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Stationary Random Fields Arising From
Second-Order Partial Differential
Equations on Compact Lie Groups
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Abstract—Wide sense stationary processes are a mainstay of
classical signal processing. It is well known that they can be
obtained by solving ordinary differential equations with constant
coefficients whose right-hand side is a white noise. This paper ad-
dresses the extension of this construction to random fields defined
on compact Lie groups. On an underlying compact Lie group, the
paper studies left invariant second-order elliptic partial differen-
tial equations whose right-hand side is a spatial white noise. Quite
often, the solution of a partial differential equation is not defined
as a function but as a distribution. To adapt to this situation, the
paper introduces a definition of wide sense stationary distributions
on a compact Lie group. This is shown to be consistent with the
more restricted definition of wide sense stationary fields given
in a classic paper by Yaglom. It is proved that the solution of
a partial differential equation, of the kind being studied, is a
wide sense stationary distribution whose covariance structure is
determined by the fundamental solution of the equation. As a
concrete example, this paper describes the fundamental solution
of the Helmholtz equation on the rotation group and the resulting
covariance structure.

Index Terms—Lie group, partial differential equation, random
field, white noise, wide sense stationary.

I. INTRODUCTION

T HEmain themes of this paper are partial differential equa-
tions and wide sense stationarity. For shortness, “partial

differential equation” (or “equations”) will be abbreviated to
PDE and “wide sense stationary” to WSS.
WSS processes are among the most popular objects in signal

processing and data analysis [1], [2]. There are many reasons
for this. Of practical importance among them is that so-called
finite-order processes belong to the class of WSS processes.
AWSS process consists of complex1 random variables

for , where is understood as time. Stationarity refers to
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1In this paper, only scalar (univariate) random objects are considered.

the fact that the covariance structure of is time homogeneous.
That is, for ,

where denotes complex conjugation. Here, is called the co-
variance function of and is, in fact, the main object used to
understand the process ; it is either assumed identi-
cally, or that is constant and of no importance. In general,
WSS processes give rise to which is continuous and positive
definite. Bochner’s theorem states that any such function is the
Fourier transform of a finite measure. In signal processing, this
measure is known as the spectral measure or spectral power dis-
tribution of .
Finite-order processes are straightforward extensions of

the well-known stationary Ornstein–Uhlenbeck process. This
process is realized by letting be the steady-state solution of
an ordinary differential equation

where and is a so-called white noise process. In other
words, is obtained as the output of a first-order filter whose
input is . Formally, is a real WSS process whose covariance
function is given by

where is the Dirac delta “function.” Now, this is only a formal
definition. The “function” is not a function and a fortiori not
a continuous positive-definite function.
Finite-order processes are WSS processes which arise as so-

lutions of ordinary differential equations with constant coeffi-
cients whose right-hand side is a white noise process. The above
equation clearly falls within this definition. In order to consider
such equations systematically, a clear meaning needs to be given
to the concept of white noise process. A complete approach can
be developed based on some elementary aspects of the theory
of distributions, (the reader may wish to recall [3] for a general
introduction to distributions).
First, the Bochner–Minlos theorem shows that a white noise

process can be understood as a random tempered distribution
[4]. Tempered distributions allow for the full application of
Fourier transform methods. For any such distribution in the
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right-hand side of an ordinary differential equation with con-
stant coefficients, Fourier analysis can be used to represent the
solution both in spectral form (i.e., Fourier representation) and
as a convolution with the fundamental solution. Thus, each
realization of a white noise is a tempered distribution to which
these two representations apply. The spectral representation is
particularly helpful as it gives the spectral power distribution
of the solution.
This paper aims to extend the situation described for fi-

nite-order processes to random fields defined on compact Lie
groups. WSS random fields on Lie groups, or even topological
groups in general, were studied in [5]. They were shown to
appear in a variety of applications and to admit useful gen-
eralizations of common signal-processing techniques. In [6],
estimation and detection problems for fields on compact Lie
groups were solved and applied to vision and object detection
problems. In spite of WSS random fields on Lie groups ap-
pearing in these and other applications, it seems there are not
many simple mathematical models or constructions of these
WSS random fields available in the literature. The motivation of
this paper has been to overcome this problem by showing that
certain WSS fields on compact Lie groups can be constructed
as solutions to invariant PDE.
In his 1961 paper [7], Yaglom considered the generalization

ofWSS processes toWSS random fields defined on groups. This
generalization has both applied and theoretical significance. A
group has a, generally noncommutative but always associa-
tive, operation which gives for elements , their “com-
position” . It also possesses and identity element
such that for and an inverse element
for each which satisfies . Of course,
itself is a group where the composition of , is and
the identity element is the number 0.
Instead of random variables for , Yaglom consid-

ered random variables for . These form a random
field and it is natural to take to be a topological group (usu-
ally, any group structure of interest corresponds to some stan-
dard topology). Now, due to the fact that may be noncom-
mutative, there are two ways in which can be WSS, (homoge-
neous, in Yaglom’s terminology). Precisely, is called left WSS
if, for ,

and it is called right WSS if

in either case, is known as the covariance function of and
again becomes the main object of study. In a sense explained by
Yaglom, is a continuous positive-definite function on . If
is a so-called type I separable topological group, then a general-
ization of Bochner’s theorem gives rise to an operator-valued
measure which plays the role of spectral power distribution.
This is the main fact used by Yaglom and it is also central in
the signal-processing techniques proposed in [5].
In this paper, the group is assumed to be a compact Lie

group. This restriction is aimed at profiting from the powerful
yet simple tools of harmonic analysis on compact Lie groups.

