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Abstract—We consider the power optimization problem of max-
imizing the sum rate of a symmetric network of interfering links in
Gaussian noise. All transmitters have an average transmit power
constraint, the same for all transmitters. This problem has applica-
tion to DSL, as well as wireless networks. We solve this nonconvex
problem by indentifying some underlying convex structure. In par-
ticular, we characterize the maximum sum rate of the network, and
show that there are essentially two possible states at the optimal so-
lution depending on the cross-gain (1/€) between the links, and/or
the average power constraint: the first is a wideband (WB) state,
in which all links interfere with each other, and the second is a fre-
quency division multiplexing (FDM) state, in which all links op-
erate in orthogonal frequency bands. The FDM state is optimal if
the cross-gain between the links is above 1/ \/5 Jf \/F < %, then
FDM is still optimal provided the SNR of the links is sufficiently
high. With /e < %, the WB state occurs when the SNR is low,
but as we increase the SNR from low to high, there is a smooth
transition from the WB state to the FDM state: For intermediate
SNR values, the optimal configuration is a mixture, with some frac-
tion of the bandwidth in the WB state, and the other fraction in the
FDM state. We also consider an alternative formulation in which
the power is mandated to be frequency flat. In this formulation, the
optimal configuration is either all links at full power, or just one
link at full power. In this setting, there is an abrupt phase transi-
tion between these two states.

Index Terms—Power control, resource allocation, spectrum al-
location, sum rate maximization, interference mitigatio.

I. INTRODUCTION

IRELESS networks are plagued by two key problems
W not encountered in wireline networks: multipath fading
and interference between links. In this paper, we focus primarily
on the management of the second problem using optimized
power allocation. The problem of interference also arises in a
DSL wireline access network, and our results are applicable to
this system as well, perhaps even more so given that we only
treat the time-invariant setting in the present paper. We pose a
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power allocation problem in which the objective is to maximize
the total rate achieved in the network. Each link has to choose
a transmit power spectrum, but the choice impacts not only the
rate achievable on the desired link, but also the rates achievable
on the remaining links of the network.

Unlike traditional power control formulations, in which rate
targets are constraints of the problem [1], the rate maximization
formulation that we consider in this paper provides a more
challenging nonlinear, nonconvex optimization problem. In
this paper, we focus on networks in which the channel transfer
functions are time-invariant and frequency flat; otherwise,
the problem is infinite dimensional and computationally in-
tractable [2].

Recently, progress has been made on time-invariant networks
characterized by frequency flat channel responses (i.e., those
that can be represented by one-parameter channel gains), but
under the assumption that the power allocation itself is time
invariant and frequency flat, with maximum power constraints
on the links [3]-[5]. We will also address this problem in
Section IV, but first we consider the less constrained version
of the problem, in which there are average power constraints
on each link, but no peak power constraints, and the frequency
response is not mandated to be frequency flat. This problem is
known as the “spectrum management problem” or “spectrum
balancing problem” in the literature [6], [7].1

Although the spectrum balancing problem is not itself
convex, we exhibit an underlying convex structure that arises
in symmetric networks, and this structure helps us identify the
optimal solution. We show that the optimal power spectrum
always consists of a relatively small number of modes, where
a mode is a chunk of spectrum in which the power spectral
density of all links is constant. Thus, the optimal total power
spectrum is piecewise constant [8]. In this paper, we charac-
terize the optimal solution precisely for the case of symmetric
interfering links: We provide the bandwidths of the modes, and
the power allocation for each link in each mode.

The general characteristic of the optimal solution is that it
involves at most two states: a frequency division multiplexing
(FDM) state, or a wideband (WB) state in which per-link power
allocations are flat across the frequency band. In some scenarios,
depending on the cross-gain factor and the signal to noise ratio,
the optimal configuration is a mixture of these two states.

In Section IV, we impose the constraint that the transmit
power spectrum of each link be flat across the frequency band.

IThe spectrum balancing problem is usually posed for frequency selective
channels, not for the frequency flat channels considered in the present paper, but
our approach can still be interpreted as “spectrum balancing” for this specialized
problem.
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This is in line with assumptions made in several other works in
the literature [3]-[5]. Again, exploiting the underlying convex
structure of this problem, we provide the complete solution for a
symmetric network of N interfering links. Moreover, we iden-
tify an interesting phase transition phenomenon for large net-
works that occurs as the interference cross-gain parameter (/€
in the formulation below) crosses a certain threshold, and we
explicitly characterize this threshold.

II. RELATED WORK

The problems investigated in this paper are special cases of
“spectrum management” [9], otherwise known as “spectrum
balancing” [10]. There has been intensive interest in these
problems for about a decade, mostly in the context of digital
subscriber lines (DSL). More recently, there has been interest in
applications to wireless communications, including cognitive
radio [8], wireless mesh networks [11], and similar problems
were investigated much earlier for cellular systems [12].

In applications to DSL, the focus is a multi-user communi-
cation system, in which each link provides interference to the
others. Typically, each link is time-invariant (appropriate for
DSL applications), and there is a set of time-invariant transfer
functions from each transmitter to each receiver in the network.
There are N desired links (transmitter-receiver pairs) but for
each receiver, there are N — 1 undesired cross-links from the
other transmitters, each providing interference to the desired
receiver. Each transmitter has a power constraint, and all links
share the same frequency band. The spectrum management
problem is to shape the spectrum of each link to meet the power
constraints, but also to maximize some objective function, such
as the sum of the rates on each link [2]. Various other objective
functions have also been considered in the literature [2].

In the time-invariant setting, one can formulate a general sum-
rate maximization problem subject to power constraints

a , hii(f)Pi(f)
mﬁx; /f o (1 TN+, hii (P )

54,0 < Pi(J), /f P(f) <P ()

where P; is the average power constraint for the ith link, and
o?(f) is the noise power spectral density at frequency f. Un-
fortunately, this problem is infinite dimensional, and NP-hard
as we increase the number of links [2].

A key reason for the difficulty in solving (1) is the noncon-
vexity of the objective function. A common approach is to re-
strict attention to a finite number of subcarriers, as in Orthog-
onal Frequency Division Multiplexing (OFDM). This make the
problem finite dimensional, but does not overcome the compu-
tational difficulties: The general problem is NP hard, as we in-
crease the number of subcarriers, for a fixed network of links [2].
It is also NP hard as we increase the number of links, for a fixed
number of subcarriers [2]. One is, therefore, motivated to seek
suboptimal approaches to the general problem, although one can
seek exact solutions in small problem instances [13], [14].

Suboptimal approaches for the general problem include
game-theoretic methods, including iterative water filling [15];
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high SNR approximations, and the use of Geometric pro-
gramming methods [16], [17]; methods of successive convex
approximation [18]; and dual decomposition/column genera-
tion methods [11].

Another approach is to impose further structure on the
problem to reduce the inherent complexity. It is shown in [8]
that even in the continuous spectrum balancing formulation,
the problem is inherently finite dimensional provided that the
transfer functions are finite dimensional. For example, in the
case of flat fading channels, the dimensionality is no more than
N + 2, where N is the number of links. In the present paper,
we restrict the class of problems infinitely more, to the very
special case in which all the desired channel gains are unity,
and all the cross gains are the same fixed value, /€. Although
this symmetric model is far too specialized to be directly
relevant to applications, we can completely characterize the
optimal solution, for any /V, and the solution is elegant and
insightful. We hope that techniques developed for the solution
will prove more generally useful, perhaps in the development
of suboptimal methods for more general classes of problems,
or exact methods for more specialized scenarios.

A paper closely related to our own is [13]. Our paper con-
siders an arbitrary number of links, but the channel gains are
completely symmetric. In [13], there are only two links, but the
channel gains are arbitrary. The symmetric version of the two
link problem is also solved in [14].

The discrete version of the sum-rate maximization problem,
with a fixed number of subcarriers, has been studied by many
authors. The special case of one subcarrier leads to considera-
tion of the following optimization problem:

N
1 hi i P;
max —log | 1+ :
P ; 2 ( e D hjﬂpjl{#i})

S~t~0SPiSPmaX (2)

where N is the number of links, P, the power constraint, P;
is the power allocated to link 4, and h; ; is the channel gain from
link j to link 4. This is problem P in [2], although our notation
is different. We solve the symmetric version of this problem in
Section IV, but the general problem, as stated here, is NP-hard
[2]. The two link version of this general problem was solved
in [3].

The optimization problem (2) is motivated by the fact that the
single link capacity of a discrete time Gaussian noise channel is
1log(1 4+ P) nats/symbol, when the SNR is P. The sum-rate
in (2) can be shown to be achievable using the Gaussian input
distribution in a classical random coding argument. Each trans-
mitter selects i.i.d. symbols, with transmitter ¢ using the dis-
tribution N (0, P;) for its codeword symbols. This approach is
further supported by the mismatched decoding results of [19],
which show that these rates are achievable using minimum dis-
tance decoding, even if the codebooks of the interferers are not
selected randomly as above, which shows that the Gaussian in-
terference model is robust.

