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Distributed Decoding in a
Cellular Multiple-Access Channel

Emre Aktas, Jamie Evans, and Stephen Hanly

Abstract— This paper considers the problem of joint detection
in the uplink of cellular multiaccess networks with base-station
cooperation. Distributed multiuser detection algorithms with
local message passing among neighbor base stations are proposed
and compared in terms of computational complexity required in
the base stations, the amount of serial communications among
them, error rate performance, and convergence speed. The
algorithms based on the belief propagation algorithm result
in complexity and delay per base station which do not grow
as the network size increases. In addition, it is observed that
these algorithms have near single-user error rate performance
for the fading channels considered. Thus it is illustrated that
using the belief propagation algorithm, it is possible to have
full frequency re-use and achieve near-optimal performance with
moderate computational complexity and a limited amount of
message passing between base stations of adjacent cells.

Index Terms— Cellular communication, distributed detection.

I. INTRODUCTION

IN [1], Wyner considered the uplink of a cellular network,
and proposed the concept of a joint processing global

receiver which has access to all the received signals, and
optimally decodes all the transmitted codewords in the entire
network. In this model, each base station acts as an antenna of
a global receiver which performs optimum multiuser decoding.
It was shown that a cellular network with full frequency re-
use and such a joint-processing receiver significantly outper-
forms a network with individual processing where different
frequency bands are assigned to neighboring cells to avoid
co-channel interference [1]–[3].

Even though the joint processing global receiver is desir-
able, its implementation poses several challenges from the
practical point of view. Firstly, all the received signals are
required for joint processing. Since the cells in the cellular
system are geographically separated, possibly over a large
area, collecting all the received signals at one location for
joint processing might not be feasible. Secondly, even if all
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the received data is collected at a central processor, the fact
that the complexity of the general multiuser detection problem
grows exponentially in the number of users [4] suggests that
multiuser decoding of all users may be intractable as the size
of the network grows.

Despite the aforementioned challenges, the fact that a mo-
bile only causes significant interference to nearby base stations
suggests the possibility of a practical solution. In the present
paper, we wish to exploit the local interactions between cells,
both in terms of the interference between cells, but also in
terms of the communication available between adjacent base
stations, in order to obtain global demodulation algorithms
that do not grow in complexity as the size of the array grows
large.

The main idea is that the global problem of demodulating
all the symbols in the network can be distributed across a
network of interacting base stations, each of which performs
local computations, and then passes the results on to their
neighbors for further processing. The theoretical foundation
for this approach is provided by Pearl’s work on statistical
inference using Bayesian networks [5].

Pearl’s belief propagation (BP) algorithm is a local mes-
sage passing algorithm based on a Bayesian network graph
representation of a probabilistic model. The goal of the BP
algorithm is to calculate the a posteriori probability (APP) of
each random variable given the observation of some of the
random variables - a common statistical inference problem.
The algorithm exploits the local dependency properties of
the variables in order to reduce the complexity of the APP
calculations, and for graphs with no loops, it converges to the
desired result in a finite number of steps.

We link the network-wide problem of demodulating the
users’ data symbols, conditional on the received signals at
the base stations, to the computation of the APP for a corre-
sponding graph. It turns out that our models are not loop-free,
and in this sense the algorithms we propose do not compute
exact APPs. However, it appears that the exact calculation
of the APPs is exponential in the size of the array [6], and,
as observed in many other contexts [7]–[9], the existence
of loops in the graph need not prevent the algorithms we
propose from generating very good approximate solutions to
the problem. We provide numerical results, and lower bounds,
to demonstrate the accuracy of our algorithms.

We consider the 2-D planar array cellular model with
discrete alphabet signaling in this paper. Before we study
the general problem of global demodulation for this case,
we consider first the much simpler one-dimensional version
of the problem, for which the BP algorithm provides an
exact, and well known solution to the problem, namely the
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BCJR algorithm [10]. As an extension to the application of
BCJR algorithm in the one-dimensional case, we propose
to isolate columns and rows of the rectangular grid and
perform the BCJR algorithm on them alternatively, as a soft
iterative algorithm with two modules. This method, although
implementable in a distributed fashion, is serial in nature and
still not completely decentralized. Thus, we also propose two
graphical models upon which we can apply the BP algorithm
[5] directly, in such a way that computations at the cell sites
can proceed in parallel, and are continuously updated as new
information arrives from the adjacent cells. We compare the
implementation of the three resulting algorithms in terms of
error rate performance, number of message passing steps, and
complexity required at the base stations.

All of the methods we propose have the following desired
properties. They can be implemented with local message pass-
ing between base stations of neighboring cells. The numerical
complexity required for a base station is constant regardless of
the network size, and the performance is near the single-user
lower bound for fading channels at high signal to noise ratios.

The rest of the paper is organized as follows. In Section II
the rectangular cellular model is presented. The BCJR decod-
ing in the linear array model [11], and the iterative extension
of it for the rectangular model are presented in Section III. The
graphical models and the BP algorithm based on the models
are proposed Section IV. The numerical simulations are given
in Section V, followed by concluding remarks in Section VI.

