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IV. NUMERICAL EXAMPLE

Consider the case when � � ��� and
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Fig. 2 shows the disturbance signals. Finally, the reference signal is
shown in Fig. 3 (upper plot). The linear matrix inequality of Theorem
2 is feasible in this case and
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The lower plot in Fig. 3 confirms that the overall design task is achieved
and the next stage would be to attempt to tune the design.

V. CONCLUSIONS

The major contributions in this short paper are i) the application of
lifting techniques to transform the bi-directional dynamics into those
of an equivalent uni-directional repetitive process model and hence the
availability of a stability theory and control law design to achieve this
basic property, and ii) the first results on stability plus performance in
the case when there are disturbances present, which are assumed to be
periodic over twice the pass length. Also there is clearly much work
to do before these results can be evaluated on physical examples. This
includes a wide range of algorithms for control law design, robustness
analysis, and allowing for more general disturbance terms. Also there
could well be alternative lifting type approaches, such as that proposed
in [3] for iterative learning control, which may be advantageous for
bi-directional repetitive processes. Finally, extending the control design
analysis to allow for different reference signals in each direction needs
to be addressed.
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Stochastic Consensus Seeking With Noisy and Directed
Inter-Agent Communication: Fixed and

Randomly Varying Topologies

Minyi Huang and Jonathan H. Manton

Abstract—We consider consensus seeking of networked agents on
directed graphs where each agent has only noisy measurements of its
neighbors’ states. Stochastic approximation type algorithms are employed
so that the individual states converge both in mean square and almost
surely to the same limit. We further generalize the algorithm to networks
with random link failures and prove convergence results.

Index Terms—Consensus problems, directed graphs, measurement noise,
random link failure, stochastic approximation.

I. INTRODUCTION

A fundamental problem in the study of spatially distributed multi-
agent systems is the so-called consensus problem, which is crucial
for coordinating distributed agents to achieve a group objective. In a
generic setting, suppose the 	th agent has state ��� at time 
. Then the
primary feature of consensus seeking is for each agent to adjust its own
state ��� , based on data received from its neighbors, in an endeavor to
make all agents’ states converge to the same value. Due to their cru-
cial role in such distributed systems, consensus problems and various
closely related formulations have been intensively investigated in the
context of multi-agent control systems and distributed computing [11],
[19], [23]; see [22], [27] for a comprehensive survey on recent research.

In discrete time consensus models [4], [19], [22], typically each node
updates its state ��� by the rule
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�� 
 � �

where the weights ���� � �, � � ��� � �		, add up to one, and ���

is the set of neighbors of node 	 at 
. The problem formulation may
involve asynchronous state updates, dynamic topologies and commu-
nication link failures (see [27]). So far, most existing algorithms as-
sume exact state averaging, which in general necessitates perfect state
exchange among the agents. There are relatively few works (see e.g.
[2], [28], [35]) considering averaging with the presence of noise or dis-
turbance. In [7], the effect of logarithmic quantization error was ana-
lyzed. In the early work [5], [32], consensus problems were studied in
a stochastic setting, but the exchange of random messages between the
agents was assumed to be error-free.

Since information exchange within networks typically involves
quantization, wireless channels and/or sensing, perfect state exchange
is often impractical. The communication or sensing noise issue also
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Fig. 1. Measurement with noise � .

arises in distributed function computation in sensor networks [12] and
formation control [1].

When each agent � can only obtain a noisy version of its neighbor’s
state ��� , traditional consensus algorithms involving weights lowered
bounded above zero in general cannot ensure convergence. On the other
hand, however, in the recursive computation of stochastic systems for
the purpose of either function optimization, root-finding, or system
identification, it has long been known that a properly decreasing gain
for the correction term is essential for obtaining convergence, and there
exists a vast literature on these broad areas [3], [6], [8]. Inspired by past
advances in stochastic adaptive algorithms, in [16]–[18], a stochastic
approximation type algorithm with a decreasing step size was proposed
for consensus seeking where the data transmitted from other agents are
corrupted by white noise (see Fig. 1). Almost sure (i.e., probability one)
convergence results were obtained in [16] via a double array analysis
on directed graph (also called digraph) models satisfying a circulant in-
variance property. Mean square convergence was proved for connected
undirected graphs by constructing a stochastic Lyapunov function [17],
and this approach was generalized to strongly connected digraphs in
[15].