The sum-rate in (2) is by no means optimal. One simple ex-
tension that can increase capacity is to allow each transmitter to
modulate the variance of the Gaussian input over different trans-
mitted symbols, whilst satisfying the long-term average power
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constraint. This approach is taken in [11], [12]. For linear, time-
invariant, continuous-time channels, one can equivalently vary
the power spectral density across the frequency band. By al-
lowing the input spectrum to vary across frequency (“spectrum
balancing”), rather than restrict it to be frequency flat (white),
we can get an improvement in network capacity, even in the
case of time-invariant, frequency flat channels [8]. In the present
paper, we treat the spectrum balancing problem in Section III,
and relegate the flat input spectrum problem to Section IV.

The sum-rate can be increased further, in some cases, by se-
lecting a different, non-Gaussian, random coding distribution.
In general, the optimal distribution for a given problem instance
is unknown, although it is known to be Gaussian when the in-
terference level is sufficiently low [20]. In the present paper, we
will always use the Gaussian distribution to obtain our achiev-
able rates.

The literature we have considered thus far makes the assump-
tion that each decoder treats the signals from the other links as
Gaussian noise. As remarked above, this is a robust assumption,
and it is reasonable to make this assumption when the decoders
do not have access to the codebooks of the interfering links.
However, if the codebooks are known, then the decoder may be
able to decode and cancel some of the interference, which can be
much better than treating it as Gaussian noise, especially when
the interference to signal ratio is not so low [21]. This motivates
the more fundamental question: what are the absolute limits of
communication in networks of interfering links, in the sense of
Shannon? It turns out that the capacity region of even the most
simple symmetric two link network (of the class investigated in
this paper) is unknown, although there has been recent progress
in obtaining inner and outer bounds to the capacity region. In
particular, the inner and outer bounds are now quite close, with
a gap of no more than 1 bit/sec/Hz, irrespective of SNR, in the
two link, Gaussian interference channel [21]. One interesting
recent result is that it can be optimal to treat the interference
as Gaussian noise, when the interference to noise ratio is suffi-
ciently low [20].

In spite of the recent progress on the fundamental information
theory, the present paper is focused on the interesting and im-
portant problem of spectrum balancing in Gaussian interference
networks, in which interference is treated as Gaussian noise.

III. SPECTRUM BALANCING PROBLEM

In this paper, we will adopt the convention that “power spec-
tral density” refers to the one-sided version, and thus we will
focus attention on the positive frequencies. In the following, we
denote the Shannon capacity of a discrete time, additive white
Gaussian noise (AWGN) channel, with SNR P, by %C(P),
where

C(P) =log(l + P) nats/channel use.
We begin with a spectrum balancing problem for a symmetric
network of interfering links, in which the transmitters are band-
limited, with symmetric average power constraints: Consider a
real, base-band model of N communication links, each of band-
width W Hz, and each link is individually an additive white
Gaussian noise channel (AWGN) with common noise power
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Fig. 1. Symmetric network of interfering links, where Y;(t) = X;(¢) +

zj;éi \/;Xj(f) + Zi(t)~

spectral density of o2 at the receivers. By re-scaling powers, we
can assume without loss of generality that 0> = 1/W Watts/Hz.
The N links interfere with each other, as depicted in Fig. 1, and
we assume an additive model for the interference between links.

We first write down some well known achievable rates for
the network. One can compute mutual informations between the
transmitter and receiver of each link, assuming that each trans-
mitter uses a stationary Gaussian process to generate the signal.
Classical random coding arguments then show that these mu-
tual information rates are achievable. Denote the real, stationary
Gaussian process transmitted on link ¢ by X;(¢). The received
signal on link 7 is Y;(t), where

Yi(t) = Xi(t) + Y VeX;(t) + Zi(t) 3
i

Z;(t) is white Gaussian noise of power spectral density 1/W,
and /€ is the cross-gain between the links of the network. If
process X, (t) has power spectral density P, ( f) then an achiev-
able rate on link ¢ is given by [22]

v WP;(f)
R’L‘/o Nirwes, .70

We impose the power constraint that for all ¢

df.

/0 U Pf) € P

The problem we address is that of computing the max-
imum achievable sum capacity of this network, under the
above assumptions, which reduces to finding the optimal input
spectra for the links, as expressed in the following optimization
problem:

Problem 3.1: Find the input spectra that achieve the max-
imum in the following program:

YW WP;(f)

max C d

: ;/ e An) T @
w

s.t. / Pi(f)df < Pave. 5)
JO

Clearly this problem is a highly specialized one, with fre-
quency flat channel gains (i.e., no fading) and symmetrical links.
Therefore, one should expect a relatively simple solution, per-
haps a wide-band (WB) solution with frequency flat power al-
locations across the links. However, if the cross-gain parameter,
/€, is large, it might be better to take a frequency division multi-
plexing (FDM) approach, to avoid the interference between the
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Fig. 2. Two phases and their mixture for the symmetric network of N links.

links. Due to the symmetry of the model, both approaches allo-
cate equal power to all links, and in the FDM approach, each link
is allocated a sub-band of width W/ N Hz, with a flat power allo-
cation within the sub-band. These two approaches are illustrated
in Fig. 2, where one is called the “WB phase”, and the other is
called the “FDM phase”. A natural question to ask is: which
phase is the best at a given SNR and level of the cross-gain pa-
rameter, 1/€?. A deeper question is to examine the optimality or
otherwise of these two approaches. We will examine both ques-
tions in this section, but we start with the first question about the
relative performance of WB versus FDM.

A. WB Versus FDM

Comparing the performance of WB and FDM is very nat-
ural as these are the two standard approaches used in modern
wireless systems to handle multiple access interference. FDM is
the classical approach used in traditional radio applications, as
well as in narrowband cell-phone radio networks with frequency
re-use partitioning between cells. WB is the approach taken in
Qualcomm’s code division multiple access (CDMA) networks,
and is presently used in wideband CDMA 3G networks.

Which approach is better in the symmetric network of inter-
fering links? To answer this question, define the functions f;
and f> by

(6)
)

Note that 3 f>(P) is the capacity of a discrete-time AWGN
channel at SNR = NP, and 1 f;(P) is N times the capacity
of a discrete time Gaussian link that receives interference from
N — 1 other links, as in the symmetric Gaussian network

P
1P = N0 (o —yp)
f2(P) = C(NP)

model. Both are in units of nats per channel use. It follows that
W f1(Paye) is the achievable sum rate (treating interference
as noise) of all links in the WB model, and W f5( Pa.y.) is the
achievable sum-rate of all links in the FDM model.

Let C; denote the curve defined by the function f;(P), i =
1, 2. The following two lemmas characterize the relative perfor-
mance of WB versus FDM, across different values of cross-gain
Ve and P.

Lemma 3.1: If € > 1/2 then fo(P) > f1(P) forall P > 0,
i.e., the curve C lies entirely ab~ove curve C;. However, if € <
1/2, then there exists a unique P > 0 such that

fl(p) = f2(f’)
f2(P) < fi(P)
f1(P) < f2(P)

i.e., C7 is above C5 for P < 15, below Cs for P > IN’, and P is
the point where they cross.
Proof: See Appendix A.

Lemma 3.1 answers the first question concerning the relative
merits of WB versus FDM, and is illustrated in Fig. 3 for the case
e < 1/2. However, Fig. 3 also illustrates the fact that neither
scheme is necessarily optimal: for P in the interval (P, P,),
both schemes are beaten by a mixture of the two. This observa-
tion holds in general, as shown by the following lemma:

3
i.,e. WB beats FDM (9)
i.e., FDM beats WB (10)

VP <P
VP> P

Lemma 3.2: If € < 1/2 then there is a unique tangent curve
that touches both C; and C at two points, namely (P, f1(P))
and (P,, fo(P.)), with P, < P < P, (see Fig. 3). Since both
f1 and f5 are strictly concave, it follows that for all P > 0

max{f1(P), f2(P)} < fi(P) + fi(P)(P = P) (1D
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bits/channel use

P P P P

Fig. 3. FDM versus WB when two curves cross, two user case.

with strict inequality for P # P, P,, and, since the tangent
touches Cy at (P, f2(P,)), we have that

fo(Pu) = f1(P) + fi(P)(Pu — P). (12)
Thus, both curves lie below this unique tangent line. For P* <
Py, there is a unique supporting tangent to the curve C at the
point (P*, f1(P*)), and both Cy and Cs lie below this line, i.e.,
forall P > 0

max{f1(P), 2(P)} < i(P*) + f{(P*)(P = P*).  (13)
Similarly, for P* > P,, there is a unique supporting tangent
to the curve Cy at the point (P*, fo(P*)), both C; and C5 lie
below this line, i.e., for all P > 0,

max{f1(P), f2(P)} < fo(P*) + f3(P*)(P — P)  (14)
Proof: See Appendix A.

We conclude that the situation depicted in Fig. 3 holds for
all ¢ < 1/2. In other words, when ¢ < 1/2, neither pure
phase (FDM or WB) can be optimal when P lies in the in-
terval (P, P,), as one can do better by time sharing between
the phases, or by doing the sharing in the frequency domain as
illustrated in the mixture plot in Figure 2.

This analysis leads to the more fundamental question about
optimality for the symmetric network of interfering links. We
have so far highlighted three distinct schemes to handle inter-
ference: pure FDM, pure WB, and a hybrid scheme that is a
mixture of the two. The following subsection will demonstrate
that the optimal scheme in the symmetric model is always one
of these three candidates, but the particular one depends on the
cross-gain parameter, /¢, and/or the SNR.