A. Related work

Distributed decoding in cellular networks has been consid-
ered previously for a simplified linear model [11], [12]. The
linear cellular array model assumes a hypothetical scenario in
which the cells are placed on a line, each having two neighbor
cells. For this model, it was shown that the maximum a
posteriori (MAP) decoding of each user is equivalent to the in-
ference problem of estimating the states which form a Markov
chain, similar to the detection of symbols in a single user
inter-symbol interference channel with a fixed channel length
of three. The BCJR algorithm [10] for this Markov chain
results in a distributed algorithm with local message passing
[11]. Distributed implementation of the linear minimum mean
squared error receiver, which is optimal for Gaussian sources
but sub-optimal for discrete alphabet sources, was developed
in [12]. The methods of [11], [12] are not directly applicable
to the 2-D model where the cells are located on a plane.

Recent research has considered distributed global demodu-
lation in 2-D cellular channels [13]–[15]. In [14], a reduced
complexity maximum-likelihood (ML) decoder is developed,
which results in the exact ML solution. The algorithm is
motivated as an extension of the Viterbi algorithm which
exploits the limited interference structure. Although the gen-
eral large 2-D cellular structure is not treated, it seems that
the algorithm, if applied to that structure, would result in
increasing complexity per symbol with growing network size.
In fact, since the number of loops grows with the network size,
we would expect that the exact ML solution has complexity
per symbol that grows unbounded in the size of the network.

In [15], Shental et al. have considered the application of
a generalized BP algorithm, which is defined on Markov

networks, to the 2-D inter-cell interference (ICI) problem. It is
reported in [15] that the BP has very poor convergence when
there are a large number of short cycles, and a generalized
version is provided in which clusters of nodes are used to
overcome this problem. This seems to contradict with the
results in the present paper, since we observe near-optimal
performance without clustering. This is perhaps because of the
fixed model used for channel coefficients in [15] as opposed
to the random coefficients considered in the present paper. In
addition, in [15] BP over pairwise Markov random field is
considered, while here we utilize directed Bayesian network
graphs, which may result in two different message-passing
schemes.

Marrow and Wolf proposed the idea of using 1-D MAP
algorithms on rows and columns iteratively for the 2-D equal-
ization problem [16]. This is very similar to the method we
use in our iterative BCJR implementation in Section III-B.
However, since the actual signal structure does not allow a
Markov chain representation, application of BCJR algorithm
along the rows or columns is an approximation, resulting
in unaccounted interference, and the way this unaccounted
interference is treated is different in [16] and the method we
use here.

Demodulation of 2-D cellular networks in the presence of
ICI is closely related to the problem of 2-D equalization
in page-oriented optical memories [17]–[20]. The use of BP
for 2-D equalization has been considered in [19], [20]. The
graphical representations in Sections IV-A and IV-B of the
current paper had been suggested in [19] and Chapter 5 of
[20], respectively. Thus the resulting algorithms we consider
in this paper are structurally the same as the corresponding
algorithms in [19], [20]. We emphasize that the application of
BP to the problem of distributed decoding in cellular networks
is novel.

II. RECTANGULAR CELLULAR ARRAY MODEL

We consider a cellular network model where the cells are
located on a rectangular grid, and each cell has four neighbors
(extending results to the more realistic hexagonal case where
each cell has six neighbors is conceptually straightforward,
and we consider the rectangular case for its relative simplic-
ity). We assume flat fading, where the baseband channel is
represented by a complex coefficient. Within a cell, multiple
users’ signals are assumed orthogonal, hence there is no intra-
cell interference. The received signal at the base station of any
cell, in any channel, is the superposition of the signal from
its own user, and the signals the four adjacent cell co-channel
users. Each base station is primarily interested in obtaining the
APP of the symbol of its user, given the signal observed by
the network of all base stations. We exclude coding in order
to focus on dealing with the ICI at a symbol level.

In the following, uppercase letters denote random variables,
and lowercase of the same letter denotes a realization of the
random variable. For cell (i, j) in the rectangular grid, let Bi,j

denote the transmitted symbol drawn from a constellation of
size M , Yi,j the received signal, hi,j(m,n) the channel to
base state in cell (i, j) from the user in cell (i + m, j + n),
and Ni,j additive Gaussian noise. We assume that the channel
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Fig. 1. Rectangular cellular array.

coefficients hi,j(m,n) and the noise variance σ2 are known
at the base station of cell (i, j). We consider an N × N
rectangular network as in Fig. 1. The relationship between
the observation Yi,j and the transmitted bit Bi,j is expressed
as:

Yi,j = hi,j(−1, 0)Bi−1,j + hi,j(0, 0)Bi,j + hi,j(1, 0)Bi+1,j

+ hi,j(0,−1)Bi,j−1 + hi,j(0, 1)Bi,j+1 + Ni,j .
(1)

For the cells at the edges of the rectangular network, we add
dummy symbols B0,j , BN+1,j , Bi,0, and Bi,N+1 for i =
1, . . . , N , and set the corresponding hi,j(m,n)’s to zero.