It seems that most of the following can be generalized to
semisimple noncompact Lie groups (which fall within type I
groups mentioned above), however, that would require signifi-
cantly more difficult aspects of functional analysis. Harmonic
analysis on compact Lie groups has been applied in many
engineering papers [8]–[10]. Here, the required background
is given in Appendix A, which also defines the notation used
throughout this paper.
This paper will study linear PDE on the underlying group

whose right-hand side is a spatial white noise. In order for the so-
lutions of these equations to be WSS, the equations themselves
should respect the group structure. As mentioned previously, it
is possible to consider either left or right WSS. The difference
between the two is trivial. Indeed, if is a left WSS field, then
given by is right WSS. To avoid unnecessary
digressions, this paper only considers the left WSS case and the
mention of “left” is dropped. The required PDE takes the form

where is a left invariant differential operator and a spatial
white noise. Formally, is a WSS random field where

again is the Dirac delta, but on the group . To keep the paper
to a reasonable length, the operator is restricted to being a
second-order elliptic operator. The aim is to show the behavior
of the above PDE is analogous to that of ordinary differential
equations leading to finite-order processes. This is carried out in
several steps which generally correspond to the various sections
of this paper.
Section II reviews the above PDE problem in the determin-

istic case. The solution is first defined as a distribution, i.e., as
a weak solution. By introducing Sobolev spaces of positive and
negative order, the regularity of the solution is related to that
of the right-hand side; see Proposition 3. It is also shown that
the solution is the convolution of the right-hand side with the
fundamental solution. This reflects the fact that the PDE is left
invariant.
The approach of Section II is used as a model for studying the

white noise PDE. To include white noise into a similar frame-
work, it seems the definition of WSS should be extended from
fields to distributions defined on . Indeed, the formal defini-
tion of spatial white noise suggests it is typically a very irregular
object. Thus, one expects it to be defined only as a distribution,
not a function.
This extension is carried out in Section III. This section in-

troduced the new concept of a WSS distribution. A WSS distri-
bution is characterized by its covariance ; however, is a
distribution and not a function in general. In connection to the
deterministic PDE case, WSS distributions are defined as ele-
ments of random Sobolev spaces. They satisfy a spectral charac-
terization which generalizes the one given in [7]—this is stated
in Theorem 3. Spatial white noise itself appears as a WSS dis-
tribution whose covariance is the Dirac delta. Its definition is
recovered in Theorem 5.
With the results of Sections II and III, the full white noise

PDE is finally considered in Section IV. Its solution is shown to
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be a WSS distribution with covariance determined by the fun-
damental solution of the deterministic equation. This is given
in Proposition 6. In fact, just as for the deterministic equation
considered in Section II, the solution of the white noise PDE is
given by the convolution of the white noise with the funda-
mental solution.
Under some additional conditions, the solution is a square in-

tegrable field, as in the classical definition of Yaglom. For square
integrable random fields, Theorem 4 of Section III states that
weak (i.e., distributional) derivatives coincide with derivatives
in the square mean. This means that the white noise PDE can be
entirely understood in the square mean sense. Incidentally, this
is a usual point of view for ordinary differential equations used
to obtain WSS processes.
This paper closes with Sections V and VI. Section V pro-

vides a specific example of the white noise PDE studied in
Section IV. Namely, it considers the Helmholtz equation on
the special orthogonal group (i.e., the rotation group of
). It is shown the fundamental solution of this equation is

a square integrable function, which is given by the density of
the Laplace distribution, known in directional statistics. Accord-
ingly, the solution of the white noise PDE is a square integrable
field. Section VI gives a final discussion of the results in pre-
vious sections. It also describes some important open problems
arising from these results.

II. DETERMINISTIC ELLIPTIC EQUATION

In order to study a stochastic system, it is often helpful to have
a good understanding of a similar deterministic system. The ap-
proach taken in Section IV for the white noise PDE is closely
based on the following approach for a deterministic PDE.
Recall now is a compact Lie group. Let be its Lie al-

gebra, whose elements are identified with left invariant vector
fields. With respect to some -invariant scalar product, let

be a fixed orthonormal basis of , (see Appendix A
for a more detailed introduction). The equation of interest takes
the form

(1)

for an unknown and a given right-hand side , where the dif-
ferential operator is a second-order elliptic differential oper-
ator. Precisely

(2)

where , , and is a real symmetric strictly
positive-definite matrix. It will be suitable to take
and search for the solution ; here, is the space
of distributions introduced in Section II-A. This separates the
question of existence and uniqueness of a solution from the
question of regularity properties of this solution.
In the following, Section II-A introduces a scale (a nested se-

quence) of Sobolev spaces suitable for characterizing the regu-
larity of solutions of (1). Existence and uniqueness of solutions
is given in Section II-B2. In particular, is shown to be given
by the convolution of with a fundamental solution . This is
also a distribution, ; see (36). Regularity properties
of are closely related to the fact that is elliptic. They are
given in Proposition 3.

A. Sobolev Spaces and Regularity

Sobolev spaces are here introduced to describe the regularity
properties of solutions of (1). In general, Sobolev spaces are
highly useful to the study of elliptic PDE, whether in Euclidean
space or in other differentiable manifolds. Essentially, they are
Hilbert spaces and thus facilitate the variational formulation of
a PDE, replacing it by the problem of minimizing a quadratic
energy integral.
The Sobolev spaces considered here are where .

For positive , these are spaces of functions , with
additional regularity properties. The space is identified
with the dual space of . Thus, for positive,
is not a space of functions but of distributions. Whether is
positive or negative, is a Hilbert space. The following
presentation is similar to that of [11, Ch. 10]. For easier refer-
ence, it is given in a relatively detailed form. A general source
on functional analysis and PDE is [12]. Appendix B presents
an elementary example of the following discussion and can be
used for motivation.
As usual when considering PDE, it is suitable to consider a

sufficiently large space of distributions. First, the space of test
functions needs to be introduced. As a set, this is the space
of functions . It is moreover equipped with the
topology of the following seminorms:

(3)

where and . The
supremum is taken over in the expression

which should be understood as the definition of the notation ,
(i.e., the symbol by itself has no meaning here).
The space of distributions is the dual space of .