B. Optimal Scheme

The main result of this section is Theorem 3.1, which sup-
plies the solution to Problem 3.1. In the theorem, the term
C(e, N, P.yc) is defined by

fZ(Pave) €>1/2 or Pave>Pu
_ fl(Pavc) 6<1/2 and Pavo<Pl
0(67N7 PaVC) - ﬂfl(Pl)‘}‘

0.W.

(1 - ﬂ)f2(Pu)
15)
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where, in the last case, i.e., € < 1/2 and P} < Paye < P,
we define 3 to be the unique number in (0, 1) such that P,,. =

Theorem 3.1: The optimal value in Problem 3.1 is
WC(e, N, P.y.) bits/sec. If € > 1/2 or Py > P,, the
optimal value is achievable by dividing the spectrum into NV
equal sized bands, and allocating each link one of the bands
(FDM). Each link uses power spectral density (N Paye)/W
in its allocated band. If ¢ < 1/2 and P,,, < P, then the
optimal value is achievable via the WB approach: all the links
share the entire band, and each link uses power spectral den-
sity Payve/W across the wide band. Otherwise, ¢ < 1/2 and
Pave = BP, + (1 — ()P, for some unique 3 € (0,1). In this
case, rate WC' (e, N, P,y.) is achievable with N + 1 bands allo-
cated as follows. One band, of width W Hz is shared amongst
the N links, and each link uses power spectral density P;/W
in this band. The sumrate achieved in this band is W f1(P)
bits/sec. The remaining bandwidth, (1 — )W Hz is split evenly
into [NV sub-bands, and each sub-band is allocated to one of the
links. In its own sub-band, a link uses power spectral density
(NP,)/W, and obtains a rate of W (1 — f3) fo(P,)/N bits/sec
in this sub-band.

In summary, there are essentially two distinct states for the
system, FDM or WB. Which one is optimal depends on ¢ and
P.ve, and, in an intermediate scenario, the optimal configuration
is a mixture of the two.

C. Proof of Theorem 3.1

The achievability of C'(e, N, Paye) can be immediately veri-
fied. The issue we address in this section is the converse, namely,
that there is no other strategy that can beat C'(e, N, Paye).

It can be shown that the optimum can be achieved with spectra
that are piece-wise constant: There are at most N + 2 disjoint
intervals in [0, W] with each link having constant power spec-
tral density within each interval [8]. This can be proven via
Caratheodory’s convexity theorem [23], and is a consequence
of the dimensionality of the problem. Here, the dimension of
the problem is N + 1, since there are IV links, each of which
has to choose a power level, and the sum-rate provides an addi-
tional dimension. Thus, the following problem is equivalent to
Problem 3.1

Problem 3.2: Let M = N + 2. Find the normal-
ized bandwidths (g, aq,...,ap—1) and power levels
(P"™Yyi=1,2,...,N;m=0,1,...,M — 1 to solve

N M-1 plm)
max Y 3 @ <—

1=1 m=0
M-—1
st Y P < Page, P >0 (17)
m=0
M—1
Zamgl,ogamgl. (18)
m=0

Before attempting to solve this problem, we remark that at
first sight it does not appear to be a very simple problem to
solve, as it is not a convex problem. For this reason, we begin by
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formulating a simpler optimization problem that we can directly
solve. Suppose each link must choose a fixed, static power level,
but the power constraint is on the sum of the powers of all the
links, rather than on the individual powers of each link. Thus,
link 7 uses a power level P;, and the sum power constraint is that
Zﬁil P; = P. The following function provides the sum-rate for

this problem:
N
P;
= Cl————+ |- 19
Z <1+€Zj;éipj) (1

=1

CSUm(€7N7 P)

The following lemma states the optimization problem precisely,
and provides its solution:

Lemma 3.3: Consider the optimization problem

N
,N,P)st. P; >0 Vi, =T
mgxcsum(e,N, P)st. P; >0 Vi, ;P P 0)
and let U(e, N, P) denote the optimal value. Then
U(e, N, P)
= max{ NC PN _ ,C(P)
1+¢N—-1)P/N
= max{ fi(P/N), fo(P/N)}. @)

Proof: See Appendix C.

The solution to Problem 3.2 can now be found, using the fol-
lowing two lemmas:

Lemma 3.3: Let a, P be a feasible allocation of normalized
bandwidths, and power levels, respectively, for Problem 3.2,
and let C'(¢, N, a, P) denote the corresponding sum-rate. Then
C(e, N, a, P) is upper-bounded by the optimal value in the fol-
lowing program:

Problem 3.3:
(a) _ (b)
e afi (PO)+a-a)f(PY) @)
st. 0<a<1, P@ >0, P® >0
aP@ 4+ (1 - a)P® < P,... (23)

Proof: Let a,P be a feasible allocation of normal-
ized bandwidths, and power levels, respectively, and let
C(e, N, a, P) denote the corresponding sum-rate

N M-1

C(e,N,a, P) = Z Z amC
1=1 m=0

Pz(m)
1+¢N -

Note that a is of dimension M = N + 2, and P = (P™)

is of dimension NM. Let P(™) = SV P Then the upper
bound

M—1
C(e,N,a, P) < Z amU (E,N,f?(M))

m=0

(24)

1)2#11?(’“’) '
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clearly holds, where U(e, N, ﬁ(m)) is the optimal value in
problem (20). By Lemma 3.3, we can write the RHS of (24) as

M1 pm) p(m)
Z ammax{fl (—) o (%)} (25)

Now re-order the modes so that for modes m = 0,1,...,k,
the maximum in (25) is fi(P(™)/N) (if there are no such
modes, let k = —1) and for modes k+ 1,k +2,..., M —1, the
maximum in (25) is fo(P(™) /N) (if there are no such modes,
k will equal M — 1). But the functions f; and f> are both
concave functions, so if we define

k
a= Z O (26)
mk:(]
P = 3" (/) (P /N) 27)
"
PO = 3" (am/(1—a))(PU™)/N) (28)
m=k+1
then
Cle,N,a,P) < afi(P)+ (1 —a)fo(PY). (29

Since the initial mode and power allocations (P, c) are feasible
for Problem 3.2, it must also be true that

aP@ 4+ (1 - a)P® < P,...

Lemma 3.5: The maximum value achieved in Problem 3.3 is
C(E'/ N7 Pave)'
Proof: First, consider the case that ¢ > 1/2 and let
a, P( @), P(®) be feasible for Problem 3.3. Then f;(P(®)) <
f2( ) by Lemma 3.1, so

afi (P(“)) +(1—a)fs (P(b))
<afu(PO)+ (1 a)fa (PO)
< f2(Pave)

with the second inequality following from (23) and the con-
cavity of fs.
Now consider the case that € < 1/2 and P,y < P, and let
a, P, P(®) be feasible for Problem 3.3. Then
afi (P(“)) F(1=a)f (P<b>>
Sfl(Pave)‘i_afl( ave) (P( @) _ Pave)
+(1—Oé)f1( ave ( b)_ a\e)
S fl (Pavo)

where the first inequality follows from (13), and the second in-
equality from (23). But clearly f1(Pave) is achievable if we set
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a = 1and P@ = P, .. The case ¢ < 1/2 and Paye > P,
follows in the analogous way, using (14) in place of (13).

The remaining case is € < 1/2 and P,ye = B8P+ (1 — )P,
for 0 < < 1, with o, P(*) P(®) feasible for Problem 3.3.
Then

afi (P(“)) +(1—a)f (P<”))
< afi(P) + af{(P)(P™ - P)
+ (1= ) i(P) + (1= ) fi(P2)(PY - Py)
< fl(Pl) + f{(Pl)<Pave - Pl)
=Bf(P) + (1 - B) fr(P) +
< Bf(B) + (1= B)fa(Pu)
where the first inequality follows from (11), the second
inequality from (23), and the first equality from (12). But
Bf1(P) + (1 — B)f2(Py) is achievable with N + 1 bands,
one of which is of bandwidth 3, shared by all links, and the

remaining band is partitioned equally amongst the N links
using FDM. ]

(1= f(P)(Pu— P)

We summarize this section, with the following conclusion,
which completes the proof of Theorem 3.1: C'(e, N, P.y.) is the
optimal value in Problem 3.2. If € > 1/2 or Paye > Py, the op-
timal value is achievable with N modes, o,, = 1/N for m =
0,1,...,N—=1,and P™ = NPuelmpmyiy,i = 1,2,... N,
If ¢ < 1/2 and P,ye < P, then the optimal value is achievable
with 1 mode, ag = 1, and P*) = P,ye,i = 1,2,..., N. Oth-
erwise, € < 1/2 and Pay. = 8P + (1 — 3) P, for some unique
B € (0,1). In this case, C(e, N, P,y.) is achievable with N + 1
modes: «g = 3, o, = (1 = B)/N, m =1,2,..., N, P;O) =
Pyi=12..N P™ = NPy, i=12,...,N,
m=1,2...,N.