Let Y denote the set of all observations Y =
{Y1,1, . . . , YN,1, . . . , Y1,N , . . . , YN,N}. The goal is to calcu-
late the APP of any transmitted symbol given Y = y, that is,
P (bi,j |y). Brute force calculation of the APP has complexity
that grows exponentially with N2, which is clearly intractable.
Although, by clustering along the width of the network and
applying the BCJR algorithm, it is possible to obtain exact
inference with complexity that grows exponentially with 3N ,
this is still intractable as the network size grows.

III. THE BCJR ALGORITHM

A. The BCJR algorithm on a one-dimensional array

In order to emphasize that it may be possible to obtain
an optimum global receiver using local processing and mes-
sage passing, we now consider the special case of a one-
dimensional array of cells, and present the method of [11]
for this case, which is the application of the BCJR algorithm
to this problem. Consider only one column of cells in the
rectangular array. Omitting the column index in (1), the signal
model reduces to

Yi = hi(−1)Bi−1 + hi(0)Bi + hi(1)Bi+1 + Ni.

This model can be represented as a hidden Markov chain as
follows:

Yi = mi(Si) + Ni, (2)

where Si is the “state” for cell i, Si = (Bi−1, Bi, Bi+1),
and where mi is a deterministic function of the state since
the channel coefficients are known: mi(si) = hi(−1)bi−1 +

APP

BCJR
columns

BCJR
rows

y

APP

Fig. 2. Iterative implementation of BCJR algorithm along the columns and
rows of the rectangular array.

hi(0)bi +hi(1)bi+1. The states form a Markov chain because
p(si|si−1, . . . , s1) = p(si|si−1).

The BCJR algorithm is an iterative method for models of
this type. It is used to obtain the APP p(si|y) and can be
directly applied here. The desired APP p(bi|y) can be obtained
from the marginalization of p(si|y) . It can be shown that [10],
[11] the following recursion

α(s1) = p(y1|s1)p(s1) (3)

α(si) = p(yi|si)
∑
si−1

p(si|si−1)α(si−1)

for i = 2, 3, . . . , N (4)

and

β(sN ) = 1 (5)

β(si−1) =
∑
si

p(yi|si)p(si|si−1)β(si)

for i = N − 1, N − 2, . . . , 1 (6)

results in
p(si|y) = α · α(si)β(si) (7)

where α is a normalizing constant to obtain a probability
density function. Note that it should not be confused with
α(si).

This recursion can be implemented locally where the base
station of cell i performs the calculations in (4), (6), and (7),
receives local α(si−1) message from cell i− 1, and transmits
β(si−1) message to cell i−1. Notice that the implementation
is serial, i.e. cell i has to wait to receive the α(si−1) message
from cell i − 1 before it can transmit the α(si) message to
cell i + 1, and similarly for the β(si+1) and β(si) messages
going in the opposite direction.

B. BCJR algorithm in the rectangular array

Encouraged by the elegance of the implementation of the
BCJR algorithm for the one-dimensional array, we consider
using this algorithm along the columns and rows of a rectangu-
lar array in an iterative manner. The APP outputs of the BCJR
along one direction will be used as a priori probabilities for
the BCJR along the other direction. Thus the global decoder
is built as an iterative decoder where the two modules of
the iterative decoder are the BCJR in each direction (Fig. 2).
In order to describe this decoder, suppose that the algorithm
is at the stage where it has just completed the BCJR along
the rows, and it will next start the BCJR along the columns.
The resulting APPs from the row-BCJR will be passed to the
column-BCJR, to be used as a priori probabilities. For base
station of cell (i, j), the required priors are p(bi,j), p(bi+1,j),
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p(bi,j−1), and p(bi,j+1). Consider the operation on column j
of cells only, since in each column identical operations will be
performed, and let us rewrite the BCJR equations of (3)-(6)
with the column index for clarity:

α(s1,j) = p(y1,j |s1,j)p(s1,j) (8)

α(si,j) = p(yi,j |si,j)
∑

si−1,j

p(si,j |si−1,j)α(si−1,j)

for i = 2, 3, . . . , N (9)

β(sN,j) = 1 (10)

β(si−1,j) =
∑
si,j

p(yi,j |si,j)p(si,j |si−1,j)β(si,j)

for i = N − 1, N − 2, . . . , 1 (11)

The state for cell (i, j) is si,j = (bi−1,j , bi,j , bi+1,j) for the
BCJR along the columns. The a priori probabilities p(b1,j),
p(b2,j) are used to calculate the initial state probability p(s1,j)
in (8) and the a priori probability p(bi+1,j) is used to calculate
the transition probability p(si,j |si−1,j) in (9) and (11).

Notice that the received signal is not only a function of
three consecutive transmitted symbols on the column but the
symbols from the two neighboring cells on the same row
as well. Thus the likelihood of state Si,j is calculated by
averaging out the row interference:

p(yi,j |si,j) =
∑

bi,j−1,bi,j+1

p(yi,j |si,j , bi,j−1, bi,j+1)

× p(bi,j−1)p(bi,j+1). (12)

The priors p(bi,j−1) and p(bi,j+1) are used to calculate
p(yi,j |si,j) in (12). The likelihood p(yi,j |si,j) is used in (9)
and (11).

