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Global Parametrisations
Converting a Constrained Optimisation Problem to an Unconstrained One

Let M = {(x , y) ∈ R2|x + y = 0} denote a line in R2.
Note φ : R → M, φ(t) = (t ,−t), is a global parametrisation.

Therefore, the constrained problem

min
(x ,y)∈M

f (x , y)

can be recast as the unconstrained problem

min
t∈R

f ◦ φ(t) = min
t∈R

f (t ,−t).
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Local Parametrisations of a Surface (or a Space)

Global parametrisations do not exist in general; there is no
continuous bijection from R to the circle.

(If you allow the
parametrisation to wrap around, you can use
φ(θ) = (cos θ, sin θ), and the general theory of optimisation
on manifolds does not preclude this.)
Let M be a set and, for some fixed n and for each p, let
φp : Rn → M be a function such that

φp(0) = p and
φp(Rn) contains all points in a neighbourhood of p. (M has
a topology; φp is a local homeomorphism.)

How can we use this structure to solve minx∈M f (x), where
f : M → R?
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Optimisation on a Locally Parametrisable Space

Let Ng : Rn → Rn be an optimisation algorithm, e.g.
Newton method Ng(x) = x −H−1

g (x)∇g(x), for minimising
a cost function g : Rn → R.

We are currently at the point pk on M.
If we are happy to restrict attention to a neighbourhood of
pk , it suffices to consider choosing pk+1 in the
neighbourhood φpk (Rn) ⊂ M such that f (pk+1) < f (pk ).
This is equivalent to finding a point x ∈ Rn such that
f ◦ φpk (x) < f (pk ) = f ◦ φpk (0).
Thus, we propose pk+1 = φpk ◦ Nf◦φpk

(0). It works!
(For Newton method, require f ◦ φp to be twice
differentiable at the origin for all p ∈ M. This is a
smoothness requirement on the φp, motivating M being a
smooth manifold.)
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Manifolds

Roughly, “locally parametrisable spaces” are manifolds.

An n-dimensional (smooth) manifold is a nice topological
space (Hausdorff, paracompact) which locally looks like Rn

in a topological sense (homeomorphic) and for which there
exists a differentiable structure (so we can make sense of
the idea of a smooth function defined on the space).
Simplest examples are “smooth” subsets of Rm, i.e.
M = {x ∈ Rm|F (x) = 0} where F : Rm → Rm−n is a
smooth function whose Jacobian matrix has full row rank
for all points x ∈ M.
In this case, a function f : M → R is smooth if there exists
an open set U ⊂ Rm containing M and a smooth function
f̃ : U → R such that f = f̃ |M .

Manton A Unified Approach to Optimisation on Manifolds



Optimisation using Parametrisations
Optimisation on Manifolds

Coordinate Adapted Newton Method

What is a Manifold? When do they arise?
The Optimisation on Manifold Problem and our Solution
Previous Solutions

Manifolds

Roughly, “locally parametrisable spaces” are manifolds.
An n-dimensional (smooth) manifold is a nice topological
space (Hausdorff, paracompact)

which locally looks like Rn

in a topological sense (homeomorphic) and for which there
exists a differentiable structure (so we can make sense of
the idea of a smooth function defined on the space).
Simplest examples are “smooth” subsets of Rm, i.e.
M = {x ∈ Rm|F (x) = 0} where F : Rm → Rm−n is a
smooth function whose Jacobian matrix has full row rank
for all points x ∈ M.
In this case, a function f : M → R is smooth if there exists
an open set U ⊂ Rm containing M and a smooth function
f̃ : U → R such that f = f̃ |M .

Manton A Unified Approach to Optimisation on Manifolds



Optimisation using Parametrisations
Optimisation on Manifolds

Coordinate Adapted Newton Method

What is a Manifold? When do they arise?
The Optimisation on Manifold Problem and our Solution
Previous Solutions

Manifolds

Roughly, “locally parametrisable spaces” are manifolds.
An n-dimensional (smooth) manifold is a nice topological
space (Hausdorff, paracompact) which locally looks like Rn

in a topological sense (homeomorphic)

and for which there
exists a differentiable structure (so we can make sense of
the idea of a smooth function defined on the space).
Simplest examples are “smooth” subsets of Rm, i.e.
M = {x ∈ Rm|F (x) = 0} where F : Rm → Rm−n is a
smooth function whose Jacobian matrix has full row rank
for all points x ∈ M.
In this case, a function f : M → R is smooth if there exists
an open set U ⊂ Rm containing M and a smooth function
f̃ : U → R such that f = f̃ |M .

Manton A Unified Approach to Optimisation on Manifolds



Optimisation using Parametrisations
Optimisation on Manifolds

Coordinate Adapted Newton Method

What is a Manifold? When do they arise?
The Optimisation on Manifold Problem and our Solution
Previous Solutions

Manifolds

Roughly, “locally parametrisable spaces” are manifolds.
An n-dimensional (smooth) manifold is a nice topological
space (Hausdorff, paracompact) which locally looks like Rn

in a topological sense (homeomorphic) and for which there
exists a differentiable structure (so we can make sense of
the idea of a smooth function defined on the space).

Simplest examples are “smooth” subsets of Rm, i.e.
M = {x ∈ Rm|F (x) = 0} where F : Rm → Rm−n is a
smooth function whose Jacobian matrix has full row rank
for all points x ∈ M.
In this case, a function f : M → R is smooth if there exists
an open set U ⊂ Rm containing M and a smooth function
f̃ : U → R such that f = f̃ |M .