IV. FLAT POWER CONSTRAINTS

The spectrum balancing problem allows the links to allo-
cate the total power arbitrarily over the available degrees of
freedom (frequencies). Another body of work considers the case
for which there is only one degree of freedom (a single subcar-
rier), or equivalently, the case for which the power allocation is
mandated to be time invariant and flat across frequency. More
precisely, this approach characterizes the achievable rates under
random coding under the restriction that the input distribution
(after sampling at the maximum frequency) is a fixed Gaussian
distribution, with link ¢ using the static power level P;. This
precludes any time-sharing between different power allocation
strategies. The symmetric network version of this problem is the
following:

Problem 4.1:

N
P,
max C ! 8.t. 0 < P; < Puax  (30)
P ; <1+62j le{#i})

which is also the symmetric version of the single sub-
carrier sum-rate maximization problem (Pj) in [2]. Let
Ctiat(€, N, Ppax) denote the value at the optimal solution to
Problem 4.1.

The solution of Problem 4.1 will produce a power spectrum
that is flat across the frequency spectrum. For applications in
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which there is a spectral mask on each transmitter, there may be
peak constraints on each frequency, in which case the above for-
mulation is relevant. In this section, we will provide a complete
solution to Problem 4.1.

We immediately note that Problem 4.1 is a nontrivial op-
timization problem. It is a nonlinear, nonconvex optimization
problem over N continuous variables, and it is not difficult to
see that there are many local maxima, causing problems for
many standard numerical approaches [4]. However, the two link
version of this problem has recently been solved [3], [4], [24]. It
has been shown that the optimal solution is particularly simple,
and is characterizable in terms of the cross-gain, /€. There is a
critical threshold, ¢;, such that for ¢ < ¢, the optimal solution
is (P1, P2) = (Pmax, Pmax)- For € > ¢, there are two optimal
solutions, (Pppax,0) and (0, Ppay). In other words, either both
links blast at full power, or one link switches off, and the other
blasts at full power.

In the present section, we solve the more general problem
with N links, where N is arbitrary. One might guess from the
two link result that the general solution will be a similar all
or nothing scheme, in which links either blast at full power
or are completely switched off. This turns out to be true, but
there is an interesting phase transition effect, in which there is
a macroscopic change as the level of interlink interference (the
cross-gain parameter, /€) crosses a threshold. If the cross-gain
parameter is below the threshold, all links should operate at full
power. If the cross-gain parameter is above the threshold, only
one link should operate at full power, the rest being switched
off. This is expressed in the following theorem:

Theorem 4.1:
Cflat<67 N7 Pmax)

Prax
= NC (m) 6<€N,1 (31)
C(Pmax) € Z 6N,1

where €y 1 is given by

1+Pmax - 1+Pmax %
EN,1 = ( )= ( L) . (32)
(N = 1)Prax((1 4+ Ppax)™ — 1)

An optimal power allocation is:

© P = Ppax Vi, if e < eny;

° P,L-Opt = Pmaxl{izl} if € > EN,1-

Theorem 4.1 is proven in Appendix E, using some results
from Section IV-B below. The proof has quite a number of cases
to consider, so we have relegated it to an Appendix; in the fol-
lowing subsection, we sketch the main argument.

A. Sketch of the Proof of Theorem 4.1

In the first step we impose an additional “binary power con-
straint”: the allowable power levels on each link are to be chosen
from the set {0, Pyax }. It is immediate that the right hand side
of (31) is an achievable sum-rate under the binary power con-
straint, and, in Section IV-B, below, we show that it is the op-
timal sum-rate under binary power constraints.

We then consider a solution to Problem 4.1, in which the
power levels can take on arbitrary continuous values between
0 and P,ax. Let P* be such a solution, with the entries of P*



4478

ordered in decreasing order. It is immediate that P = Ppax,
for otherwise we can increase the value of Crai(€, N, Prax)
by scaling all elements of P* by a common factor greater than
unity, contradicting the optimality of P*. Thus, without loss
of generality, we can assume that P* has the first &k entries
equal to Pax, for some integer 1 < k < N.Ifk = N,
we have a binary power vector, and nothing further to prove:
The optimal solution under binary power constraints is com-
pletely characterized in Section IV-B, below. If k& < N, then
let 0 < Py 11 = P < Ppax. Lemma A.1 in Appendix B can

be applied to this case to obtain the following characterization
of P*.

Lemma 4.1: If k < N and 0 < P, = P < Ppyax then
there exists integer [, 1 < | < N — k such that P = P for
i=k+1,k+2...;k+l and P; = 0forj > k+1(f
k+1 < N).If k = N then the optimal solution is P} = Py«
fori =1,2,...,N.

Proof: See Appendix E.

Now define the function:

Pma,X

)

1+ e Paax + €(1 — 1)p> - 39

J(€, Poax, ki, 1, P) = K C (

+lc(

From the characterization of an optimal solution in Lemma 4.1,
one can see that Theorem 4.1 is proven if one can establish, for
any integers k > 1,1 > 1, and real-valued P, 0 < P < Pp,x,
that

Prnax
NC ( 1+(N—1)ePmax

J(G, Pmaxa k7 la P) S
C(Pmax)

€2 €N1

It will follow from Lemma 4.5 in Section IV-B that a sufficient
condition for (34) to hold is

J(€, Pmax, k, 1, -) has no local maximum in (0, Ppax)-

(35)

This condition is sufficient because it implies binary power con-
trol is optimal, and Lemma 4.5 will show that binary power con-
trol can do no better than the RHS of (34). In Appendix E, we
will examine the extremal behavior of J(€, Pyax, k, {, -) for any
choice of €, Pnax, k,l with & > 1 and [ > 1 (we know that
at the optimal solution & > 1 and if [ = 0 there is nothing to
prove). We will see that J (¢, Ppax, k,, -) is not in general con-
cave, and it can have a local maximum in the interval (0, Ppax):
see Fig. 5. However, we will show that if (35) does not hold at
a particular choice of €, Prax, k, [ then (34) does hold for this
choice, for all 0 < P < Ppax. This is expressed in Lemma 4.2
below, which is proven in Appendix E.

Lemma 4.2: For all €, Ppax, k, [, either (35) holds, else (34)
holds for all 0 < P < Ppax.

Proof: See Appendix E.
We summarize this subsection with the conclusion that the
first step in the proof of Theorem 4.1 is to show that the right
hand side of (31) cannot be beaten by a scheme restricted to

) e<eni —
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binary power levels. This we do in Section IV-B, via Lemmas
4.3-4.5. After that, it is required to prove Lemmas 4.1 and 4.2,
and for this we refer the reader to Appendix E.
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B. Binary Power Constraints

In this section, we study the maximum sum-rate achievable
in (30) when the power levels are further restricted to lie in the
set {0, Pmax }. With binary power constraints, power control re-
duces to deciding if links should be “on” or “off”. It is intu-
itively clear that if the cross-gain parameter, /€, is sufficiently
low, then all links should be on. It is also clear that both terms
on the right hand side of (31) are achievable with binary power
levels, with all links on in the first case, and only one link on
in the second case. To show that this is optimal under binary
power constraints, we need to consider an arbitrary number of
links being on.

Forn = 1,2,3,..., let

Rn =nl 1 max
(€) = nlog ( S )P £ 1)
and we note that Ry = C(Ppayx) is independent of €. For
n > 2,R,(0) = nC(Ppax) > Ry and lim.jo R, (€) = 0.
It follows that there is a unique solution in € to the equation
R, (¢) = C(Puax), which we denote by ¢, 1 and it can be ex-
plicitly computed
1 Pmax —(1 Pmax ’]_1
enr = (1+ )—(1+ 1) 36)
(’I’L - l)Pmax ((1 + Pmax); - 1)

which provides (32).

In this section, we show that the right hand side of (31) cannot
be beaten by any binary power allocation scheme. This amounts
to showing thatif e < en 1, then Ry (e) > R, () foralln < N,
but if € > en 1, then Ri(e) > R, (¢) for all n > 1. This is
indeed true, as stated in Lemma 4.4 below, and it is illustrated
in Fig. 4.

Fig. 4 suggests that we can break up the line into intervals of
the form (e,—1,1, €n,1) and in each such interval R, (¢) is larger
than all the R,,(¢€), for m < n. Fig. 4 also suggests that the
increasing sequence of €, ; might be approaching a limit, and
beyond this limit, the single link rate is dominant. We proceed
to verify these statements.

Our first result for binary power control is the following:

Lemma4.3: (e,,1)5%5 18 an increasing sequence, with a lim-
iting value of 1/C'(Ppax).

Proof: This is a direct corollary of Lemma A.2 in
Appendix D.

Note that the value of 1/C'(Ppax) for the example depicted
in Figure 4 is 0.25.

Lemma 4.3 implies that for any m > 2 and for any
€ € (€m—1,1,€m,1), we have that e < ﬁ The following
lemma shows that in this case R,,(€) > C(Ppax), but also that
in the case ¢ > ~—=—, the inequality goes the other way. Set

C(Pmax)’
61,1 = 0.
Lemma 4.4:

1) Vm Z 2, and Ve € (Em_171,6m71)
C(Prax) < Rm(e) 37
Vn > 1, Ryyn—1(€) < Ryan(e) (38)

1
lim R, (¢) = —. 39
S )

4479

=r—, we have R,,(¢) < C(Pumax) for all

ii) For ¢ > TPt

n > 2.
Proof: A corollary of Lemma A.4 in Appendix D.
Lemma 4.4 implies the following result:

Lemma 4.5:
i) Fore < en,1, maxi<n<n Rn(e) = RN(E).
11) For ¢ 2 €N,1, MaX1<n< N Rn(e) = R1 = C(Pmax).
Proof: Follows from Lemma 4.4 and the observation that
all curves R, (¢) are strictly decreasing in €, for n > 2. ]

Lemma 4.5 completes the proof that the right hand side of
(31) provides the optimal sumrate under binary power con-
straints. In summary, for all n > 2, R,,(¢) decreases with e,
and crosses the constant value C(Ppax) at €, 1. This crossing
point increases with n, and on (0, ey 1), Ry dominates all R,,,
for n < N, as depicted in Fig. 4. This figure provides a nice
illustration of the sudden switch from having N links on, to
having just one link on, as € crosses the critical threshold given
in (32).