Thus, is a linear functional such
that, for some and

(4)

This property is equivalent to another one which involves con-
vergence. In fact, verifies (4) iff, for , the
complex numbers converge to whenever the func-
tions for converge uniformly to . Note here
that for which is included in the con-
dition .
Here are two fundamental examples to keep in mind. First,

note that defines a distribution

(5)

where (4) is verified with and . The second
example is the famous Dirac delta

(6)

here also, (4) is verified for . As of now, is identified
with and both are indiscriminately written .
As already stated, studying (1) in separates the

problem of finding a solution from the problem of knowing the
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regularity (i.e., differentiability) of this solution. Concretely,
this is done by searching for which is a weak
solution of (1). This requires the concept of weak derivative.
Let , the weak derivative of

is again a distribution

(7)

In the case where this is just (94) in Appendix A. Again,
(4) is clearly satisfied. If satisfies (4) for and then
satisfies (4) for and . Higher order derivatives are
defined as successive weak derivatives. Thus

(8)

It is now possible to introduce the Sobolev spaces . Since
has been identified with as in (5), it is

then possible to speak of the weak derivatives of . Precisely, let
be defined as in (8). For , the space

is the space of all those such that
for . In particular, this definition implies

.
To further clarify this definition, consider the example of

. This is the space with elements such that
there exist with the property

(9)

It is not difficult to see that for can be given the
topology of a Hilbert space using the inner product

(10)

for , . It can be shown that an equivalent inner
product, i.e., one that gives the same topology for , is
given by (see [11] or compare to (102) in Appendix A)

(11)

where are (up to sign) the eigenvalues of the Laplace oper-
ator, defined in (100). The corresponding norm will be denoted

.
Going on with , recall has been defined as a

Hilbert space. This means that it is isomorphic to its dual space.
However, this dual space can be identifiedwith a larger subspace
of , denoted . This is now developed briefly.
Note that is uniquely determined by the matrices
, where for

(12)

These matrices will be called Fourier coefficients of . Their
definition is quite similar to that of the Fourier transform of
distributions (compare to [3, p. 189]).
For , the uniform convergence of the Fourier series

(90) for all implies by application of the remark after
(4)

(13)

That is, can be applied to the Fourier series (90) of term by
term.
It is possible to show, using classical arguments as in [12], that

for and , the following condition is equivalent
to . Precisely

(14)

Moreover, given any matrices which verify this condition,
these define a unique as in (13). Norm (14) arises
from an inner product similar to (11), since it is possible to allow
negative in that formula.
The duality between and is given by the

same formula (13). Precisely, if is replaced by
and is replaced by , then the resulting
verifies

(15)

This is simply a result of (14) and the Cauchy–Schwarz in-
equality.
The definition of by means of (14) plays an important

role in the following result.
Theorem 1 (Sobolev Embedding Theorem): The following

inclusions are compact with dense range:

(16)

for . Moreover, the spaces and can be ob-
tained as follows:

(17)

The Sobolev embedding theorem states that each
where has a modification which is in ; here,

and by convention.
This theorem can be used to give a characterization of the

spaces and similar to the characterization (14).
Indeed, it results from (14) and (17) that a linear functional

verifies iff the coefficients (12) verify

(18)

On the other hand, it follows from the Sobolev embedding the-
orem that is equivalent through (5) to iff

(19)

Conversely, if somematrices verify (18) or (19), then these
define a unique in or , respectively. These two
conditions will shortly be applied in defining the convolution of
distributions.

B. Convolution and Fundamental Solution

It is a known fact, at least for PDE with constant coeffi-
cients in Euclidean space, that the solution of a nonhomoge-
neous linear elliptic equation is given by the convolution of its
right-hand side with its fundamental solution. This will also be
the case for the (1). Moreover, quite similar to an equation in
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Euclidean space, the fundamental solution is obtained from the
Fourier representation of the equation, in other words of the op-
erator .
1) Convolution of Distributions: Recall first the concept of

convolution of two functions , . This is
, where

(20)

Now a usual application of (89) yields the convolution theorem
[11], [13]

(21)

In order to write down the solution of (1) in the form of a convo-
lution, it is necessary to define the convolution of distributions.
First, let and . Consider the following
function:

(22)

Here, is given by . It can be
shown using (4) that . To show that ,
apply (12) and (13) to obtain

(23)

Since verifies (18) and verifies (19), it follows verifies
(19), so .
Now, if , , there is a unique

such that for all

(24)

It follows from (12), (23), and (24) that is characterized
by

(25)

The following proposition gives a regularizing property of
convolution.
Proposition 1 (Regularizing Property): If and

, where , , then .
This proposition will not play a major role in the following.

However, it is an interesting application of (14) and (25). In
order to prove , it is enough to prove
verifies condition (14). By (25)

By replacing in the sum which appears in (14)

since , the supremum over is finite. Since
, it follows . Thus, verifies condi-

tion (14) so that .
2) Fundamental Solution: It is now possible to tackle the (1).

As already stated, the approach will be to search for which is
a weak solution. Once this is found, its regularity is determined
by finding such that and applying the Sobolev

embedding theorem. A distribution is called a weak
solution of (1) if the equation holds in with inter-
preted as in (8).
By taking Fourier coefficients of both sides of (1), the equa-

tion is reduced to a family of linear matrix equations. The central
role is played by the symbol of the operator . This is the family
of matrices where

(26)

The properties of the symbol of are given in the following
proposition.
Proposition 2: Let be given by (26). Then, is in-

vertible for all . Moreover, let be the inverse of
. Whenever , the spectral radius of veri-

fies , where does not depend on .
Proof: First, note that . Since , this is invert-

ible. Consider the case . Using (96) and (97)

(27)

Let be given by

Since is symmetric strictly positive definite, there exists an
orthonormal basis of such that

where are the eigenvalues of . Since the
and are skew Hermitian, it follows the first term in (27)

is skew Hermitian while the second and the third are Hermitian
strictly negative definite. In particular, for

where denotes the real part. Thus, is invertible.
Let be the smallest eigenvalue of . Clearly,

. A lower bound on is now given. Note that is
obtained by changing the sign of the first term in (27). Multi-
plying out, it follows that

(28)

where is equal to

Using the fact that the are skew Hermitian, it can be shown
is Hermitian positive definite. From (28), is larger than

the smallest eigenvalue of . By (27) and (101), if is an
eigenvalue of then . Thus, . The
proposition follows immediately.
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It is now possible to obtain a family of linear matrix equations
equivalent to (1). Recall, is interpreted as in (8). Thus,

for . By an application of (8) and (12)

(29)

so that (1) is equivalent to

(30)

The existence, uniqueness, and regularity of the solution of the
(1) are obtained in the following proposition.
Proposition 3 [Solution of (1)]: Let so that

for some . Equation (1) has a unique solution
and is given by

(31)

In particular, implies and ,
where implies has a modification in .