Compared with [18], this note makes the following contributions.
First, for both mean square and almost sure convergence, the network
topology condition is much weaker by assuming the existence of
a spanning tree. Second, for almost sure convergence, our current
proving technique can identify the weakest noise conditions. Third,
convergence results are proved with both measurement noise and
random independent link failures; for related random graph based
modeling, see [14], [20], [24], [25], [31], [34]. Concerning the
method of analysis, we exploit the fact that the coefficient matrix
in the algorithm has exactly one unstable eigenvalue, which is zero,
and transform the state recursion into two decoupled parts: a one
dimensional real-valued random walk and an � � � dimensional
stable linear stochastic approximation model. For treating the model
with random link failures, a perturbed stochastic Lyapunov analysis is
developed. But on the other hand, we also mention that the approach of
double array analysis in [18] has its own advantage when dealing with
simultaneous switching network topologies and poor noise conditions
(for instance, no finite second moment exists).

The organization of this note is as follows. We introduce the con-
sensus formulation in Section II. Section III gives the equivalent state
space model and some preliminary lemmas. In Section IV, we prove
mean square and almost sure convergence. Section V considers random
link failures. Numerical simulations are presented in Section VI. Sec-
tion VII presents conclusions.

II. THE STOCHASTIC CONSENSUS PROBLEM

AND ALGEBRAIC PRELIMINARIES

Consider � agents distributed according to a digraph � � �� � ��
consisting of a set of nodes � � ��� �� � � � � �� and a set of directed
edges � � ��� . For brevity, a directed edge will be simply called an
edge. An edge from node � to node � is denoted as an ordered pair ��� ��

where � �� � (so there is no edge between a node and itself). A directed
path (simply called a path, from �� to ��) consists of a sequence of nodes
��� ��� � � � � ��, � 	 �, such that ���� ����� 
 � for � � �� � � � � � � �.
The digraph � is strongly connected if from each node to any other
node there exists a path. A directed tree is a digraph where each node,
except the root node, has exactly one parent node. Hence, from the
root node to any other node there exists a path. The digraph � is said to
contain a spanning tree�� � ���� ��� if�� is a directed tree such that
�� � � and �� � � . A strongly connected digraph always contains
a spanning tree. For convenience of exposition, the two names, agent
and node, will be used interchangeably. The agent 	� (resp., node �)
is a neighbor of 	� (resp., node �) if ��� �� 
 � , � �� �. Denote �� �
������ �� 
 ��.

A. Measurement Model

For agent 	�, denote its state at time 
 by ��� 
 , where 
 
 � �
��� �� �� � � ��. For each � 
 � , 	� receives noisy measurements of the
states of its neighbors if �� �� �, where � denotes the empty set. We
denote the resulting measurement by 	� of 	�’s state by
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��
� � �

�
� � �

��
� � 
 
 �

� � 
 �� �� � (1)

where ���
� 
 is the additive noise; see Fig. 1 for illustration. The

underlying probability space is denoted by �	�
 � 
 �. We call ���� the
observation of the state of 	� obtained by 	�, and assume each 	�

knows its own state ��� exactly. There may be various interpretations
for the additive noise; a natural one is that ��� is corrupted by noise
during inter-agent communication [28]. We introduce the assumption:

(A1) The digraph � � �� � �� contains a spanning tree.
For each 
 
 �, the set of noises ����

� � � 
 � 
�� � 
 �� �� ��
is listed into a vector�� in which the position of ���

� depends only on
��� �� and does not change with 
. Define the state vector

�� � �
�
� � � � � � �

�
�

�
� 
 	 �� (2)

Denote the �-algebras 
� � �������� � � �� � � � � 
� (i.e., the set
of all events induced by these random variables) for 
 	 �. Then ob-
viously�� is adapted to (i.e., measurable on) 
� and 
� � 
���. We
introduce the assumption:

(A2) The sequence ���� 
 

�� satisfies: i) �
���
���� � � for


 	 �, where
��
�
� ���	�, and ii) �����������

� ��. In addition,
�� satisfies ������ ��.