V. CONCLUSION

In this paper, we have solved two versions of the sum-rate
maximization problem for a symmetric network of an arbitrary
number of links. In the first version, each link has an average
power constraint, which is the same for all links. We have shown
that the critical value of the cross-gain parameter, /e, is /e =
1/ /2, above which the optimal spectra consist of N bands, with
only one link active in each band, providing a frequency division
multiplexing (FDM) characteristic to the solution.

When /e < 1/+/2, the FDM configuration is still optimal,
provided the SNR is high enough. However, if the SNR is suffi-
ciently low, the optimal power spectra will consist of one band,
giving a wideband (WB) characteristic to the solution. For in-
termediate values of the SNR, the optimal spectra is a mixture
of these two states; in these cases there are /N + 1 bands, with NV
bands of FDM, and one band in which the links interfere with
each other.

Although the symmetric network is a very special case of
the general problem of interfering links, our solution provides a
very clean characterization of the optimal behavior in this partic-
ular case, and it may provide insight into more general network
problems. The paper [8] shows that the piecewise constant form
of the optimal input spectra holds for arbitrary networks with
time-invariant, frequency-flat channels. However, the problem
of finding the optimal modes and power levels to use in each
mode is left completely open. In general, this problem has been
shown to be NP-hard [2].

The fact that we need to find the common tangent line to the
two curves C7 and Cs is a manifestation of the convexity that
is a characteristic of all capacity regions. It is well known that
capacity regions are always convex: Usually, time-sharing ar-
guments are invoked, but in the present paper, the convexifi-
cation is obtained in the frequency domain: Our solutions are
time-invariant.

An early paper that considered the impact of interference on
the capacity of a cellular network is [25]. This paper showed that
in some scenarios, pure TDM partitioning of cells into disjoint
time-slots, or pure WB strategies, can be beaten by a mixed
strategy that they called “fractional intercell time sharing”. This
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is consistent with our findings in the present paper, in which the
mixed state is shown to be optimal in some scenarios.

The other problem we have considered in this paper is the
rate maximization problem under peak power constraints, in
which the power spectrum of the transmitters is mandated to
be time-invariant and frequency flat. Each link has a maximum
average power constraint, which is the same for all links. We
have solved the problem under the constraint that each link must
choose a single average power level in the continuous range be-
tween 0 and the maximum possible average power level Py ax.
No variation of power in time or frequency is allowed. Under
this constraint, we have proven that there is no loss in restricting
each link to a binary choice between using zero power, or the
full power P,,.x. We have also shown that the optimal choice
is either all links on, or just one link on, with a phase transition
between these two states as the cross-gain between the links tra-
verses a threshold.

Although the symmetric network is a very special case of the
general problem of interfering links, numerical evidence pre-
sented in [26] suggests that the binary power control that we
have characterized in this paper is likely to be at least close
to optimal in many other network scenarios. Furthermore, the
techniques developed in the present paper may be useful in an-
alyzing such scenarios. Preliminary work has been undertaken
in [27] for a Wyner-type cellular model, in which only neigh-
boring cells interfere with each other.

The assumption of frequency and time-flat power allocation
makes this section of the paper directly applicable to CDMA
networks. One application is a multiple access channel, with a
single receiving node, employing single-user receivers for each
user. Our model is directly applicable if all nodes have a max-
imum average received power constraint, or if they have a max-
imum average transmit power constraint and they are equidis-
tant from the receiver. The interference parameter, e, is then in-
versely proportional to the processing gain of the system.

We do not explicitly consider the issue of fairness in the
present paper. In Section IV, fairness is inherited from the sym-
metry of the problem, rather than from an explicit requirement
to have fairness. In Section III, some links may need to be
switched off, which may be considered unfair. However, fair-
ness can be addressed by higher-layer scheduling algorithms.
Alternatively, the assumptions that the power allocation must
be frequency flat can be relaxed, as in Section III of this paper.

Finally, we note that the assumption that each link treats the
other links as sources of Gaussian noise can be relaxed. A link
is instead allowed to know about the codebooks used on the
other links. One then enters the difficult territory of the inter-
ference channel, although important recent progress has been
made [21].

APPENDIX

A. WB Versus FDM: Theoretical Results

This Appendix provides the Proofs of Lemmas 3.1 and 3.2,
which allow us to compare WB and FDM, for any number of
links, N, any choice of the cross-gain parameter, /¢, and any
SNR, P.
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Proof of Lemma 3.1:
Proof: To account for the dependence of f; on e, let us
redefine f; as a function of two variables

P
fl(e,P) = NlOg <1+ m)

As before, we have
fa(P) =log(1+ NP).

The unique ¢*(P) for which f,(e*(P),P) =
explicitly computed as

f2(P) can be

1+ P—(1+NP)YN
(N—=1)P((L+NP)/N —1)

e (P) =

which is a decreasing function of P. By the monotonicity of
f1(-, P) (for fixed P), we have that

fi(e, P) > f1(e*(P), P) = fo( P),for e < €*(P)
fi(e, P) < f1(e*(P), P) = fa(P),for € > €*(P).

(40)
(41)

Since €*( - ) is decreasing, we can define €*(0) and ¢*(c0) by

*(0) = lim e*(P) = 1/2 * = lim ¢*(P) = 0.
€*(0) Iyl%e( ) =1/2 and €*(0) PlTnOloe( )=20
It follows that if € > 1/2 then fi (¢, P) < fo(P) forall P > 0,
but if ¢ < 1/2, then there exists a unique P(¢) > 0 such that
¢*(P(e)) = e. For P < P(¢), e(P) > ¢, and so fi(e, P) >
f2(P) by (40). For P > P(e), €*(P) < €, and so fi(¢e, P) <
f2(P) by (41). u
Proof of Lemma 3.2:

Proof: 1f the tangent to C at the point (Py, f1(Py)) is to
intersect Co at (P, fo(P)) then P must solve the equation

h(P) = J(P1) (42)
where
h(P) = fo(P) = fi(P1)P
J(P) = fi(P) = fi(P)P.
Since h"(P) = rinpy < 0, it follows that h(P) is a concave

function, that increases to its maximum value M (P;), where
M(P) is given by

M(P) =log N —log fi(P) — 1+ f1(P)/N

which is achieved at P = ﬁ — 4, and h(P) decreases on
(ﬁ — %> 00). Thus, the following statements of equivalence
hold: there are exactly two solutions to (42) iff M (Py) > J(Py),
there are no solutions to (42) iff M (P;) < J(P1), and there is
exactly one solution to (42) iff M (Py) = J(P;). But

M'(P)— I'(P) = =L (P)k(c, N, P)

where

k(e, N,P)=1—2¢—¢(1+¢(N—1))P
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so if ¢ < 1/2 then M(P) — J(P) is decreasing on
1-—-2¢ : : 1-—-2¢
(O’W)’ and increasing on (m,oo). In

the following, we assume that ¢ < 1/2, as in the statement
of the result. But since ¢ < 1/2, M(0+) — J(0+) < O
and M(c0) — J(oo0) > 0, so there is a unique P, such that
M(P;) = J(P;), which implies that the tangent line to C4
at (P, f1(P)) touches Cy at a unique point (P,, f2(P,)).
For P < P;, M(P) < J(P), and, hence, the tangent line to
Cy at (P, f1(P)) does not intersect C5 at all. For P > P,
M(P) > J(P), and, hence, the tangent line to C at (P, f1(P))
intersects Cy at two points.

Equation (12) follows from fact that the tangent to C at
(P, f1(P))) touches Cs at (P, f2(P.)), as does the equation

(43)

fi(P) = f2(Pu) + f5(Pu)(Pr = Py).

If P, < P then f2(P,) < fi(Pu). by (9), but then

fi(Pu) > f1(P) + fi(P)(Pu — )

by (12), which contradicts the concavity of f;. Similarly, if P<

P, then f1(P;) < fo(P), by (10), but then
f2(Pl) > fQ(I)u) + fé(l—)’ll)(Pl - [)u)

by (43), which contradicts the concavity of fo. Hence, P, <

P < P,. The remaining statements of the lemma are either

straightforward consequences of the strict concavity of the func-
tions fy and fs, or of results proven above. [ ]

B. A Basic Schur-Concavity Result for Two Links

The functions to be maximized in this paper (cf Problem 3.2
in Section III, and Problem 4.1 in Section IV) are neither con-
cave, nor convex, and they possess local maxima, making stan-
dard numerical approaches problematic. Nevertheless, using the
symmetry in these problems, we have found some interesting
underlying structure that enable these problems to be solved.
The most basic result we need is expressed in Lemma A. 1 below,
and this lemma is used in solving both of the above problems.