Proof: It has been noted that (1) is equivalent to (30). If a
solution exists, then its uniqueness follows from the fact that

is invertible, which was stated in Proposition 2. To show
that a solution exists, it is enough to prove that given by (31)
indeed belongs to .
Note that (31) implies

where is given in Proposition 2. Applying the result of Propo-
sition 2, it is possible to evaluate (14)

Let be the first nonzero element of the sequence . That is,
is the spectral gap of the Laplace operator . The following

estimate is straightforward:

(32)

In particular, and .
That is indeed a solution follows by replacing (31) in (30).

Finally, assume . Then, by (17), for all
. By the result just proved, it also follows

for all . Then, (17) implies . Similarly, if
where , then , and since

, the Sobolev embedding theorem implies
has a modification in .
To write down the solution of (1) in the form of a convolution,

it is enough to compare (25) and (31). The question arises of
whether there exists a distribution such that

(33)

The affirmative answer to this question is a result of Proposition
3. In fact, (31) implies that (33) gives the unique solution of

(34)

Indeed, applying (12) to gives

(35)

Thus, verifies (30) with . Moreover, it is clear from (25)
and (31) that the solution of (1) is given by

(36)

This justifies the name fundamental solution for . In order to
understand the regularity of , note the following recent result
of Applebaum [14]:

(37)

From (14) and Proposition 3, it then follows

(38)

In particular, if as is the case for , then
. This example is considered in Section V.

III. STATIONARY FIELDS AND DISTRIBUTIONS

WSS random fields were studied by Yaglom and have a
theory similar to that of WSS processes. The main ingredients
in this theory are the covariance function and its spectral rep-
resentation [7]. Here, Section III-A recovers Yaglom’s theory
and Section III-B generalizes it to the study of random distri-
butions. In particular, the notion of WSS random distribution
is introduced. A WSS random distribution has a “covariance
function” which is in fact a distribution. In Section IV, this is
applied to the concept of white noise indexed on , which turns
out to be a WSS distribution whose covariance is the Dirac
delta. In Section III-C, a necessary and sufficient condition
is given for the existence of derivatives in the square mean
of WSS random fields. This is helpful in understanding PDE
which involve WSS random fields.

A. Stationary Random Fields

The aim is now to reformulate the theory of WSS random
fields in a way which generalizes immediately to random distri-
butions. Assume given a probability space and write
for expectation. Let be the space of measurable

mappings such that the random variable
where verifies and
for almost all and such that, moreover,

(39)

In particular, (39) implies the random function where
is almost surely in . Thus, there exist

random variables for such that

(40)

where the series converges in almost surely. Also

(41)
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where

Of course, (40) and (41) follow from (90) and (91). Conversely,
given any random variables which verify (41), there exists
a unique verifying (40). Here, uniqueness is
understood up to almost sure equality in . An element

is referred to as a random field on .
In order to introduce the covariance function of , the fol-

lowing notation is used. Let be given by

(42)

Note that this can be written

(43)

where . Since the convolution of two functions
in is again in , it follows that almost
surely. By applying (21) and doing a direct calculation

(44)

Indeed, transforming into amounts to taking the Hermitian
transpose of each .
It follows from (39) and (42), by the Cauchy–Schwarz in-

equality, that is finite. This is noted . Now,
is bounded, so that it is possible to find for .

These are then given by

(45)

The function is called the covariance function of .
A strong result is that has a continuous modification, for

any . This is shown by noting the Fourier series
of converges absolutely and uniformly [15].
The random field is called WSS if for all ,
,

(46)

In this case, the definition of gives in (42)

Thus, in the case where is WSS, the definition (46) implies

(47)

for the covariance function .
In [7], Yaglom proved the following statement.
Theorem 2 (Characterization of WSS Fields): Assume

with and given as in (40) and (41). Then,
is WSS iff

(48)

When isWSS, this theorem allows the random variable
to be identified with the corresponding sum in (40).

(49)

Indeed, (41) and (48) imply that this sum converges in .
As stated after (41), the sum in the right-hand side defines a
random function which is almost surely equal to in .
Making this identification, the function can be computed for
every

Since both sums converge in , (48) gives

In other words, is equal to the pointwise sum of its Fourier
series. This last result has the following corollaries. First, is
continuous. Indeed, it has been stated the Fourier series of
converges absolutely and uniformly. Second, is continuous in
the square mean. This is since

This result on continuity in the square mean is complemented
by the result on the existence of derivatives in the square mean,
given in Section III-C.
In order to motivate the introduction of WSS random distri-

butions in Section III-B, note the following property of WSS
random fields. If is WSS, then for all ,

where the last equality uses the invariance of the Haar measure
under group operations. By comparing to (20), it is possible to
write

(50)

This property will be used to define WSS random distributions,
as it can be rewritten using the notation of (5).