By (A2)-i) and the fact that �� is adapted to 
� where

� � 
���, we see that ���� 
 
 �� is a sequence of
martingale differences with respect to (w.r.t.) �
�� 
 
 ��.
For relevant literature on martingale theory, the reader is re-
ferred to [10], [13], [30]. Note that for 
 	 �, (A2)-i) implies
�
���

�
� � � ���
���

�
� �
����� ������
��

� �
����� � �. The
following assumption with independent noises holds as a special case
of (A2).
����� The noises ����

� � 
 
 �� � 
 � 
�� � 
 �� �� �� are
independent w.r.t. the indices �� �� 
 and also independent of ��, and
����

� � �, ����	�	����
��
� �

� ��. In addition, ������ ��.

B. Stochastic Approximation Algorithm

The state of each agent is updated by the rule

�
�
��� � ��� �������

�
� � ��

���

����
��
� � 
 	 � (3)

where � 
 � , the step size �� � �, and the parameters ��
 will be
specified subsequently. We only consider scalar individual states and
the generalization to vector individual states is obvious. Throughout
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our analysis, we adopt the convention:
��� � �. For specifying ���

in (3), we consider two cases for ��.
Case 1) If �� �� �, we take

��� � �� if � � ��

��� � �� if � �� �� � ���

��� � ��� ����

The right hand side of (3) is a linear combination of ��’s
state and its ���� observations. Here ��� denotes the cardi-
nality of a set �.

Case 2) If �� � �, the state of agent � is fixed as its initial value

	
�
� 	 	

�
�� (4)

For instance, (4) arises in a leader following situation where
the leader’s state is fixed as a constant at all times. In the
case �� � �, we define ��� 	 � for all � � � . By our
earlier convention

��� � �, (4) may be interpreted as a
special case of (3) after 	�� is given.

Define the matrix


 �


��� � � � ���
...

...
...

��� � � � 
���

� (5)

Let��
� � ��� ����

��
� for � � � , and define�� � ���

� � � � � � �
�
� �

�
.

If �� � �, we accordingly have ��
� � ��� � �. We write (3) in the

vector form

	��� � 	� � ��
	� � ����� 
 � �� (6)

We introduce the following assumption on the step size sequence.
(A3) The sequence ���� 
 � �� satisfies: i) �� � �, and ii)
�
��� �� �
, �

��� �
�
� �
.

Remark: Under (A1),��	��� ��� � � holds. If one further restricts
�� � ���	��� ����

�� for all 
 � �, the coefficients for 	�� and ���� in
(3) will be maintained nonnegative, leading to a weighted averaging
consistent with typical consensus algorithms (see, e.g., [4]).

Definition 1: (Mean Square Consensus): The agents are said to
reach mean square consensus if ��	���

� �
, 
 � �, � � � , and there
exists a random variable 	� such that 
�������	�� 
 	��

�
� � for

all � � � .
Definition 2: (Strong Consensus): The agents are said to reach

strong consensus if there exists a random variable 	� such that

����� 	�� � 	� almost surely (a.s.), for all � � � .

III. THE EQUIVALENT STATE SPACE MODEL AND AUXILIARY LEMMAS

First of all, we see that 
 may be interpreted as the generator of an
associated continuous time Markov chain ��, 
 � �, with state space
� � ��� � � � � ��. Since ��� � � if and only if ��� �� � � , the existence
of a spanning tree in � is equivalent to the property that �� has one
nonempty communicating class� � ���� � � � � �� � and all other states
are transient. Now we may summarize the following properties based
on standard results on Markov chains [29].