Consider the following function, that provides the sum rate in
the two link case: fora > 0,e > 0

Py P,
4, P, D) =C C (44
g(e,a, b 2) <0,+€P2>+ <G,+EP1> “4)

where a represents the background noise level.
The following lemma considers the function restricted to the
segment:

P={(P1,P): P+ P,=P,PL>0,P,>0} (45

for some fixed total sum power on the two links, P.

Lemma A.1: For fixed e, a, the function g(e, a, -, -) is:
« Schur-concave [28] on P if ¢ < ¢*(a, P);
« Schur-convex [28] on P if € > €*(a, P)
where €*(a, P) = \/57"”11;_‘/5.
Proof: We consider only the case where a = 1, other-
wise we can re-scale the powers. With € and a fixed, and under
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the constraint (45), we can write (44) as a function of a single
variable

9(P1) = g(e,a, P1, P — Py). (46)

Writing ¢ = g, and employing the change of variables P; =
b+ c,P, = c— b, (46) becomes

o= () O (wava)

and the constraint (45) becomes: —c < b < c.Letd; = 1 + €c,
ds = €b, d3 = d; + cand d4y = b — ds. Then we can write the
derivative of g(-) as

eds — (1 — G)dl)(edg + (1 — G)dl)
(dt — d3) (d3 — d3)

47

g5 = ! (48)
Since d; and d3 are independent of b, if (eds — (1 — €)dy) # 0,
the only root of ¢’ (b) happens at b = 0. The only positive € for
which (eds — (1 — €)d;) becomes zero is the €*(-,-) given in
the lemma. This proves that the function g( - ) in (46) increases
in the interval (0, P/2) and then decreases to log(1 + P) at
P, = P, if e < ¢*, and vice versa otherwise. The fact that g(+)
is strictly increasing and then strictly decreasing, along with its
symmetric property around P/2 implies that g(e, a, -, -) in (44)
is Schur concave [28] on P when ¢ < €*, and Schur convex
otherwise. [ |

Corollary A.1: For fixed €, a, the maximization of the func-
tion g(e, a, -, -) over P occurs at:

s (P/2,P)2)if ¢ < ¢*(a, P);

. (O,P) or (]570) ife > e*(a,ﬁ’).

Note that Corollary A.1 provides the solution to the two link
version of the problem expressed in (20), which is the key re-
sult needed in the proof of Theorem 3.1. Problem (20) concerns
the maximization of (19) subject to a constraint on the sum of
the powers of all the links. One might hope that Lemma A.1
would generalize to an arbitrary number of links, which would
be saying that Cs,,m (€, N, -) is Schur-convex, or Schur-concave,
depending on the value of . However, this turns out not to be
the case. Nevertheless, Lemma 3.3 shows that the optimal so-
lution to the problem expressed in (20) is as if the function
Csum/(€, N, ) has the above Schur-convex/concave structure,
even though it does not.

The proof of Lemma 3.3 is given in Appendix C and it uses
Lemma A.1 in an iterative manner. Indeed an upper bound to
the problem is obtained using an iterative procedure, with links
being updated two at a time. The upper bound is then shown
to be achieveable. A similar approach can be applied to other
problems, including Problem 4.1 in Section IV.

C. Proof of Lemma 3.3

Recall that Cgym(e, N, P), as defined in (19), pro-
vides the objective function for the problem expressed

in (20). Consider an arbitrary feasible power vector
1 1 1 o N 1 .
PO = (P1( )7P2( ),...7P](\,)), satisfying >, Pj() = P.

Without loss of generality, we assume the components of all
our power vectors are sorted in decreasing order, so that

P> PV ... > pl.
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Define

N
P<1) = ZPJ(1)7 a) = 1+6p(1)7 P<1) = Pl(l) +P2(1)

J=3

and consider the function g™V (-) = g(e, ay,-) (see (44) for the
definition of g) restricted to the domain

7)<1):{(Pl,P2)2P1+P2:ﬁ(1)}.

Lemma A.1 implies that if € < €*(a;, P(M) then g(!) is Schur-
concave on P, but if if ¢ > ¢*(ay, PM) then ¢ is Schur-
convex on P In either case, we can construct a sequence of
power vectors that cannot decrease the achieveable sum-rate, as
we now show.

Case 1: ¢ < ¢*(ay, PM).

First, consider another arbitrary, feasible power vector @, or-
dered in decreasing order as above. For any component 7, we can
define a new vector Q' by decreasing @; and increasing ;1
by the same amount. Provided the amount swapped between the
two vectors is no more than @; — ;. 1, the vector Q' will also
be ordered in decreasing order, and @ > Q’. Such a transfer is
known as a Pigou-Dalton transfer, and it is given the name “el-
ementary Robin Hood operation” in [29]. It is well known [29]
that if @ > R then one can generate R from @ via a countable
sequence of elementary Robin Hood operations.

Now let us denote the vector (P/N, P/N, ..., P/N)by P,,.
Since P P, itfollows that there is a sequence P™ of fea-
sible power vectors, starting at PO, converging to P.,, where
P+ s obtained from P(™ by an elementary Robin Hood op-
eration. Let ¢,,, 7, + 1 denote the components where the transfer
takes place at step n of this sequence, and without loss of gen-
erality, let 4 = 1. For each n € Z_, define

N
P — ZP]-(n)I{j;éin Jin+1}

i=1

an =1+ eP™ and P = P 4 P | (49)

It is trivial to show, by induction, that forany 7 € {1,2,..., N—
1}, and any n € Z, we have that

n n 1 1
PO+ P < P 4 )

so in particular

P 4+ P, < P+ PV

in in+1
It follows from (49) that
P > P(1)7 a, > a1 and p) < P,

Let (™ (-) be the function g(e, a,,, -) restricted to the domain

P(n):{(P17P2)¢P1+P2:P(n)}'

Now, since € < ¢*(a1, P(), it follows that € < €*(a,,, P(™),
for all n € Z,, and, hence, g(") is Schur-concave on P
for all such n. Since the power vectors P™ decrease in
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order of majorization, it follows that Cg,m (e, N, P(l)) <
Cyum (€, N, P.,), unless PV = P,

Case 2: € > ¢*(ay, PW).

Forn = 2,3,..., N, define the power vector p™ by

S P =1
1 .

PY ., =23 N-n+l

0, jJ=N-n+2,N—-n+3,....N

(m) _
P =

which gives us a sequence of power vectors, all satisfying the
feasibility constraint that Zj\;l PJ(") = 13, and all with the
property of decreasing order for the components of each power
vector. Further, as a sequence of power vectors, the vectors are
increasing in order of majorization, with the final element in the
sequence being PN = (P,0,0,...,0). For each n, define

N—n+1 (n) N )
H5(n) _ n) 1
R YR
7j=2 j=n+2
n+1
an =1+ eP™ and P =3 p
i=1

Note that P(™) (and, hence, a,,) decrease with n, but P in-
creases with n. Define also the function ¢(™)(-) = g(e, ay,-)
restricted to the domain

pn) — {(P17P2)¢P1+P2:p(n)}'

Now, since a,, decreases, and P increases, it follows that
¢*(an, P) decreases with n. Since € > €*(ay, P(M), it fol-
lows that € > e*(amp(")), foralln = 2,3,..., N, and, hence,
g™ is Schur-convex on P(") for all such n. Since the power
vectors P(™) increase in order of majorization, it follows that
Coum (6, N,PY) < Cyypm(e, N, PN)) unless PV = POV

Now suppose that the vector PW s optimal for the problem
expressed in (20). Then either P = (P/N, P/N, ... P/N))
Gf ¢ < €e(a,PMD)) or PV = (P,0,0,...,0) (f
e > €*(ap, PM)), for otherwise, we can improve the ob-
jective function, as described above in the two separate cases.
We conclude that

U(e, N, P) = max{ fi(P/N), f(P/N)}.

D. Optimal Sum-Rate Under Binary Power Constraints

In this Appendix, we provide lemmas and their proofs, as
required for Section IV-B, which deals with maximizing the sum
rate under binary power constraints.

Set a = 1 4 Ppax, and define the function ¢ : (0,1) — R:
P(r) = 12 (9%, so that e, | = m+—p(1/n).

l—zla—1 Prax
Lemma A.2: ¢ is a decreasing function.

Proof: ¢'(x) = %7 where

¢ () = ™! — a® + 24" log(a) — a + a” — 224" log(a)

—a" 1z log(a) + a® a2 log(a)
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and where d(z) > 0. The following edge conditions hold:

$(0) =0, (1) = 0. (50)
Let 9@ (z) = L ¢V () and set G(z) = Z)r 1)0(ng Then
G(z) = —2a" + 2 + zlog(a) — 2z — x* log(a) — axlog(a)
+ az?log(a) + 2ax
and
G(0)=0,G(1)=0 (51)
Set
GV (z) = G'(x)
= —2a"log(a) + log(a) — 2 — 2z log(a)
—alog(a) + 2a + 2ax log(a).
We have
GV(0) =GV (1) = —(a+1)log(a) — 2 + 2a.
Using the inequality log(1 + z) > % [30], we obtain
GM0) < 0,dM(1) < 0. (52)

Set G (z) = LGW(z), an
G®(x)
2log(a)

The equation H (z) = 0 has a unique solution in z, namely

o 1 ! a—1 >0
"7 logla) ® \log(a) ) 7

Using the inequality log(1 + ) > 2+—z, one can show that
log(1 + Prpax/2)

log(1 + Puax)

H(z) =

= —a®log(a) —1+a.