The averaging in (12) can be interpreted as a way of
handling the row interference unaccounted for by the BCJR
along the column. The treatment of the row ICI in this manner
is distinct from the way it is treated in [16]. In [16], uniform
distributions of Bi,j−1, Bi,j+1 are used as opposed to our
approach where the APP from the previous iteration is used.

When the BCJR along the columns are completed, the
base station (i, j) will have the APP of Si,j , and thus of
Bi−1,j , Bi,j , and Bi+1,j via marginalization. Next, the BCJR
along the rows will be performed. For the row-BCJR, the
state for cell (i, j) is Si,j = (Bi,j−1, Bi,j , Bi,j+1). Following
similar derivation, it can be seen that the base station of cell
(i, j) will require the following a priori distributions for row-
BCJR: p(bi,j), p(bi,j+1), p(bi−1,j), and p(bi+1,j). It already
has p(bi,j), p(bi−1,j), and p(bi+1,j) upon completion of the
column-BCJR, and the distribution p(bi,j+1) should be passed
from base station of cell (i, j + 1). When the row-BCJR is
completed, the base station (i, j) will have the APPs of Bi,j−1,
Bi,j , and Bi,j+1. Thus, only the distribution p(bi+1,j) should
be passed from base station (i+1, j) to base station (i, j) for
the base station (i, j) to have all the required prior probabilities
required by the column-BCJR that will follow.

IV. BELIEF PROPAGATION ALGORITHM

We next discuss the distributed decoding in the rectangular
model using the BP algorithm of [5]. Our notation is based

on [5], where the algorithm is defined via messages among
the nodes of a Bayesian network graph representation of the
probabilistic model. Bayesian networks are directed acyclic
graphs where each node represents a random variable in the
system, and the arcs signify a direct probabilistic dependency
between the linked variables. If there is an arc from node P
to node C in the graph, node P is named the parent node,
and C is the child node. An arc from a parent node P to child
node C represents the existence of a direct causal influence
between P and C, expressed by the conditional probability
mass function p(c|p) of C given P . The message from node
C to node P is denoted by λC(p) and the message from node
P to node C is denoted by πC(p). The message πC(p) is
the probability distribution of P conditioned on all messages
received by node P , except the message from node C. The
message λC(p) is the likelihood distribution of P based on all
messages received by node C, except the message from node
P . The messages are sent for every p in the sample space of
P , so they are vectors when P is discrete.

Note that there can be more than one Bayesian network
representation of a probabilistic model. We will consider
two different graphical representations, which will lead to
two different algorithms. As mentioned in Section I, the BP
algorithm eventually results in the APP only in the absence
of loops in the graph, but can be implemented as an iterative
algorithm to obtain approximate results for loopy graphs, as
will be the case for our two graphical representations. The
first representation is one where the transmitted symbols from
neighboring cells are clustered to form a single node in the
associated graph. The second graphical representation is a
decomposed model in which transmitted symbols and received
signals are represented by separate nodes. See Fig. 3 and
Fig. 5, respectively, for the two graphical representations.

For a complete characterization of the use of the BP
algorithm for an inference problem, one needs to specify not
only the graphical model, but also the initialization and the
order of activation of the nodes. This we now do for the two
different graphical models.

A. Clustered graphical representation

For each cell (i, j), we define a state Si,j such that it d-
separates (as defined in [5]) the observation Yi,j from the rest
of the graph. The state consists of the transmitted symbols:

Si,j = {Bi,j , Bi−1,j , Bi+1,j , Bi,j−1, Bi,j+1}. (13)

The clustered nodes then form the loopy graph in Fig. 3. Since
each Yi,j node has only a single parent node and no child
nodes, it will send a message to its parent node only once.
That message is

λYi,j
(si,j) = αp(yi,j |si,j) = αN (yi,j ,mi,j(si,j), σ2), (14)

where N (y,mY , σ2
Y ) denotes the probability density function

of complex Gaussian random variable Y with mean mY and
variance σ2

Y . Equation (14) is due to the fact that Yi,j =
mi,j(Si,j) + Ni,j , where

mi,j(si,j) = hi,j(−1, 0)bi−1,j + hi,j(0, 0)bi,j

+ hi,j(1, 0)bi+1,j + hi,j(0,−1)bi,j−1 + hi,j(0, 1)bi,j+1.
(15)
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Fig. 3. Clustered graph representation of the rectangular array model.

For each node Si,j , the set of child nodes are
{Yi,j , Si+1,j , Si,j+1}. Excluding the observed node Yi,j ,
we define the set

Ci,j = {C1
i,j , C

2
i,j}, (16)

where C1
i,j and C2

i,j denote the two child nodes Si+1,j and
Si,j+1, respectively. The set of parent nodes is denoted in a
similar fashion: Pi,j = {P 1

i,j , P
2
i,j} = {Si−1,j , Si,j−1}.