Proposition 3: If � contains a spanning tree, then we have i) 
 has
a unique zero eigenvalue and all other �
 � eigenvalues have negative
real parts, and ii) there exists a unique probability measure � such that
�
 � �; in addition, � takes a positive value at a state � if and only if
� � �.

Remark: Part i) of Proposition 3 is proved in [26] by determinant
calculations and mathematical induction.

Although (6) is a linear model, most existing convergence results
in stochastic approximation cannot be directly applied since 
 is not
Hurwitz. We introduce the following class of �� ��
 �� matrices

��
� � � � ��������
������ � 
����
� � (7)

Under (A1), �����
� � � 
 � and each � � ��
� has rank � 
 �.
Let �� � � be the vector with all � entries equal to one.

Lemma 4: Assuming (A1), for algorithm (6) we have:
(i) For any given �������� � ��
�, the matrix � �

���� ��������� is nonsingular and

���
� �
�

�
���
(8)

where �
��� �
����������� is Hurwitz.

(ii) Letting �� � ���� � � � � � �
�
� �

�
� ���	� and

�� � ���� � � � � � �
�
� �

�
� �����, we have the relation

�
�
��� � �

�
� � ���

�
� (9)

�
�����
��� ��� � �� �
�����

�����
� � ���

�����
� � 
 � � (10)

where ������� � ���� � � � � � �
�
� �

�
and ������� � ���� � � � � � �

�
� �

�
.

Proof:
(i) Denote

�
� 
������������� � 
����
�. We show that

�� �� ; otherwise, there exists � � � such that �� � 
�,
which gives the contradiction � � ��� � �
� � � where
� is determined in Proposition 3. Hence � is nonsingular. Let
��� � 	

	
, where �� is the first row, and then ���� � �

and ���������� � �. Since �������� � ��
�, there exists an
��
 ���� matrix � such that 
 � ���������, which implies
��
 � �. Recalling Proposition 3, we necessarily have �� � �

to get the representation

��� �
�

��
� (11)

Now (8) is easily verified. By the eigenvalue distribution of 
 in
Proposition 3, �
��� is Hurwitz.

(ii) This part follows from (6) and (8).

Equation (9) can be viewed as a random walk with increment con-
trolled by the parameter ��. Equation (10) is a linear stochastic approx-
imation model, and since �
��� is Hurwitz, the convergence of �������

can be handled by existing methods (see, e.g., [3], [9]). We have the
following equivalence relation:

Lemma 5: Assume (A1) and let �� be defined in Lemma 4. The �
agents reach mean square (resp., strong) consensus if and only if ���
converges in mean square (resp., a.s.) to a random variable ��� and
�
�����
� converges in mean square (resp., a.s.) to 0, as 
� 
.

Proof: Sufficiency is obvious since we have 	� � ��� � ��� ���

���������
�����
� . We now prove necessity. Assume 	� � 	���� in

mean square (resp., a.s.), as 
 � 
. By (11), we have ��� � �	� and
�
�����
� � ��	� � ���	�
 	���������	

�
���� ����	�
 	�����

since ���� � �. The necessity part follows.
The convergence of the state trajectory may be completely deter-

mined by the noise sample path.
Lemma 6: Following the notation in Lemma 4, algorithm

(6) ensures strong consensus if and only if the two condi-
tions hold: (i) �

��� ���
�
� converges a.s., as � � 
, (ii)


����� 
���	�	���	� � �
�

���
���

�����
� � � � a.s., where

���� � � � ��	����� � � � � � �� � �� for some constant
� � � � 
.

Proof: We write (10) in the equivalent form �
�����
��� �

�
�����
� � ��� �
����

�����
� � �

�����
� �. Since �
��� is Hurwitz,
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for any fixed sample �� � �, ������� ���� converges to zero if and
only if

���
���

��	
��������� �

�

���

���
�����
� ���� 
 �� (12)

For a proof of this fact, see [33, Theorem 4] and [9, Theorem 1].
Equality (12) is usually called the Kushner-Clark condition [21], [33]
along that noise sample path.

