of. To
extend the limit result of (9) to the case whenis real is
more involved, but is readily accomplished either by modified
use of Cramer’s Theorem or by direct application of the more
powerful Gartner–Ellis Theorem [30], [31].

Applying the above to our problem, we have

and from Cramer’s Theorem the bound becomes tight as
with held constant.

VII. N UMERICAL EXAMPLES

In this section, we use our previous results to examine
the traffic performance of our CDMA cellular system. After
describing the network models used, we compare calculated
outage probabilities by simulation with both the Chernoff
bound and Gaussian approximation for some representative
cases. The variation in performance with both PLE and system
size is then investigated.

A. Network Model

The network model used in calculations is as in
Section V-C. In particular, the distribution function of
the interferers is given by (8) with . It should
be remembered that this distribution function is implicitly
dependent on the PLE.

In what follows, we consider outage probabilities in the
range 0.01% to 10% with the offered traffic limits altered to
produce this range for each scenario considered. The two main
parameters we have to vary are the PLE and. The PLE used
lies in the set with four being a typical value for
existing macrocellular systems.takes values in
which might correspond to systems with dB,

kbps, and and MHz, respectively.
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Fig. 5. Outage probability versus normalized traffic per cell(� = 100;

PLE = 4).

In all plots, the ordinate represents the base 10 logarithm
of outage probability while the abscissa corresponds to the
offered traffic per cell divided by . The traffic axis is
thus normalized by the size of the system making capacity
comparisons for different straightforward. Simulation points
are accurate to within plus or minus 20% with 95% confidence.

For a given set of system parameters and an offered traffic
value, the simulation point is generated directly using a
Monte Carlo technique. This involves repeatedly generating
a random (Poisson) number of users for each interfering cell
and a random location (uniform over each cell) for each
mobile. In each trial, the total interference at the target BS is
determined from which the outage condition can be checked.
The simulated outage probability is then obtained by taking
the ratio of the number of outage events to the total number
of trials.

B. Comparison of Bound and Approximation with Simulation

In Figs. 5 and 6, we compare the Chernoff bound and
Gaussian approximation to simulation for the 2-D network
with PLE and , respectively.

The following points are evident.

• The bound overestimates outage probability by about an
order of magnitude in both cases. This translates to under
estimating traffic capacity by about 10% in Fig. 5 and
15% in Fig. 6.

• The accuracy of the approximation decreases as the
offered traffic, and, thus, the outage probability decreases.
The effect is less severe for the largersince in this case
we are effectively summing a larger number of random
variables and thus getting a better approximation to the
tail of the sum.

The above points give some heuristic tips on when the
Gaussian approximation is reasonable. Clearly, for large values
of and high-outage probabilities, the approximation is ex-
cellent, however, for low values of 20 and or low-outage
probabilities 0.1% the accuracy of the approximation may

Fig. 6. Outage probability versus normalized traffic per cell(� = 20;

PLE = 4).

Fig. 7. Variation of outage probability with PLE (� = 100, Chernoff bound).

deteriorate rapidly. In the latter case, the bound is a much
safer and more robust technique.

C. Variation of Bound with System Parameters

Figs. 7 and 8 show how the traffic capacity varies with
PLE and respectively for the 2-D network. In these plots,
the Chernoff bound was used to obtain values for the outage
probability. We make the following points.

• The capacity (for a fixed outage probability) is signifi-
cantly reduced as the PLE decreases.

• The economy of scale for systems with largeresults in
significant increases in normalized traffic capacity. This
is important in comparing narrow-band CDMA (low)
to wide-band CDMA (high ).

VIII. C ONCLUSION

In this paper, we have presented an analysis for the reverse
link traffic capacity of CDMA cellular networks.
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Fig. 8. Variation of outage probability with� (PLE= 4, Chernoff bound).

Initially, we provided a characterization of other-cell in-
terference in CDMA cellular networks that was crucial to
the development of the subsequent traffic analysis. The end
products were expressions for the distribution functions of the
interference when a mobile’s location is a random variable
within a cell. These expressions are analytic for the determinis-
tic propagation environment, but involve numerical integration
when shadowing is introduced.

The remaining analysis and results contributed toward the
understanding the traffic capabilities of CDMA cellular net-
works. The key assumption was that each cell can meaning-
fully be modeled as an independent queue. After dis-
cussing the justification for and consequences of the
model, an expression for outage probability was developed in
terms of a compound Poisson random variable. Two techniques
were then applied to approximate the outage probability along
with corresponding asymptotic results. The numerical results
gave an initial estimate of the traffic capacity of CDMA
networks and demonstrated the sensitivity to propagation
parameters and system processing gain.

The primary shortcoming of the preceding analysis is that it
provides no information on how a network operator should
control call admissions to the network so as to provide a
more robust quality of service. This issue is addressed in [21]
and [22].