In order to characterize the BP algorithm for this graph,
for each state node Si,j , we next express the messages sent
to child nodes, messages sent to parent nodes, and how these
messages are combined. The message that node Si,j sends to
child node Ck

i,j for k = 1, 2 is

πCk
i,j

(si,j) = απ(si,j)λYi,j
(si,j)λCl

i,j
(si,j), (17)

where l = {1, 2}\k, λCl
i,j

(si,j) is the message from child node

Cl
i,j to node Si,j , and π(si,j) is the combination of messages

from parent nodes of Si,j to node Si,j :

π(si,j) =
∑
pi,j

p(si,j |pi,j)
2∏

k=1

πSi,j
(pk

i,j). (18)

Note that pi,j in the summation satisfies pi,j = (p1
i,j , p

2
i,j) and

πSi,j
(pk

i,j) is the message from parent node P k
i,j to Si,j . It is

unnecessary in (18) to sum over pi,j for which p(si,j |pi,j) = 0.
Note that for p(si,j |pi,j) > 0, the bl,m’s that are both in si,j

and in pi,j must be the same. For example, consider Fig. 4,
where Si,j = S33, and Pi,j = {S23, S32}. In order to conform
with s33, {b23, b33} in s23 and {b32, b33} in s32 should be the
same as the {b23, b32, b33} in s33. We denote pi,j : si,j to be
set of all values of pi,j which conform with si,j . Utilizing
the fact that the transmitted symbols have uniform a priori
probability, we can therefore write (18) as

π(si,j) = α
∑

pi,j :si,j

2∏
k=1

πSi,j
(pk

i,j), (19)

� α
∑

p1
i,j :si,j

p2
i,j :si,j

2∏
k=1

πSi,j
(pk

i,j), (20)

B32 B33 B34B31 B32 B33

B22 B23 B24

B23

B43

S33

B22

B42

S32

B13

B33

S23

Fig. 4. Example state node and its parent nodes in the clustered graph.

= α

2∏
k=1

π̄P k
i,j

(si,j), (21)

where π̄P k
i,j

(si,j) can be considered as a pre-processed mes-

sage from parent node P k
i,j to node Si,j :

π̄P k
i,j

(si,j) =
∑

pk
i,j

:si,j

πSi,j
(pk

i,j). (22)

Note that (19) and (20) are in general not equal because
in (19) the summation is over p1

i,j and p2
i,j that conform

with each other as well as with si,j , whereas in (20) we
also include p1

i,j and p2
i,j that does not conform with each

other. Specifically, bi−1,j−1s in p1
i,j and p2

i,j should be the
same for the summation in (19), but they may be different in
(20). The additional terms in (20) lead to the simplification in
(21), which results in a considerable saving in complexity. In
numerical simulations, we observe near optimal performance
so (20) is a good approximation.

The messages to be sent from node Si,j to the parent nodes
P k

i,j for k = 1, 2 are:

λSi,j
(pk

i,j) = α
∑
si,j

λ(si,j)
∑

pl
i,j

p(si,j |pk
i,j , p

l
i,j)πSi,j

(pl
i,j)

(23)

= α
∑

si,j :pk
i,j

λ(si,j)
∑

pl
i,j :si,j

pl
i,j :p

k
i,j

πSi,j
(pl

i,j) (24)

� α
∑

si,j :pk
i,j

λ(si,j)π̄P l
i,j

(si,j), (25)

where again l = {1, 2}\k, λ(si,j) is the combination of
messages from child nodes at node Si,j , and (24) is due to
the fact that p(si,j |pk

i,j , p
l
i,j) is identical for all si,j : pk

i,j and
pl

i,j : si,j . The approximation is (25) is similar to (20) in that
we have extra terms in the summation with non-conforming
pk

i,j and pl
i,j . The messages from child nodes are combined at

node Si,j as:

λ(si,j) = λYi,j
(si,j)

2∏
k=1

λCk
i,j

(si,j). (26)

Finally, combining everything, the belief of the state Si,j is

BEL(si,j) = απ(si,j)λ(si,j), (27)

from the marginalization of which the belief for Bi,j can be
obtained.
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Fig. 5. Decomposed graph representation of the rectangular array model.

We consider the ordering of activation of nodes where, at
each step, each state node sends and receives messages from
all neighbor state nodes in parallel. For each node Si,j the
incoming messages π̄P k

i,j
(si,j) and λCk

i,j
(si,j) are initialized

to uniform distributions, and π(si,j) and λ(si,j) are calculated
from this initialization, which constitutes the first iteration.
Afterward, for each iteration

1) π̄Si,j
(ck

i,j) and λSi,j
(pk

i,j) are calculated and transmitted
in parallel for k = 1, 2 using computations in (17), (22),
and (25).

2) π(si,j) and λ(si,j) are calculated using computations in
(21) and (26).

After a predetermined number of iterations, the belief of the
state is computed using (27).

In the cellular system, this can be implemented in a dis-
tributed fashion where the calculations (17)-(26) done by the
state Si,j are performed by the base station of cell (i, j),
and the messages among state nodes are implemented as
communication among base stations of neighboring cells.
For each iteration, the base station of cell (i, j) transmits
π̄Si,j

(ck
i,j) and λSi,j

(pk
i,j) to its four neighbors, while it is

receiving the messages π̄P k
i,j

(si,j) and λCk
i,j

(si,j) from its four
neighbors.