Hence, if (i) and (ii) hold, we have the a.s. convergence of ��� to ���,
and ������� to 0, as � � �. By Lemma 5, strong consensus follows.
Conversely, if algorithm (6) ensures strong consensus, Lemma 5 im-
plies condition (i) and also ������� � � a.s., which further implies
condition (ii).

IV. MEAN SQUARE AND ALMOST SURE CONVERGENCE

Theorem 7: Under (A1)–(A3), algorithm (6) achieves mean square
consensus.

Proof: By �
��� �

�
� � �, the mean square convergence of ���

readily follows. We now analyze ������� . For any� 	 �, the Lyapunov
equation 
 ����� 
 ���

���
 
 �� has a unique solution 
 	 �

since ����� is Hurwitz. Let �� 
 
��
�����
� �

�

�

�����
� . Similar to

the stochastic Lyapunov analysis in [18], we can show that there exist
constants �� 	 �� �� 	 � such that ���� � �� � ������� 
 ���

�
�

and � � ���� � �, for � � �� where �� is a large constant. We show
������ �� 
 � by contradiction. Assume

��� ��	
���

�� 
 � 	 �� (13)

By (A3), we may take a large �� 	 �� such that ��
�
��� ��� � ���.

It is straightforward to show that ���� � �

��� �� � ������� 


��
�

��� ��� � �

��� �� � ������� 
 �����; since �
��� �� 


�, we have ������
�

��� �� � ����� 
 �, which implies
��� ��	��� �� � � and contradicts (13). Hence, we conclude that

������ �� 
 � implying ������ 
�������� �
�

 �. Mean square

consensus follows from Lemma 5.
Theorem 8: Under (A1)–(A3), algorithm (6) ensures strong con-

sensus.
Proof: Since �� defined in Lemma 4 is linear in �� and

�
��� �

�
�
����

� � � by (A2), it follows that �
��� �

�
�
��

�
� �
�
� �

and �
��� �

�
�
��

�����
� �

�
� �. By the martingale convergence

theorem [13, pp. 18–19], it follows that both �

��� ���
�
� and

�

��� ���
�����
� converge a.s., as � � �. The convergence of

�

��� ���
�����
� clearly implies condition (ii) in Lemma 6. Hence,

strong consensus follows from Lemma 6.
Remark: For the special case of leader following, let agent �� be

the leader with ��� � ��� . So the ��th row of � is zero. In (11), � is
accordingly given as �� 
 ��� � � � � �� �� �� � � � � �� satisfying �� 
 �.
By �� 
 �����, it follows that ��� 
 ��� � ��� . In this case, we can
further verify that �� 
 ���� �����������

�
�� ��

�

 ��� ��.

We state the following corollary by using a �th conditional moment
condition of the noise while strengthening the condition for the step
size sequence.

Corollary 9: Letting � � ��� ��, we assume (A1) holds, (A2) holds
after replacing ��	���
����

� �� by ��	���
�����
	�	���� ��,

and (A3) holds after replacing �
��� �

�
� �� by �

��� �
	
� ��. Then

algorithm (6) ensures strong consensus.
Proof: We can first show the a.s. convergence of �

��� ���
�
� and

�

��� ���
�����
� (see, e.g., [30, pp. 67]). Then strong consensus follows

as in Theorem 8.

V. RANDOMLY TIME-VARYING COMMUNICATION LINKS

Let us use the fixed digraph � 
 �
 � �� in Section II to describe
the maximal set of communication links when there is no link failure.
At time � the inter-agent communication is described by a subgraph of
� denoted by�� 
 �
 � ��� where �� � � ; the edge ��� �� � �� if and
only if there exists a communication link from � to � at time � where
��� �� � � . The digraph�� is generated as the outcome of random link
failures and hence depends on the probability sample. Denote 
�� 


����� �� � ��� at time �.