<1

but since log(1+4 Ppax) < \/14-71’# [30], we have \/alog(a) <
a — 1, which implies

log(a) — 2log (ﬁ) — alog(a) + 2alog (%) >0

and, hence

GW(z) > 0. (53)
From (52), and (53), we have that G")(z) = 0 has exactly two
solutions in (0,1): 1,49, with 0 < £ < & < %3 < 1, and
G decreases on (0, Z1 ), increases on (21, £2), and decreases on
(Z2,1). By (51), it follows that there is a unique = that solves
G(z) = 0, or equivalently ¢®) () = 0, and z is, therefore, the
unique minimizer of $(1). By (50) it follows that ¢(1) (z) < 0
forall z € (0, 1), i.e., ¢ is a decreasing function. [ |

Lemma A.3:

> 3, ——— | . R,
Vn > 3,Ve € (07 C(Pmax)> SR (e) <R, _1(e) <0
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Proof: ¥Yn > 2
-1)P?
R;,L(é) — (TL ) max
((71 - l)epmax + 1)((7’1, - 1)€Pmax + Pmax + 1)
< 0.
Suppose € < C(P - Then ¢ < = + P , SO

(7’1, - 2)€Pmax(2 + Pmax - EPmax) + 2(1 + Pmax) > 0

Hence

n

((7’1, - 1)€Pmax + 1)((” - l)epmax + Pmax + 1)
n—2
((71 - 2)€Pmax + 1)((7’1, - 2)€Pmax + Pmax + 1)

>

which implies that R/, (¢) < R/, _;(¢), and clearly both are neg-
ative. [ |

Lemma A.4:
Vn > 2,Ve € (0,€,1), Ru(e) > Ru—1(€).

Proof: The result is clearly true for n = 2. Forn > 3,
Lemma A.3, and the fact that R,(0) > R,_1(0), together
imply that the equation R,,(¢) = R,,_1(¢€) has at most one so-
lution for € in the interval (0, ﬁ) If this solution exists,
it cannot lie in the interval (0,¢,_1,1), for that would imply
€n,1 < €p—1,1, contradicting Lemma 4.3. Thus, R,_1(e) <
R, (¢) Ve € (0,€5-1,1). For €,,_11 < € < €,,1, we have
R,—1(€) < C(Ppax) < Ry(e). ]

E. Proof of Theorem 4.1

A sketch of the proof is provided in Section IV-A. This Ap-
pendix contains the proofs of the lemmas stated in Section IV-A.

Let P* be a vector of power levels that provides a solution
to Problem 4.1, with the entries of P* ordered in decreasing
order. It is immediate that P = Py, for otherwise we can in-
crease the value of Csym (€, N, P*) (see (19) for the definition)
by scaling all elements of P* by a common factor greater than
unity, contradicting the optimality of P*. Thus, without loss of
generality, we can assume that P* has the first & entries equal
to Pax, for some integer 1 < k < N.

If k. = N, we have a binary power vector, and in this case
the statement in Theorem 4.1 follows from Lemma 4.5. Let us,
therefore, consider the case that £ < N:If £k < N, then let
0< P 11 = P < Ppax. Lemma A.1 can be applied to this
case to obtain the characterization of P* expressed in Lemma
4.1, as we now show.

Proof of Lemma 4.1:

Proof: If k + 1 = N the result holds by definition, so as-
sume k + [ < N — 1. For the purpose of obtaining a contra-
diction, assume that 0 < FPy,,; < P = Pj,;. Recall that
P < Pypax.Fori #k+1,i #k+1+1,set P, = P/, and
define the constant a by

@ =€y Pilyjpeiijzhtisn)-

7
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Then

Csum(e: N-, P) = 9(67 a, Pk+l7Pk+l+1)
P
+ C —]*> 54
Z (1 +ed iz b

J#Ek+HLjFER+I+1
where the function g is defined in (44). We consider opti-
mizing the expression in (54), but varying only ( Pi41, Pryi+1),
keeping the sum of these two powers fixed
Pyt + Prgivr = P = Pl + Py
Note that this constraint ensures that the second term in (54) is
constant.

Ife < €*(a, [:’) then by Lemma A.1, g(e, a, -, -) is Schur-con-
cave over the constrained set, S0 Ciy, (€, N, P) is maximized
at (P41, Prgy141) = (P/2, P/2), which contradicts the opti-
mality of P*.

Ife > e*(a715) then by Lemma A.1, g(¢, a,-,-) is Schur-
convex over the constrained set. If P > Prax, then (Pax, pP-
Prax) > (P Piyiypq), where - is the symbol for “ma-
jorizes” [28). If P < Py, then (P,0) > (P,:‘_H Py
Either way, this contradicts the optimality of P*. ]

It is shown in Section I'V-A that the proof of Theorem 4.1 is
complete once we establish Lemma 4.2. To this end, recall the
function

Pmax
J(€, Prax, k[, P) = k C
(&, L P) (1 ¥ e(k — 1) P + elP)

P
T
* <1+ek‘Pmax+6(l— 1)p>

and the statement of the lemma in Section IV-A.

Proof of Lemma 4.2: Assume ¢, Ppy.x, k,l are fixed, and
write J(P) to simplify the notation. By differentiating J(P),
we obtain

(1 + €kPoay)
(A + €Poax + P)(A + ¢Praay)
lek Py
" (A4 €P 4 Puay)(A + €P)

J(P) =

(55)

where A = 1+ €(k—1)Prax+€(l—1)P. One can immediately
verify that

JI(Pmax) >0 (56)

from which the next lemma follows.

Lemma A.5: If J'(P) has only one real root in the interval
(0, Pryax) then J(+) does not have a local maximum in the in-
terval (0, Ppax)-

We can write .J'(P) as a rational function, with numerator
Q(P) = aP? + bP + c. The coefficients of Q(P) are polyno-
mials in €, and we explicitly compute these coefficients

(€ — €a)
1
b= kP>, 12(k—1)e (e + kPmax) (e — €p)

a = kPpaxl (20 — 1)é? (57)

(58)
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1
3 _ . %
—kP> . 1(2k —1) (e + kPmax) (e —ec)(e—€k)

(59
where €, €3, and ¢, are given by
-1 12
“T 1 kPpa(2l— 1) (0
1 21
= (1-—-—= 61
@ 2( (k=P m) ©b
L A+VRE L] h=-VEk
€ = €, = — (62)
(2]{3 — I)Pmax ) 2 ( k )Pmax
fl = k(l""Pmax) _Pmax 2 (63)
f2 = k2(1 + Pmax) kar%lax
+ 2k Proax + 4k + P2, (64)

If a = 0 (i.e., € = €,) then Q(P) is linear in P, and, hence,
J'( ) has at most one real root. It follows from Lemma A.5 that
J( ) does not have a local maximum in the interval (0, Ppax)
in this case.

If a # 0 then Q(P) has two complex roots (possibly real),
namely bi\/_

Q(P).

Lemma A.6: If any of the following conditions hold, then
J( ) does not have a local maximum in (0, Ppax): () @ < 0, or
(ii) ¢ < 0, or (iii) b > 0. Equivalently, conditions (i) and (ii) can
be written (i) € < €4, (ii) € > €., respectively. If & < [ then the
condition (iii) is equivalent to € < €. If £ > [ then the condition
(iii) is equivalent to € > €.

Proof: If a < 0 then limp_,o, J'(P) < 0. But by (56),
it follows that J’(P) has a real root in (Ppax, 0), and, hence,
at most one real root in (0, Ppayx). If ¢ < 0 then J'(0) < 0.
By (56), it also follows that there is at most one real root in
(0, Pryax)- In both cases, the result stated follows from Lemma
A5.1fb > 0 and ac > 0 then J'( P) has no real, positive roots.
But if ac < 0 then case (i) or case (ii) applies. [ |

, where D = b2 — 4ac is the discriminant of

Lemma A.7: If k > [ and €, > min(ep, €.) then J( - ) has no
local maximum in (0, Pyax)-
Proof: a direct corollary of Lemma A.6. ]

Now assume that & < [. The value ¢.. in (62) is a function of
k and Ppax. We shall show that €.(-, Pmax) is increasing in &
when Pp,.x > 1.0 and decreasing otherwise. By differentiating
with respect to k

¢ (k) = 2V F2l(2k — 1) f{ — 2f1] + [(2k — 1) f3 — 4fo]
o 42k = 12/ o Prnas
(65)
1
= m max +3 \/ﬁ 4]("'Pmax
+(k_ 1>Pr%1ax_‘)k_Pmax_2)- (66)

The denominator of the above function is always positive when
k and P, are positive; hence, we will focus our attention on
the numerator, which is of the form ¢; + (o with ( = (3 +
Poax)V/ f2. Since (g is always positive, the following lemma is
immediate.
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Lemma A.8: With ¢; defined as above, if (¥ — (3 > 0, then
G+ G >0

But (> as a function of Py,,x has one root in the positive real
axis, after which it becomes positive. In particular, (» < 0 when
Ppax = 1.0. Thus, we have the following lemma.