B. Stationary Random Distributions

WSS random distributions will arise as the solutions of white
noise PDE. In order to introduce them, it will be suitable to
consider the space . This is the space of mappings

with the following properties. For ,
the functional , given by
for , belongs to . Moreover, for , the
random variable , given by , belongs to

.
Using the notation of (5), the space is identified

with a subspace of . For , its regularity
properties can be characterized using random Sobolev spaces.
This is addressed in Section III-C.
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Let . For , it is possible to define

(51)

where is given by (12). The expectation is finite since, by
hypothesis, for . For ,

is defined as the space of such that

(52)

When , it is clear from (52) that verifies (14)
almost surely and

(53)

This norm arises from an inner product, which is obtained by
taking the expectation of the inner product in . If random
variables exist which verify the condition (52) then these
define a unique .
Moreover, if and ,

(54)

This follows since and almost
surely. Then, by (15)

and it is enough to take expectations and apply the
Cauchy–Schwarz inequality (in ). In fact, it is pos-
sible to show is the dual space of
according to norm (53).
A random distribution is called integrable if

there exists a distribution such that

(55)

Naturally, is referred to as the expectation of . A straight-
forward result is that if , for some , then
is integrable and . Indeed, for ,

(54) implies

This shows is continuous on . Thus, .
Now, the covariance of a random distribution

can be introduced using a formula similar to (43). For this, it is
required for some .
Let be given by

(56)

Here, is given by . Formally, re-
peating (43), let

(57)

A direct calculation using (12) and (25) shows

(58)

Similar to (44). The covariance of is to be defined by
. It is now shown that if then is well

defined with . For this, it is enough to prove there
exists such that

(59)

Indeed, noting by (51) and (58), it then follows
from (13) that and verify (55).
In order to prove given by (59) exists, it is enough to check

condition (14). Note first that since is Hermitian positive
definite

Replacing in (14) gives

which is finite by (52), whenever .
It is now possible to defineWSS random distributions by gen-

eralizing (50). A random distribution , where
, will be called WSS if

i)
ii) For all , ,

(60)

This leads to a characterization similar to Yaglom’s result of
Theorem 2.
Theorem 3 (Characterization ofWSSDistributions): Assume

where , with and given as
in (12) and (51). Then, is WSS iff and

(61)

Proof: Note that is integrable and , since
. By (13), condition i) of the definition is

equivalent to . Thus, it is enough to show (60) is equiv-
alent to (61).
Assume (60) holds and replace

These are clearly in and verify, for ,

Applying (60) and using (23) and (91), it follows the left-hand
side of (61) is equal to

which is the right-hand side.
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Conversely, assume (61) holds. By (19) and (52), the fol-
lowing sums converge in for all , :

Thus, it is possible to multiply term by term and apply (61).
Terms with disappear, so the left-hand side of (60) is
equal to

This is seen to be equal to

by (23) and (91), it follows that (60) holds.
Before going on, note the following property which will be

used in Section IV. Similar results, in the special case of random
fields, play an important role in [5] and [6].
Proposition 4 (Convolution Preserves WSS): Let

and where , . Then,
. Moreover, if is WSS, then is

WSS with covariance

(62)

where is the covariance of .
Proof: That can be checked from

condition (52). Indeed, letting , using (23)

The norm of is finite by hypothesis. Similarly, the supremum
is finite since satisfies (14) for . This shows that (52) holds.
If is WSS, then can be proved to be WSS using (61) of

Theorem 3. This can be checked easily so it will not be detailed
here.
To obtain the covariance of , note that

By (51) and (59)

(63)

That verifies (62) now follows from (25).

C. Derivatives in the Square Mean

The formalism of random Sobolev spaces allows the classical
notion of derivative in the square mean to be recovered.
Consider a random field and assumemoreover

for some . This implies that
almost surely. In other words, has weak derivatives

for all which verify almost surely.
The following proposition summarizes some properties of these
weak derivatives.
Proposition 5 (Weak Derivatives): Assume

for some . The weak derivatives for
verify . Moreover, if is WSS, then is
WSS.

Proof: The proof considers the case . The general
case can be obtained by induction. Assume then .
By writing (7) in integral form, it is possible to find

for . Taking the expectation of both sides and using
the fact that for almost all , it follows that

This implies for almost all .
Note that by (96)

To show it remains to check

where

Indeed, by (41) this would imply (39) holds for .
Note, since is Hermitian positive definite

Using the fact that each is skew Hermitian, this further im-
plies by (101)

Since satisfies (52), it is easy to conclude

which proves . Now, any where
is a linear combination of .
For the second claim, if is WSS, then using (96) as above

it straightforward to show verifies the condition (48) of
Theorem 2.
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An interesting formula follows from the second part of this
proposition. If is WSS, then

(64)

Here, means that acts on the variable and similarly
for . This formula is a clear generalization of a classical
one. In order to prove it, note that is WSS so that, as in (49),

(65)

for , where the series converge in . Two series of
this form, for and , can be multiplied term by
term and the expectation (64) obtained using (48).
When is WSS, the weak derivatives are moreover

derivatives in the square mean. Here, the derivative in the square
mean of at in the direction of is the limit in

(66)

when it exists. Note the usual notation for the exponential ap-
plication from onto is used.
For simplicity, the theorem is only stated for first derivatives,
where .
Theorem 4 (Derivatives in the Square Mean): Assume

is WSS. Then, iff for the
limit (66) exists and is equal to the sum (65).

Proof: Assume . Since is WSS, is
WSS by Proposition 5. It follows, as already noted, that
can be identified with the sum (65) for .
By (49), the difference between the expression under the limit

in (66) and is equal to

(67)

where, being the matrix exponential,

Using (48), the square mean of (67) is equal to

(68)

Now, it is clear that as . Thus, to show that the
square mean of (67) also converges to 0 as , it is enough
to bound (68) independently of .
Note that since is positive definite

where denotes the Euclidean operator norm.
The formula for the Taylor remainder of the first-order devel-

opment of the matrix exponential gives

(69)

Let . It now follows by (69) and (101)

where . Returning to (68), the sum therein
is found to be less of equal to

which is independent of .
For the if part, assume the sum (65) converges in for

and . Since is WSS, the square mean of this sum
can be calculated using (48). In particular, replacing
gives

This is finite by assumption, so summing over
gives by (101)

Since it follows .