At � � �, the adjacency matrix of �� is defined as ��� 

����� ��������, where ���� 
 � if ��� �� � ��, and ���� 
 � otherwise.
The digraph �� is completely characterized by the random matrix
��� . Now, the measurement relation is given as

���� 
 ��� 
 ���
� �� ���� 
 � ������ � � 
���

where ���
� is the noise. The state ��� is updated by the rule

����� 
 ��� ���
���� �
�
� 
 ��

���

���� � � � �� (14)

When 
�� 
 �, (14) is interpreted as ����� 
 ���. Here for simplicity
we assign the same weight to the �
��� observations ���� .

In order to specify the statistical properties of the noise, we
introduce the array of measurement noises as a square matrix:
�� 
 ����

� ��������, where ���
� � � if ��� �� �� � . It is sufficient

to further specify ���
� with ��� �� � � . The combined link and noise

assumption is stated below.
(A4) (i) For ��� �� � � ,  
���� 
 �� 
  
��� �� � ��� 
 ��� 	

�, and for each �, 
���� ���� �� � �� are independent binary random
variables. (ii) The pair ���� ���� is independent of ���� ��� ���� � �
� � ��, where � � �. (iii) Conditioned on ��� 
 ����� ��������, the
noises 
���

� ���� �� � �� are independent and satisfy
 ���

� 
 ������ 
 � 
�� 
 ���
� ��

��
� 
 � 
 �

��	
�����


 ���
�

�

����� 
 � �!


where !
 � � is a constant. The term ���� �
�
� ���� � � � � �� is

interpreted as �� when � 
 �.
If we further define the distribution of ���

� conditioned on 
���� 

��, then any finite dimensional distribution of ���� ��� ���� � � �� is
well defined. We still denote �� 
 ���� � � � � � �

�
� �

�
, and define the noise

vector ����� ���� 
 ���
� � � � � � �

�
� �

�
, where ��

� 
 ��� ���� �
��
� .

Denote"���� � 
 �����
��� ���� � � � � �

��� ���� �. We write (14)
in the vector form

���� 
 �� 
 �� ���
�

�" ��� ��
 ��� ��� ��� � (15)

Let �� 
 ����� �
�
�"���� ��, � 
 
�� and ��� 
 �� � �, and

it can be shown that all row sums of both �� and � are zero. Now for
� � �, (15) may be written in the form

���� 
 �� 
 ����� 
 ������� 
 ��� ��� ��� � (16)

Lemma 10: Assuming (A4) holds, we have:
(i) For � � �, the pair ����� ���

�
� ����� is independent of ��,

and 
����� ����� 
 �.
(ii) If, in addition, � contains a spanning tree, then � satisfies: a)

it has a zero eigenvalue of algebraic multiplicity equal to one,
and # � � eigenvalues with negative real parts; b) there exists a
unique probability measure such that ��� 
 �; c) ������� 

�	��
���.

Proof:
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Fig. 2. Digraph with five nodes.

(i) By (15), we see that �� depends on ���� �
�
� ���� � � � � ��,

� � �, and the independence part follows from part (ii) of (A4).
By part (iii) of (A4), we can show ������ ���� � �.

(ii) Let 	 � �
����������. Since each row sum of 	 is zero, and for
� �� �, 
�� 
 � if and only if ������ � �� 
 � if any only if
��� �� � � , Proposition 3 can be applied in an obvious manner.

By Lemma 10, (16) can be viewed as a perturbed version of (6) where
the additional term ���	��� is unbiased in the sense ���	���� � �
and is controlled by the decreasing step size ��.

Theorem 11: Under (A1), (A3) and (A4), algorithm (15) ensures
mean square and strong consensus.

Proof: See Appendix.