B. Decomposed graphical representation

In this graphical representation, each transmitted symbol
Bi,j and received signal Yi,j at the base station are represented
by separate nodes, see Fig. 5. Note that, for cell (i, j), the
received signal Yi,j is d-separated from the rest of the random
variables by the set of transmitted symbols from the base
stations in the following set:

vi,j = {(i, j), (i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1)}
= {vi,j(0), vi,j(1), vi,j(2), vi,j(3), vi,j(4)}.

(28)

These are the cells immediately adjacent to cell (i, j), together
with cell (i, j) itself. Denote the corresponding set of trans-
mitted symbols by Bvi,j

.
The belief graph can be constructed whereby the observed

Yi,j nodes are the child nodes with the set of parents Bvi,j
,

and the transmitted symbol nodes Bi,j are the parent nodes
with the set of children Yvi,j

. Since Bi,j’s are independent
in the absence of the observations Yi,j , they are not directly
connected to each other in the graph. A complete graph can
be obtained this way, and an example is depicted for the case
of a 4 × 4 rectangular network in Fig. 5.

We next employ the BP algorithm for this graph. With the
assumption that Bi,j’s have uniform a priori distribution, and
the fact that Bi,j’s are nodes with no parent nodes, the belief
for Bi,j becomes

BEL(bi,j) = αλ(bi,j), (29)

where the overall likelihood λ(bi,j) is the product of the
likelihood messages from all child nodes of Bi,j :

λ(bi,j) =
4∏

k=0

λYvi,j(k)(bi,j). (30)

The message from the observed node Yi,j to its parent node
Bvi,j(k) for k = 0, 1, . . . , 4 is

λYi,j (bvi,j(k)) = α
∑

bvi,j
:bvi,j(k)

p(yi,j |bvi,j )

4∏
l=0, l�=k

πYi,j (bvi,j(l)).

(31)
Finally, the message sent from node Bi,j to its child node

Yvi,j
(k) for k = 0, 1, . . . , 4 is

πYvi,j(k)(bi,j) = α

4∏
l=0, l �=k

λYvi,j(l)(bi,j), (32)

which is the product of all messages sent to node Bi,j , except
from node Yvi,j(k).

In order to complete the definition of the algorithm, one
needs to choose the initialization and the order of activation
of the nodes in the graph. We consider initializing all prob-
ability messages πYvi,j(k)(bi,j) to uniform distributions, and
activating the nodes in the following order:

1) Activate all Yi,j nodes in parallel: Calculate and pass the
likelihood messages λYi,j

(bvi,j(k)) to all parent nodes,
using computations in (31).

2) Activate all Bi,j nodes in parallel: Calculate and pass
the probability messages πYvi,j(k)(bi,j) to all the child
nodes, using computations in (32).

These two steps are then repeated in the next iteration.
This algorithm can be implemented in the cellular system
in a distributed fashion, where the base station of cell (i, j)
performs the calculation in (31) and propagates λYi,j

(bvi,j(k))
for k = 1, . . . , 4 to its four neighboring base stations. At the
same instant, it is receiving λYvi,j(k)(bi,j) for k = 1, . . . , 4
from its four neighboring base stations. Next, the calculation
(32) is performed and πYvi,j(k)(bi,j) messages are propagated
to neighboring base stations, while receiving πYi,j

(bvi,j(k))
messages from them. After a sufficient number of iterations,
to obtain the belief of Bi,j , the base station (i, j) performs (30)
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TABLE I

COMPARISON OF ALGORITHMS

BCJR BP-clustered BP-decomposed

complexity per base station per iteration 4M5 + 6M4 + 4M3 8M5 + M3 5M5 + 5M4 + 6M2 + 9M

communication per base station per iteration 4M3 + M 4M2 8M

serial communication per iteration 2M + 2(N − 1)M3 M2 2M

and (29). Notice that activating Bi,j nodes is not necessary for
the final iteration.

The algorithms developed are for the scenario where mul-
tiple users within a cell use orthogonal signaling. In the
scenario where non-orthogonal signaling is used, signals from
more than one mobile users from a cell will contribute to
the received signal at the base stations of that cell and the
neighboring cells. For this scenario, the algorithms developed
in this section can be extended as follows. For the decomposed
graph, there are more than one B nodes for each cell, and they
are the parent nodes of Y nodes of their own cell and the
neighboring cells. For the clustered graph, the clustered state
node for each state encompasses the transmitted bits from
all the active users in the neighborhood of the cell. Using
these graphs, the corresponding algorithms can be developed
similarly to the algorithms in this section.