IV. WHITE NOISE ELLIPTIC EQUATION

Building on the results of the previous sections, a stochastic
version of (1) can be studied. This is written as follows

(70)

where now is a random distribution.
Note that for each realization of the right-hand side , the

stochastic (70) reduces to an instance of the deterministic (1).
This can be solved as in Section II-B, using (36) and the random
solution obtained in this way satisfies Proposition 3.
The aim should then be to find suitable conditions under

which belongs to . It is shown in Proposition 6
that implies , for .
A further question relates to the stationarity of . In general,

it is possible to show that if is a WSS random distribution as
in Section III-B then so is . It is more interesting to study this
question when is a special kind of WSS random distribution;
namely, a white noise distribution indexed on . This is intro-
duced in the following theorem.
Theorem 5 (White Noise): Let . There exists

which is WSS with covariance . In par-
ticular, verifies the isometry property

(71)

for , .
Proof: If a WSS is shown to exist with
, then (71) follows from (60). Indeed, by (6) and (22),
for . To show that exists, let for

be given by
(72)

(73)

Then
(74)
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Using (37), it is shown that condition (52) holds, so that
. That is WSS is an immediate result of (61).

To see that the covariance is equal to , note that (59) and
(74) imply

which is the same as (35).
In the framework based on Section III-B, it is meaningless to

speak of the value of a white noise at . However,
the isometry property (71) can be obtained formally using the
notation . The result that is WSS and seems to
suggest

(75)

Formally

which is the same as (71).
Proposition 6 relates the properties of the right-hand side

to those of the random solution in (70).
Proposition 6 [Solution of (70)]: For , with
, (70) has a unique solution . Moreover,

if isWSSwith covariance , then isWSSwith covariance
.

Proof: Assume , with . From (31)

In order to check that verifies condition (52) for , it is
possible to proceed as in the proof of Proposition 3.
Clearly

Since is positive definite

where is given in Proposition 2.
Replacing this inequality in condition (52) gives

Let be the spectral gap of the Laplace operator . The fol-
lowing estimate is straightforward:

(76)

Since , this implies .
Recall formula (36)

(77)

This formula along with Proposition 4 provides the second part
of the current proposition.
It is interesting to consider the above Proposition when

is a white noise indexed on . In this case, the solution has
covariance . Then

(78)

which follows by (63) and Theorem 5.
If the operator is sufficiently symmetric, then can be re-

covered from the above formula. Indeed, if in the ex-
pression (2), then (27) and (33) imply is Hermitian strictly
positive definite. Then, is simply the Hermitian square
root of . In this case, if depends on some unknown pa-
rameters, then it is possible to attempt to identify these pa-
rameters given . More generally, by obtaining a sufficient
number of Fourier coefficients , an approximation of may
be constructed.

V. EXAMPLE: A WHITE NOISE PDE ON

Here, a concrete example is given of the development in
the previous section. This example illustrates Theorem 5 and
Proposition 6.
The example treated will consider random fields arising from

a white noise PDE defined on the special orthogonal group
. This is the group of real 3 3 matrices which satisfy

where denotes the transpose. In other words, is
a unit determinant orthogonal matrix. The group operation is
matrix multiplication. The identity element, here noted , is the
3 3 identity matrix and is the matrix inverse of , equal
to its transpose.
The white noise PDE to be studied is the Hemholtz equation

on . This is the equation

(79)

where is the “wave number,” is a spatial white noise
on , and is the Laplace operator.
To describe thesemore precisely, it is necessary to recall some

facts from harmonic analysis on . For these, the reader is
referred to [16].
The Lie algebra of is of dimension . It is

well known that can be identified with the space of 3 3
real antisymmetric matrices. This is done in the following way.
Consider the matrices , , with matrix elements

where is totally antisymmetric with . These form
a basis of the space of 3 3 antisymmetric matrices. The Lie
algebra of has basis , , where for

which is a result of (84).
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Irreducible representations of are usually indexed by
their highest weights, . To each value of , there corre-
sponds an irreducible representation with unitary representative
.
These can be obtained by recursively forming tensor prod-

ucts. For , is the trivial representation of dimension
. The corresponding eigenvalue of the Laplace operator

is . Since is connected, this is a simple eigenvalue.
The first nontrivial representation corresponds to . This

is the identity representation

this acts as a unitary transformation of , (i.e., it preserves
Euclidean scalar product). Clearly, . A straightforward
substitution shows the matrices arising as in (93) are
. Applying (101), it follows .
It can be shown by induction the dimension of the represen-

tation of weight is and . Assume is
given, for , and satisfies these relations.
To obtain , it is possible to form the tensor product

This defines a unitary representation of which has di-
mension , the product of the dimensions of and
. The Clebsch–Gordan formula asserts can be transformed,

by a change of basis, into the direct sum

By subtracting the dimensions, it follows . This is
, so that by induction the dimension formula holds.

In a similar way, after applying (101), the formula for follows
by induction.
The above decomposition allows not only for and to

be calculated, but even for the matrix elements of to be
expressed as homogeneous polynomials in those of . Thus, an
analytic expression of the is obtained. However, much more
often, is given in terms of Wigner -functions of the Euler
angles of .
Assuming the are given, applying (27) and (33), the fun-

damental solution of (79) is given by

(80)

where is the identity matrix.
Based on (38), since it follows . In

other words, can be identified with a square integrable func-
tion, with respect to the Haar measure of . This will again
be noted .
This square integrable function can be given in terms of the

probability density of the Laplace probability distribution de-
scribed in [17]. An analytic expression of is then found based
on [18]. Thus, for the current example, the fundamental solution
is a square integrable function and has a closed-form expression.