VI. SIMULATIONS

We consider a digraph with 5 nodes as shown in Fig. 2. The variance
of the i.i.d. zero mean Gaussian measurement noises is �� � ����, and
the constant initial condition is ��	��� 
 �	� 
� �� �� ��� . So assump-
tions (A2) and ����� are satisfied. Fig. 3(a) shows the simulation of
the standard averaging rule with equal weights to an agent’s neighbors
and itself (for instance, ����� � ���� � ���� � ���� ��
, � � �), and no
convergence is achieved. Fig. 3(b) shows the 5 trajectories all converge
to the same constant when algorithm (6) is applied with 
�� � 	��	

��,
� � ��, and ��� � �� � 
���	��� � � ��.

In the next simulation, the network topology is based on Fig. 2 where
each link fails independently with a failure probability �
 , and algo-
rithm (14) is implemented using ��� � �� � 
���	��� � � ��. The
independent Gaussian noise has zero mean and variance �� � ����.
In Fig. 4(a) and 4(b), the initial conditions are still given by ��	��� �
�	� 
� �� �� ��� , but the failure probabilities are, respectively, given by
0.3 and 0.75. Due to poorer connectivity conditions, the convergence
rate in Fig. 4(b) is much slower than in Fig. 4(a).

VII. CONCLUSION

We consider consensus problems on digraphs with noisy measure-
ments. We apply stochastic approximation algorithms and establish
their mean square and almost sure convergence. Furthermore, the
modeling and algorithms are generalized to networks with indepen-
dent random link failures.

APPENDIX

PROOF OF THEOREM 11

In this appendix, we use�� to denote a generic constant independent
of � which may vary from place to place.

Lemma 12: Let ���� � � �� and ���� � � �� be two sequences of
nonnegative numbers, and �� 
 � be a constant such that ���������
����� � �, where �� is given in (A3). Suppose

���� � ��� ������� � ���� �� � �� � ���

���� � �� � ���
�
� �� � �� � ���

(A.1)

Fig. 3. (a) The five trajectories fail to converge when fixed weights are used.
(b) The five trajectories converge to the same constant level with a decreasing
step size.

holds for � � �, where � 
 � and �� 
 � are constants. Then
������ �� � � and ������ �� � �.

Proof: By the second part of (A.1), we have

�������

�

���

�����
�

� � ��

�

���

�

�����

�����
�

� ��� �������

Since �� is fixed and �
���

��� �� implies �
���

�� � ���
�
�� ��,

it follows that:

���� � �� � �

�

���

����� � ���� � ���
�����

���� � � � (A.2)

where �� is a generic constant by our earlier convention. Combining
the first part of (A.1) with (A.2), we have

���� � ��� ������� � ���
�

� �� � ���
�����

���

� �� ���� � ���
�

� ���
�����

�� � ���
�

� � (A.3)

Since ������ �� � �, we can choose a large � 
 � (depending on
��� �� in (A.3)) such that for all � � � , ���� � �������� ������

�
� ,

which implies that

���
�������

�� � ���
�����

�� � ���
�

� � � � �� (A.4)
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Fig. 4. (a) The five trajectories converge with a decreasing step size and failure
probability � � ���. (b) The five trajectories converge with a deceasing step
size and � � ����.

Hence it follows from (A.4) and �
��� �

�
� � � that

���
���

�� ��� (A.5)

Consequently, (A.2) and (A.5) yield ������ �� � �.
By (A.5) and the boundedness of ��, it follows from (A.1) that

���� � ��� ������� � ���
�
� , which further implies �	
��� �� � �

since �
��� �� �� and �

��� �
�
� ��.

Proof of Theorem 11: Step 1—(Change of coordinates). In par-
allel to (7), we introduce the class ���� and take 
	������� � ����.
Similar to the case of � in Lemma 4, it can be checked that 
� �
���
 
	�������� is nonsingular, and the first row in 
��� is 
� given
in Lemma 10. We may write 
��� � ��

�	
. Moreover, there exists

an �� � �� � �� � �� Hurwitz matrix ���� such that 
���� 
� �

�	����
 �����


� �.