V. NUMERICAL RESULTS

Simulations are conducted for a fading channel where
each Hi,j(m,n) is complex Gaussian distributed with zero
mean and variance 1 if (m,n) = (0, 0) and variance α2

otherwise. Thus α2 represents the average power of the ICI
from each neighbor. The additive noise Ni,j is complex
Gaussian with zero mean and variance σ2. The signal to
noise ratio (SNR) is defined as 1/σ2. For each simulation
trial, Hi,j(m,n), and Ni,j are drawn independently from the
Gaussian distribution, and Bi,j from the binary distribution
(M = 2). The performance of the algorithms in the form of
probability of bit error is obtained. In addition, a single user
lower bound, applicable to any multiuser detection algorithm,
is obtained for given α2, σ2 by Monte-Carlo averaging of
the Q-function Q

(√∑
m,n 2‖Hi−m,j−n(n,m)‖2/σ2

)
over

channel realizations. All simulation results were obtained by
repeating the realizations until obtaining Ne = 500 bit errors
for the cell with the smallest number of errors. We have
observed that by increasing Ne the estimate of bit error
probability Pb varies very slightly. Therefore the deviation in
the simulation results is small.

Before we present the simulation results, we first compare
the BCJR algorithm, BP algorithm on the clustered graph,
and BP algorithm on the decomposed graph in terms of com-
plexity and the amount of message passing required among
neighboring base stations per iteration. Numerical complexity
comparison is listed in the first row of Table I, where we
take the number of real multiplications per base station as a
measure. Since all the messages required among neighboring
base stations are normalized probabilities in the range [0, 1],
they can be represented as fixed point real numbers, and we
measure the amount of communication among neighboring
base stations in terms of number of fixed point real number

transmissions to its neighbors for a base station. We list the
total amount of communication per base station per iteration in
the second row of Table I. We recognize that the base station
communications may be required to be in series, or they may
proceed in parallel, depending on whether the algorithm is
serial or parallel in nature. We therefore also list the amount
of communication required in serial in order to complete an
iteration for each algorithm in the third row of Table I. The
messages in the BCJR algorithm need to proceed on the
rows and columns in serial, therefore the amount of serial
communication among base stations grow with the size of the
array, N . On the other hand, the BP algorithms have a parallel
nature, which is demonstrated by the fact that the amounts
in row 3 are row 2 divided by four for these algorithms
in Table I. Thus for the BP algorithms, the total amount
of communication required for a base station to complete
an iteration is evenly divided into communication with its
four neighbors, which are done in parallel. This is significant,
since the amount of serial communication per iteration, along
with the number of iterations, determines the required rate
of land-line communication among the base-stations in terms
of the symbol rate of the uplink communication from the
mobile units to the base stations. Comparing the BP algorithms
with clustered and decomposed graphical representations, we
observe that the decomposed graph can be more advantageous
for larger values of M . We explain this by the fact that
clustering results in some of the structure being hidden in
the nodes, while the decomposed model lets the BP algorithm
work on the true nature of the problem.

We examine the amount of serial local communication
among base stations required for the iterative algorithms to
converge in Fig. 6, where the error rate performance is shown
for cell (2, 2) in a 4 × 4 network. From Table I, it is seen
that the amount of serial communication required in order
to complete an iteration are M2 and 2M real numbers for
the algorithms based on clustered and decomposed models,
respectively. Therefore, for binary signaling, four real numbers
are transmitted in serial per iteration for both BP algorithms.
For the clustered graph, the first iteration is completed without
any message passing. For the decomposed graph, the first
beliefs of the symbols are obtained after the transmission
of the first λYi,j

(bvi,j(k)) messages, which requires M serial
transmissions of real numbers. After the first iteration, each
algorithm has a constant number of transmissions per iteration.
It is clear from Fig. 6 that both algorithms are quickly achiev-
ing performance that is close to the single-user performance.
The BP algorithm on the decomposed graph converges slightly
faster than the clustered graph case, approximately ten serial
real number transmissions are required among base stations
per symbol transmitted in the uplink. It is observed that for the
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Fig. 6. Probability of error of the algorithms and the single user lower
bound as a function of number of serial real number transmissions between
base stations for node (2, 2) of a 4 × 4 network.
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as a function of signal to noise ratio for cell (2, 2) of a 4 × 4 network.

decomposed graph case, after four iterations, performance no
longer improves with more iterations. Therefore the algorithm
can be stopped after four iterations. For the the clustered
graph case, it is observed that five iterations are needed for
the performance to converge, after which the algorithm can
be stopped. It is also observed that the convergence speeds
of the algorithms are not altered by the strength of the
ICI. For the iterative BCJR algorithms the amount of serial
transmissions required is much larger, and it gets even larger
with increasing array size N , so they are not shown in the
plot. For this relatively small network size, the individually
optimum detector which calculates the exact APP is also
simulated. In Fig. 7, the bit error rate performances of the
algorithms are illustrated for cell (2, 2) of a 4 × 4 planar
array. The values plotted are the performances after enough
iterations have occurred to satisfy the convergence criteria that
the performance no longer improves with more iterations. As
a benchmark for comparison, we also plot the performance of

the optimal single-cell processing receiver which calculates
the exact APP p(bi,j |yi,j) by averaging out the ICI. Note that
this is the result of the first iteration of the BP algorithm
on the clustered graph, which is obtained before the first
message passing among the base stations (At the end of the
first iteration the belief the state is BEL(si,j) = αp(yi,j , si,j),
from the marginalization of which the distribution of Bi,j is
obtained.)