Now, according to (78), the covariance of has Fourier
coefficients

(81)

Since and , Proposition 1 shows
. Moreover, also implies that

verifies condition (41).
Thus can be constructed pointwise as in (49)

(82)

where by (48) and (81), the random variables verify

The last formula gives a possible numerical construction of the
value of at a given point . Indeed, this can be ap-
proximated in the square mean by generating random variables

with the indicated covariance structure and summing suf-
ficiently many terms in (82). model

VI. CONCLUSION

This paper is meant as a step toward a more concrete study
of wide sense stationary random fields defined on groups. Pre-
cisely, the aim is to introduce these random fields not immedi-
ately through their definition but to construct them as solutions
of white noise PDEs. This has been realized in the special case
of compact Lie groups, although at the price of a generalization
which considers random distributions instead of random fields.
This section aims for an informal discussion and will not make
the distinction between fields and distributions.
There are several advantages to the construction of wide

sense stationary random fields as solutions of white noise
PDEs. First, PDEs are well-known models of many physical
phenomena. Thus, random fields arising in applied problems
may naturally obey PDEs where white noise represents ambient
environmental fluctuations.
Second, random fields which satisfy the white noise PDE

studied above [see (70)] belong to a parametric family given by
the coefficients of the differential operator. This can also be ex-
tended to depend on an additional parameter which is the order
of the differential operator, here restricted to be of order two.
The existence of sufficiently general parametric models allows
a more robust approach to modeling, where parameters can be
fitted to data. Also, the existence of such parametric models al-
lows for pertinent estimation and statistical decision problems
to be posed.
Third, invariant white noise PDEs follow thewell-known par-

adigm of systems theory. If the solution is represented as a con-
volution with the fundamental solution [see (77)], then clearly
appears as the input and the output of a linear invariant

system. For these systems, there is the open perspective of for-
mulating control or observation problems. These can be based
on the existing literature for control of PDEs in Euclidean space
[19].
Still, there exist important examples of wide sense stationary

random fields which do not clearly satisfy a white noise PDE.
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Above all, this is the case for fractional Brownian fields on the
sphere (equivalently, the rotation group) [20].
The model considered here contains many limitations and is

far from exhausting the class of wide sense stationary random
fields on Lie groups. There is the restriction to compact Lie
groups, which is a matter of technical convenience. Also, the
model was limited to second-order elliptic operators. This re-
striction can be dropped by considering higher order elliptic or
semielliptic operators. It is also possible to consider parabolic
equations which represent time dependent random fields, the
simplest example being a stochastic heat equation. These par-
abolic equations can display both space and time stationarity.
It is important to note that the computer simulation of random

fields or of PDEs implies considerable difficulties. These are
due to complexity as well as to the high volume of data which
needs to be processed. For a square integrable random field with
a given covariance function, a comprehensive approach to sim-
ulation is proposed in [21].
The study of random fields defined on Lie groups may seem

unnatural since Lie groups mostly appear as groups of transfor-
mations of some underlying homogeneous space. In this situ-
ation, one would be more interested in random fields defined
on the homogeneous space and which are wide sense stationary
under the action of the Lie group of transformations. It should be
noted that any object (i.e., function, distribution or measure) de-
fined on a homogeneous space can be lifted in a canonical way
to an object defined on its Lie group of transformations. Thus,
after some minor modifications, the framework proposed in this
paper can be used to study random fields defined on homoge-
neous spaces. For example, random fields defined on a sphere
can be considered as a special case of random fields defined on
the special orthogonal group.

APPENDIX A
HARMONIC ANALYSIS ON COMPACT LIE GROUPS

The aim of this appendix is to recover the background mate-
rial in harmonic analysis on compact Lie groups which is used
in the body of the paper. The fundamental theorem for harmonic
analysis on compact Lie groups is the Peter–Weyl theorem, The-
orem 6 below. This is here presented along with some additional
results on differential and integral calculus. For a very clear pre-
sentation of this material, the book of Faraut is recommended
[22].
Let be a compact connected Lie group with identity 1 and

Lie algebra . The elements of are identified with left in-
variant vector fields on . Various spaces of complex-valued
functions on may be introduced. For example, , ,
and are the spaces of continuous, times continuously
differentiable and infinitely differentiable functions from to
.
A definition of left invariant vector fields can be given based

on the group exponential mapping. For each , there exists
a unique one parameter subgroup, . This is defined
by

(83)

Here, the dot denotes differentiation with respect to . Since
there is a clear resemblance to the usual definition of the ex-
ponential, it is common to write

For , a function is defined by

(84)

The operation taking to is a first-order differential oper-
ator. That is, it is linear and verifies the product rule,

for , . The name left invariant
reflects the fact that , when seen as a differential operator,
commutes with left translations. For , the left translation

is the mapping . Now, it is easy to see
in (84)

(85)

for any . Given two left invariant vector fields , ,
it can be shown there exists a further such that

(86)

for and where means successive application
of and then to . The left invariant vector field is denoted

and known as the Lie bracket of and .
The space consists of functions which are square in-

tegrable with respect to the Haar measure. After identification
of functions which are modifications of each other, i.e., which
differ only on a set of measure 0, this is a Hilbert space with
inner product

(87)

where denotes complex conjugation and the integral is ex-
tended over with respect to the Haar measure . The norm
corresponding to this inner product is denoted for

.
The dual of is denoted . This is the set of equivalence

classes of irreducible representations of . For , its di-
mension is denoted and it is assumed a smooth unitary rep-
resentative has been chosen. Thus, is
a homomorphism from to the matrix group of unit
determinant unitary matrices. That is, for , and

,

(88)

Here, the product on the right-hand side of the first identity is a
matrix product. The exponential exp in the second identity is a
usual matrix exponential. The matrix is given by

and it is clear that is skew Hermitian; indeed it is the
derivative of a special unitary matrix. Incidentally, definition
(86) gives
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The trivial representation is denoted . This is charac-
terized by . Throughout this paper, whenever a sum

appears, it should be extended over all . Note also,
expressions of the form and simply mean differen-
tiation or integration of each element of the matrix .