APPENDIX I
DERIVATION OF INTERFERENCEDISTRIBUTION FUNCTION

Before proceeding, note that by symmetry it is only neces-
sary to consider the upper semicircle in Fig. 3. Furthermore,
only the ratio of and is relevant and in this Appendix we
set and without loss of generality. The final
distribution function is readily transformed back in terms of
and by setting . It is also expedient to work in polar
coordinates since the random variablesand defined by

and are then independent.
The situation is then as shown in Fig. 3. If the MS is at location

in polar coordinates and is connected to the BS at the

origin, the interference caused at the BS with location
is given by

and the problem now is to calculate the distribution function of
the random variable where and are independent
random variables with readily calculated distributions. The
problem is formalized below.

A. Problem Formulation

Define the nonnegative, real valued functionby

(10)

where and . We will always assume that
.

Let and be independent random variables with marginal
distribution functions

(11)

and

(12)

Aim: Find the distribution function of the random variable
.

Solution: Fix and define .
Lemma 2: is strictly increasing on for all

.
Proof:

for

is strictly increasing from to , and stan-
dard transformation techniques can thus be applied to calculate
the distribution function of , where is distributed as
in (11). In particular, we have

where the inverse function is well defined on
because of the monotonicity of . It is calculated

by solving

for taking into consideration the allowed values of the
variables involved.

We are thus led to the following lemma.
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Lemma 3:

where

with the provision that when
.

We can consider as a distribution function condi-
tioned on the value of . That is, . A
simple unconditioning then allows us to write

where

If , then

The integrals involve terms that can be integrated using
elementary techniques. We leave the details to the interested
reader. We are thus led to the following result:

Theorem 4: The distribution function of , where
is defined in (10) and where and are independent

random variables with marginal distributions given in (11) and
(12), is given by

(13)

where

and

APPENDIX II
INCLUSION OF LOGNORMAL SHADOWING

In the following, we take as the position vector and
as the Euclidean norm. Equation (3) becomes

which represents the interference in the non shadowing envi-
ronment to a BS at BS from an MS at connected to
a BS at BS .

We are interested in extending the interference results of
Section III-B and Appendix I, which were based on the
propagation model of (1), to include shadowing effects as
given in (2). With reference to the latter equation, we assume

and are constant over all paths and that the shadowing
random variables are independent for different paths.

Initially assume that an MS at connects to the closest
BS, BS, and suppose we are interested in the subsequent
interference , produced at a target BS, BS. If
then the interference is clearly one unit since the MS will
connect to the target BS and be power controlled to one unit
signal power. If , then

(14)

where as the difference of two independent zero-mean
Gaussian random variables is a zero-mean Gaussian random
variable with variance .

Suppose, however, that rather than connecting to the closest
BS, an MS is linked to the BS offering the least path loss. It
is practically infeasible to allow connection to any BS in a
large network and it is sensible to consider choosing between
only the closest. In any case can be chosen so that there
is an arbitrarily high probability of thebestBS belonging to
the closest. This is the approach taken in [17] and [18]
although as already mentioned, a fairly complicated analytical
and numerical procedure, results only in mean values for the
other cell interference. We prefer the simpler approach of [16]
and [20], where the choice is made between the closest BS
and the target BS. As most of the other cell interference to
the target BS comes from MS’s near its cell boundaries this
seems a reasonable approximation.

Once more we assume that if the target BS BSis the
closest BS, then the MS connects to it and causes one unit
of interference. Failing that and with BSthe closest BS, the
interference produced by an MS atis given by

(15)
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which is simply a truncated version of (14). One significant
advantage of (15), apart from being a more accurate model of
the system operation, is that the moment generating function of
the interference exists only in the truncated case. The moment
generating function is used for obtaining bounds on sums of
interferers in later sections.

Given (15) our aim, just as in the last sections, is to allow
the position vector to be a random variable taking values
in the cell corresponding to the BS at. Denote this random
position vector and assume it has distribution function
defined on cell. Our problem then is to find the distribution
function of , which means calculating the distribution
function of .

Given the position vector , the distribution function of the
random variable , which we treat as a distribution
function conditioned on , is

(16)

where

Alternatively, we can view (16) as a distribution function
conditioned on

(17)

In the above, and is the standard
deviation of in (15).

Equation 16 can be unconditioned ongiven

cell
(18)

while (17) can be unconditioned on given its distri-
bution function

(19)

In the above, comes from (4) (remembering that this
is an approximation and is only valid when is uniformly
distributed) with replaced by .

The final form for the distribution function of is
given by

(20)

and results because of the operator in (15).
In summary, (20) gives the distribution function of the

interference produced at BSfrom one MS with location in
cell distributed as . It is equivalent to (3) when lognormal
shadowing is modeled as above.
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