Different values of the ICI parameter α are considered in
Fig. 7. For the case of α = 0, there is no ICI, and the algo-
rithms boil down to optimum APP estimation for a single user
channel. It is observed that all algorithms perform robustly for
the range of α considered. As the ICI power increases, it is
observed that the distributed decoding algorithms not only can
handle the ICI, but they can also exploit the extra energy and
diversity provided by it. The error rate performance of the BP
algorithms on the clustered and decomposed graphs are very
close to the single user lower bound at low error probabilities.
This tells us that the single user bound is tight for fading
channels (previously observed in multiuser detection literature
[21]) especially at high SNRs and also that the iterative BP
algorithms achieve close to the performance of the individually
optimum multiuser detector, which also cannot beat the single-
user lower bound. Thus, we observe a very large gain to be
accrued from local message passing to reduce the ICI. The
BCJR algorithm, implemented iteratively on the columns and
rows of the rectangular array, does not perform as well as the
BP algorithms; a 0.5 dB gap is observed.

We next investigate whether the convergence rate varies as
the size of the planar array grows. For the BP algorithms, each
iteration takes the same number of serial message passings
regardless of the size of the network. We consider a rectan-
gular array of size 20 × 20, and observe in Fig. 8 that the
performance is the same as that in the smaller network of size
4× 4. The observation that the speed of convergence remains
roughly the same is explained by the fact the ICI is a local
effect even though the overall network size is growing. This
is analogous to the equalization problem where the equalizer
window size does not need to grow with the length of the
signal. Finally, we investigate whether the performance varies
with the location of the cell in the planar array. We have
observed that as long as the cell is not at the corner or the edge
of the rectangular array, the performance of the algorithms for
all cells is essentially the same. This is illustrated in Fig. 9 for
the BP algorithm on the decomposed graph. The performance
of the cells at the edges being worse than that of the cells in
the middle is the result of the fact that they have less diversity.

A. Hexagonal Network Case

Although we have considered the relatively simple rectangu-
lar model in this paper for brevity, we note that the algorithms
developed are extendable to the hexagonal case. Next, we
briefly present results when the rectangular model is extended
to the hexagonal case.

We extended the three algorithms developed for the rectan-
gular model in Sections III-B, IV-A, and IV-B. For the BCJR
algorithm we perform BCJR in three directions successively,
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where the directions are east-west, southeast-northwest, and
northeast-southwest. Clearly, this method is further from being
parallel, so it is not feasible. For BP algorithm with clustered
graph, the graph in Fig. 10 is considered, and the algorithm
is derived with approximations similar to the ones in (20)
and (25). For the BP algorithm with decomposed graph,
straightforward extension of the graph in Fig. 5 is considered.

The results of the simulation that we conducted for the
hexagonal case are given in Fig. 11. These results are for the
network of Fig. 10. We observe performance behavior similar
to the rectangular case, except for the fact that the perfor-
mance gap between the clustered graph and the decomposed
graph algorithms becomes notable for the hexagonal case. In
addition, the amount of message passed among neighbor base
stations increases for the hexagonal case, while it remains the
same for the decomposed graph. We note that, although all
simulation results are presented in this paper are averaged over
random complex Gaussian channel coefficients, we have also
conducted simulations for fixed channel coefficients that are
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Fig. 10. Clustered model used for the hexagonal network of 19 cells. Each
state S contains seven transmitted Bs.
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Fig. 11. Probability of error of the algorithms and the single user lower
bound for cell (3,3) of the hexagonal network of 19 cells.

identical for all cells, in the spirit of the original Wyner model.
We have observed that the performance of the BP algorithm
is poor for that model. Thus, we believe that the near-optimal
performance we observe here is related to the randomness of
the channel coefficients.

VI. CONCLUSIONS

We tackled the problem of designing a global receiver in
a distributed fashion in the uplink of a planar cellular array
with full frequency re-use. We first considered the iterative
application of the BCJR algorithm (which is optimal for a
one-dimensional array) along the columns and the rows of
the rectangular array. The convergence time of this approach
tends to be large because of the serial nature of the BCJR al-
gorithm. Further, the resulting bit error rate after convergence
leaves some room for improvement. These two observations
make this iterative BCJR algorithm less attractive than those
proposed later.
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Next we considered the application of the BP algorithm,
which is a local message passing algorithm defined on directed
acyclic graphical representations of probabilistic models. Em-
ploying BP for an inference problem involves first the choice
of the graphical representation, and next the choice of the order
of activation of nodes and message passings on the graph.
We considered a clustered graph representation where each
observed node has a single parent node, and a decomposed
graph representation where each single random variable is
represented by a single node. The order of message passings
was chosen so that the implementation was as parallel as
possible. In simulations, in both cases the error rates were
near the single user lower bound for fading channels. We
have illustrated that, using the BP algorithm, it is possible to
use non-orthogonal signaling and still achieve near single user
performance with moderate complexity for base stations, and
a limited amount of message passing between base stations of
adjacent cells.
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