Theorem 6 (Peter–Weyl Theorem): Let and
define its Fourier coefficient matrices by

(89)

for . The following Fourier series converges in :

(90)

Moreover, the following Plancherel formula holds:

(91)

for , , where denotes the Hermitian transpose.
Finally, if , then the Fourier series (90) converges
uniformly to .
The underlying fact for the Peter–Weyl theorem is that the

matrix elements where and give an
orthonormal basis of

(92)

where the notation on the right-hand side is for the Kronecker
delta.
Fourier series such as (90) can be used to represent the deriva-

tives of , in case . For and , it follows
from (84) and (88) that

(93)

In order to apply this note that for ,

(94)

Further application of this formula gives

(95)

for . In fact, (94) follows easily if one notes

and . That the above integral is zero
expresses the right invariance of the Haar measure. That is

for each , so that the above derivative should be zero.
Using (89), (93) and (94), (95), it follows that

(96)

(97)

The most important differential operator on is the Laplace
operator . In order to define this, let be an -in-
variant scalar product of and a corresponding
orthonormal basis. The property of -invariance means that
for , ,

In other words, the Lie bracket operation is antisymmetric. Once
such a scalar product has been chosen, the Laplace operator is
defined to be

(98)

It follows from (95) that is negative. That is, for

(99)

Characteristic of compact Lie groups is the fact that is diag-
onalized in the orthonormal basis described in (92). That is

(100)

Since is connected, is a simple eigenvalue. That is,
for . This can also be expressed by saying that
implies where

Note from (97) that (100) is equivalent to

(101)

In connection with the definition of Sobolev spaces in
Section II-A, note that it is possible to combine (91), (99)
and (101) to write

(102)

The eigenvalues can be arranged in a sequence
. By default, sums over are carried out in the

same order.
The following matrix inequalities which are useful in the

paper. Let be a Hermitian positive-definite matrix and
some other matrix, with both being square and of the same di-
mension. Then

(103)

where denotes the Euclidean operator norm. If is also
Hermitian positive definite, e.g., , then

(104)

Indeed, in this case, is less than the trace of . Inequality
(103) can be found on Page 169 of [15]. It follows from the
statement that the trace of is the norm of the linear formwhich
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to each associates the left-hand side of the inequality. That
is,

In the body of the paper, these two inequalities are considered
as known and are used repeatedly.
Let be a bounded function and note

for . Assume is positive definite. That is, verifies

for all .
In [15], it is shown is positive definite iff is Hermitian

positive definite, for . The Fourier series of a positive-
definite function converges absolutely and uniformly. From the
definition of positive definiteness, it follows that

Applying (103) in the Fourier series (90) of gives

This is since, being unitary, . The absolute
and uniform convergence follow immediately. These imply the
Fourier series of is pointwise summable. Since it converges
uniformly, its sum is a continuous function. In particular, if is
equal to the pointwise sum of its Fourier series, then is con-
tinuous. These results are used in Section III, (see the discussion
of (45) therein).
Conversely, it is interesting to note that a continuous function
is positive definite iff

for all and , where is any
positive integer.
Positive-definite functions are among the fundamental ob-

jects of harmonic analysis on compact Lie groups. It is easy to
see positive-definite functions which satisfy , for
some fixed , form a convex set. This observation can be
used as a starting point to the whole study of irreducible repre-
sentations andmay even extend to the case where the underlying
group is noncompact.

APPENDIX B
B-SOBOLEV SPACES ON THE CIRCLE

In Section II-A, Sobolev spaces for were intro-
duced. These appear as subspaces of the space of distributions

with a hierarchy given by the Sobolev embedding the-
orem, Theorem 1.
Throughout this paper, Sobolev spaces were mostly studied

using Harmonic analysis. This is based on the simple relations
(13) and (14), which can be thought of as operative definitions.

The aim of this appendix is to present an elementary example
of the discussion in Section II-A. For this, consider the
unit circle group. This is the very simplest compact Lie group.
It is the subset consisting of those complex numbers
such that , considered with the operation of multiplica-
tion of complex numbers.
All can be written where . Accordingly,

a function can be identified with a function
which is -periodic

Various spaces of functions , and are
then identified with the spaces of -periodic functions of the
above formwhich are in , and respectively.
It is natural, and often useful, to identify and and write
instead of . This is here done.
The dual of is . For , the corresponding

unitary representative is given by

This is a homomorphism from to the matrix group ,
which is isomorphic to .
The Peter–Weyl theorem (Theorem 6) here reduces to the

statement that the Fourier series of any function
converges in and the same Fourier series of any func-
tion converges uniformly. This is just the classical
Fourier series

with Fourier coefficients

When is not continuous, it is an abuse of notation to include
the argument in the above expression for the Fourier expan-
sion. Indeed, convergence does not hold pointwise.
The rate of convergence of the Fourier series of a function

is related to the regularity (differentiability) properties
of . This relation naturally leads to the introduction of Sobolev
spaces for .
Recall for , the Plancherel formula holds

The Laplace operator on is given by

Its eigenvalues are for with eigenfunctions given from

For , the Sobolev space is the dense subspace of
consisting of those functions such that
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Since , so it verifies the Plancherel formula, this is
equivalent to

When this is verified, the following Fourier series converges in
:

and is the weak derivative, of order , of .
The Sobolev space , where , is the dual space

of . It consists of those distributions such
that

where is the Fourier coefficient

The duality between and , where , is
given by

for and . This implies that there
exists a function such that

For example, let be the Dirac delta, so that by definition
for ; note that is the same set

as . Then, for and it follows that

which is equivalent to . For

where is given by

which can be thought of as the “reproducing kernel” on the
Hilbert space .
The most important idea to keep in mind, in preparation for

the discussion of Section II-A, is the relation between the rate
of convergence of the Fourier series of a function and the

regularity of this function. This relation is quantified by intro-
ducing Sobolev spaces which turn out to be the natural tool for
the problem studied in this paper.
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