Let 
� � �
�� 
 � � � 
 

�
� �

�
� 
����� and 
������ � �
�� 
 � � � 
 


�
� �

�
. It

follows that for � � �

��� � 
�����
���� 
�

�����

�
���� 
�

��
� �

�
� 
�� � (A.6)

Denote 
������

� � � ���

� ���
, where ����� is the first row. By Lemma

10, ������ � �, ������ � � and the pair ������
 ������ is indepen-
dent of 
�. Now (A.6) can be written in the form



�
��� � 


�
� � �������
� � ��
�� �

�
� 
�� (A.7)



�����
��� � 


�����
� � ������


�����
� � �������
�

� �� 
��� �
�
� 
�� � (A.8)

Step 2—(Estimates for the Lyapunov function). Since ���� is Hur-
witz, there exists a unique solution � � � to the algebraic Lyapunov
equation ����� � �

�

���� � �� . Denote �� � ��
�� �
�

and �� �

��

�����
� �

�
�


�����
� for � � �.

Since ������
 
����
�
� 
���� is independent of 
�, we have

��
�� �����
�� � ��
�� 
����
�
� 
���� � �. By the expectation of ���

�

conditioned on ��� , it can be shown that �������
�
������ 
���� �
�. Now for � � �, (A.7) leads to

���� � �� � �
�
�� ������
��

� � �
�
�� 
�� �

�
� 
��

�

� (A.9)

Hence, 	��
 � � �
 is a monotonically increasing sequence, and by the
boundedness of �����, we can find a fixed �� � � such that

���� � �� � ���
�
� �� � �� � ���
 � � � (A.10)

since �
�� �
�
� �


�����
� �

�
�


�����
� � ��
��

� for some � � �.
We proceed to estimate ����. Similar to the derivation of (A.9), we

eliminate crossing terms to get

������ 

�����
�

�

�����
�

��� �����������

�����
�

� �
�
�� 


�
� �

�
� ���������
�

� �
�
�� �

�
�
�
� 
��


��
� �
��� �

�
� 
��

������� 

�����
�

�

� �
�
�� 


�����
�

�

�
�

��������

�����
�

� ���
�
� ����
��

�

������� 

�����
�

�

����
�
� ����
��

�
� (A.11)

By (A.11), we can pick a fixed constant �� � � satisfying 	��������
����� � � such that ���� � �� � ������� � ���

�
� �� � ��
��

�� for
� � �, and therefore, for a fixed constant �� � �, we have

���� � ��� ������� � ���
�
� �� � �� � ���� (A.12)

Step 3—(Mean square convergence of ��). By (A.10), (A.12),
Lemma 12 and (A.7), we see that 
� converges in mean square
to 
� � �
��
 ��

�
. Hence, �� converges in mean square to


�
� � ���
 
	��������
� � 
����.
Step 4—(Strong consensus). For reasons of space, we briefly

sketch the key steps. First, letting �� be the �-algebra generated by
���
 �

�
� 
��
 � � �
 � � � 
 � � ��, we see that 
� is adapted to ��.

Second, letting � be determined in Step 2, by elementary calculations,
we may check that

� 

�����
���

�

�

�����
��� ��� � 


�����
�

�

�

�����
�

����� � � 

�
�

�
� 


�����
�

�

(A.13)

for some � � � and all �. Third, it follows from Step 3 that
�
��� �

�
����


�
� �
�
� �


�����
� �

�
� � �. Now, by Lemma A.1 in [32],
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it follows from (A.13) that ��
�����
� �

�

��
�����
� and hence �

�����
�

converge a.s. The a.s. limit of ������
� is necessarily 0 by Step 3.

Furthermore, Step 1 implies that ��������� � � �� and
�������� �	��� � � �� in (A.7) form two martingale difference
sequences (w.r.t. � �� � 
���� �

�
� �	�� � � �� � � � � ��), each with

bounded second moments. Hence, by martingale convergence theorem
[30], ��� converges to a limit ��� a.s. Finally, strong consensus follows
from the coordinate change between �� and ��.
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