Lemma A.8: With (; defined as above, if Py < 1 and ¢? —
(5 <0,then ¢; 4 (2 < 0.
Now we can easily compute
612 - C22 =16(1+ PmaX)z(Pmax — 1)(2k - 1)2 (67)
which has the same sign as (Ppax — 1). Using the two lemmas
above, the function e, is increasing in k¥ when Pp,,x > 1 and
vice versa. Hence

< li li
€ < max{klir}) €c; Jim_ €} (63)
1 1 1
—m“{ﬂwm} 69)
1 1

< = 7
- 2 + Pmax ( O)
< 1 + ! 71)
-2 (l — k’)PmaX
= . (72)

We summarize this inequality in the following lemma:
Lemma A.10: If k < [ then ¢, > e..

Lemma A.11: If k < [ then J( - ) does not have a local max-
imum in (0, Ppax)-
Proof: a direct corollary of Lemmas A.6 and A.10. ]

The remaining case to consideris & > land ¢, < min(ep, €.).
For this case, we cannot in general prove that J(-) does not
have a local maximum in the interval (0, Pyax ). Indeed, Fig. 5
demonstrates that there do exist choices of k,[, Pyax, € for
which the corresponding J(-) does have such a local max-
imum. Moreover, there are subcases in which such a local
maximum is in fact a global maximum of the function. The
figure suggests that such local maxima may only appear when
e is sufficiently large. For the example depicted in Fig. 5,
e = 0.332 is the critical value. In fact, this observation is true
in general, as proven in the lemma below.

Lemma A.12: If k > | and ¢, < min(ep, €.) then there exists
a uniquely defined positive number €4(k, [, Pmax) (a function
of k, 1, Pyax, which can take the value oo, and which is defined
in the proof below) such that the following three conditions all
hold:
i) there is no local maximum of .J(€, Pyax,k,l,-) in
(0, Pax) for any € < €g4;
i) if e, < €y < €. then g, < €4 < 00,3
iii) if €, < €c < € then gp— < €a.

Proof: Recall that D = b? — 4ac is the discriminant of the
quadratic Q(P). For fixed k, I, Ppax, it is a six degree polyno-
mial in €, which we will denote by D(e). It has a double root at
€ = 0, a single root at € = — ﬁ, s0 it has three more roots,
at least one of which is real. In the following, we assume that
k > [, as in the statement of the lemma.
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We begin by establishing (ii). If ¢, < ¢, < ¢, then Lemma
A.6 implies that D > 0 on (0, €,] and on [e., 00), but D(ep) <
0. Since there are at most three positive real roots of D(e), there
must be exactly two, which we denote by €} and €4, with

€a < €5 <€y < €q <00

which establishes (ii), and provides a definition of ¢4 for this
case.

To define ¢4 for the case ¢, < €. < €, note that in this case
we again have that D > 0 on (0, ¢,] and on [e., 00). Since there
are at most three positive real roots of D(¢), there must be either
zero positive roots, in which case we define €; = ¢4 = o0, or
there are exactly two positive roots, which we denote by €; and
€4, With

€a < €5 < €q < €.

We now proceed to establish (i). If €5 < € < ¢4 then J(P) has
no real root, so (35) must hold in this case. At ¢ = ¢,, Lemma
A.6 implies that « = 0,b < 0,¢ > 0; thus, Q(P) is linear
in P, with Q(0) = ¢ > 0, and slope b < 0. It follows from
(56) that in this case J'(P) has a single root P € (Ppax, 00).
For € > ¢4, we have limpqo, J'(P) > 0, so, for € in a small
neighborhood of €,, with € > ¢,, there are two roots of J'(P)
in (Pmax,00). The roots of Q(P) are continuous functions
of ¢, so it must be that any real, positive roots of J(P) are
in (Ppax,00) for all ¢, < € < €}; otherwise, there exists
€q < € < € for which J'(Ppax) = 0, which contradicts (56).
Finally, for € < ¢4, a < 0, and Lemma A.6 (i) implies that
(35) holds in this case. We conclude that (35) holds for all
€ < €4, establishing (i).

We now proceed to establish (iii). To this end, as-
sume that ¢, < € < €. In the following, we write
€a(k,l, Pmax), €6 (k, 1, Pmax) and e.(k, Ppax) for the func-
tions defined in (60)—(62). For k > 2, it can be easily seen from
(62) that €. is a decreasing function of P,,.x, and from (61) that
€p is an increasing function of Py, for k > [. Thus, for any
fixed k and [, the equation ¢, — ¢;, = 0 will have at most one
positive solution in Py ,x. Denote this solution by ﬁ’, where P
is a function of k£ and [

P(k,1)
B2k VE 2R3 + K2 + 4k2 — 4KI2 — 4lR?
- k—1

. (73)

Since €, > €., it must be that Z5(l<:7 1) is real and positive and
Puax > P(k,1).

We now consider three cases.

Case A:l =2,k > 2

When | = 2, P(k,2) is an increasing function in k
for all k > 6, and P(6,2) = 23.3. So, for k > 6,

c<pf,m> < 1/log(24.3) = 0.3134. But 0.324 =
€a(6,2,23.3) < €q(k, 2, Ppax). Thus, for k > 6
1
=5 < €a(k, 2, Prax 74
CPom) € ( ) (74)

and one can directly verify that (74) is also true for k = 3,4, 5.
But €4 > €4, so (iii) is established for case | = 2.
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Case B:2 <l < k

Since €;(k, [, Pyax) is a decreasing function of [ (for [ < k,
and k fixed) it follows that P(k,2) < P(k,l) < Puax, which
implies that €, (k, l, Ppax) > €4(k, 2, Pnax)- But (74) holds for
all £ > 3, and, hence, (iii) is established for all [, k satisfying
2<l<k.

Case C:l =1,k > 1

When | = 1 we can explicitly compute the roots of the dis-
criminant

D(e) = aé? <e !

2
+ kPmax) (e —e-)(e—€r) (75)

(for constant o) where the (possibly complex) roots are given
by

_bitBe o B[
= ToR T g (76)
with
1 142k 124k
/31—k—1—$”32— P + P ()

If € and €, are complex conjugates, we have ¢; = oo and there
is nothing to prove, so assume that €}; = €, g = er,~b0th real
and positive. For | = 1 and k > 2, we have Py > P(k 1)

11.2. Thus, zrp—y < 1/log(12.2) = 0.4. Buteg > 31, s0
if & > 5, then ¢4 > 0.4, proving (iii) for this case. But also

k—1—1/Pmax 14—2k)/ Pmax .
€4 > / +2k( )/ ,s0if 2 < k < 4 then

Pmax - 1 V 6Pmax 1
> + >

VPoax 11.2.
1P C(Poa) >

€d

Lemma A.13: If k >l and ¢, < €, < €. then for any € > 0,
J( ) does not have a local maximum in the interval (0, Ppax ).
Proof: By Lemma A.12 (i), there is no local maximum of
J(-) in the interval (0, Pp,.x) for any € < ¢4. By Lemma A.6
(iii), there is no local maximum in the same interval for any
€ > €. By Lemma A.12(ii), €, < €4. [ |

The following lemma is concerned with the special case of
€ = en,1, where €1 is defined in (32).

Lemma A.14: Cprai(en,1, N, Prnax) = C(Prax)-

Proof: ~ The preceding results establish that
J(en.1, Pmax, k,0,-) has no local maximum in the in-
terval (0, Pmax) in all cases apart from e, < €. < €. Let
us assume now that ¢, < €. < €,. By Lemma A.12 (i) and
(iii), we know that J(e, Puax, k.1, -) has no local maximum
in the interval (0, Pyax) for all € < e P =’ but by Lemma

4.3, we have that ey < C(P; SO (35) is established for

€ = €N1,€a < € < €. We conclude that binary power
control is optimal at € = €1, and the result then follows from
Lemma 4.5. [ |

Now consider arbitrary ¢, but with k, [, Ppax satisfying the
remaining condition that is yet to be resolved in general: k > [
and ¢, < €. < €.
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Lemma A.15: If k > [ and ¢, < €. < ¢, then for any ¢ > 0,
and any P € (0, Ppax)

J(E, Pmax-, k l: P)
Prnax
1+(N

NC (7—1%1_’1““) , €< EN (78)
C(PmaX)7 €> EN,1-

Proof: If € < ¢4 then the result follows directly from
Lemma A.12 (i), together with Lemma 4.5. If ¢ > ¢4
then Cflat(67N7 Pmax) < Cflat(evavpmax)7 by mono-
tonicity of Cyiae(-, N, Pmax). But by Lemma 4.3 and

Lemma A.12 (iii), we have that ex; < C(Pl ) < €q.
Monotonicity of Criat(, N, Pmax) 1mphes that
Cflat(€d7N7 Pmax) < Cflat(6N,l7N7 Pmax)~ But by

Lemma A.14, Cfia1(en1, N, Ppax) = C(Ppax). Thus, if
€ > €4 then then

J(evpma)u k7l7 P) S Cflat(67N7 Pmax)
S C(Prnax)-

The first inequality is due to J(€, Pmax,k,l, P) being an
achieveable sum rate, and the second inequality follows from
the above bounds. But by Lemma 4.5, the RHS of (78) equals
C(Pmax) Whene > ex 1. [

We have now considered all possible cases and shown that
if (35) does not hold, then (34) does hold, for all choices of
k,1>1, Pphax and 0 < P < Py« This concludes the proof of
Lemma 4.2, and hence of Theorem 4.1.
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