Manton A Unified Approach to Optimisation on Manifolds



Optimisation using Parametrisations
Optimisation on Manifolds

Coordinate Adapted Newton Method

What is a Manifold? When do they arise?
The Optimisation on Manifold Problem and our Solution
Previous Solutions

Manifolds

Roughly, “locally parametrisable spaces” are manifolds.
An n-dimensional (smooth) manifold is a nice topological
space (Hausdorff, paracompact) which locally looks like Rn

in a topological sense (homeomorphic) and for which there
exists a differentiable structure (so we can make sense of
the idea of a smooth function defined on the space).
Simplest examples are “smooth” subsets of Rm, i.e.
M = {x ∈ Rm|F (x) = 0} where F : Rm → Rm−n is a
smooth function whose Jacobian matrix has full row rank
for all points x ∈ M.

In this case, a function f : M → R is smooth if there exists
an open set U ⊂ Rm containing M and a smooth function
f̃ : U → R such that f = f̃ |M .

Manton A Unified Approach to Optimisation on Manifolds



Optimisation using Parametrisations
Optimisation on Manifolds

Coordinate Adapted Newton Method

What is a Manifold? When do they arise?
The Optimisation on Manifold Problem and our Solution
Previous Solutions

Manifolds

Roughly, “locally parametrisable spaces” are manifolds.
An n-dimensional (smooth) manifold is a nice topological
space (Hausdorff, paracompact) which locally looks like Rn

in a topological sense (homeomorphic) and for which there
exists a differentiable structure (so we can make sense of
the idea of a smooth function defined on the space).
Simplest examples are “smooth” subsets of Rm, i.e.
M = {x ∈ Rm|F (x) = 0} where F : Rm → Rm−n is a
smooth function whose Jacobian matrix has full row rank
for all points x ∈ M.
In this case, a function f : M → R is smooth if there exists
an open set U ⊂ Rm containing M and a smooth function
f̃ : U → R such that f = f̃ |M .

Manton A Unified Approach to Optimisation on Manifolds



Optimisation using Parametrisations
Optimisation on Manifolds

Coordinate Adapted Newton Method

What is a Manifold? When do they arise?
The Optimisation on Manifold Problem and our Solution
Previous Solutions

Manifolds in Signal Processing

Manifolds can arise in signal processing

as a constraint set M = {x ∈ Rm|F (x) = 0} where
F : Rm → Rm−n is a smooth function whose Jacobian
matrix has full row rank for all points x ∈ M.
by quotienting out an ambiguity. For example, if we can
identify the channel h ∈ Cm only up to scale, then the actual
space we are interested in is M = (Cm − {0})/ ∼ where
h, h′ ∈ Cm are equivalent, h ∼ h′, iff ∃λ ∈ C, h = λh′. This is
called complex projective space.
naturally; the (n, p)-Grassmann manifold is the set of all
p-dimensional linear subspaces of n-dimensional space
and can be made naturally into a manifold.

There are corresponding optimisation, tracking and
parameter estimation problems on manifolds.
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The Optimisation Problem

Not interested in minimising a single function

— we do it
once and that’s it — nor in minimising every function — no
algorithm can perform well for all functions.
Rather, given a class of cost functions (the smaller the
better), devise an algorithm taking as input a cost function
belonging to this class and computing, in an efficient
manner, the minimum of this function. (If the class of cost
functions contains a single element, compute beforehand
the minimum of this function, then propose the algorithm
which returns immediately this answer.)
The algorithm design usually needs to address
computational complexity per iteration, domain of
attraction, convergence rates etc.
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Optimisation on Manifolds

Given a manifold M and a class Ω of cost functions
f : M → R, design an algorithm taking as input an element
f ∈ Ω and returning arg minp∈M f (p).

Our framework is to choose beforehand local
parametrisations (local diffeomorphisms) φp : Rn → M,
where n = dim M, and a minimisation scheme
Ng : Rn → Rn in Euclidean space.
The algorithm is then pk+1 = φpk ◦ Nf◦φpk

(0).
The φp should be tailored to Ω and not to M as such.
We can generalise this framework slightly further. It
encompasses all previously proposed optimisation on
manifold type algorithms we know of. This generalised
framework is genuinely useful - better algorithms.
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History

Prior to our own work (2000), the approach to optimisation
on manifolds (e.g. Gabay, 1982) always started by
endowing the manifold with a metric structure

, then
generalising Euclidean algorithms by replacing

gradients with (Riemannian) gradients;
Hessians with (Riemannian) Hessians;
additions, e.g. xk+1 = xk + ∆k , with moving along
geodesics, e.g. xk+1 = Expxk

(∆k );
Hessian updates (e.g. in conjugate gradient methods) with
tensor updates combined with parallel transport;

and finally, perhaps introducing some approximations to
reduce computational complexity.
In general though, this Riemannian structure is artificial,
related only to M and not to the class of cost functions Ω.
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Comments

Our framework includes the Riemannian framework as a
special case.
The extra generality allows for the algorithm to be tailored
to the actual class of cost functions at hand.
Universal convergence proofs show that under very mild
conditions, any algorithm expressed in our framework will
converge locally with the same asymptotic rate as the
underlying Euclidean algorithm Ng . (Previously,
convergence proofs had to be constructed on a
case-by-case basis.)
We conjecture our framework is sufficiently general such
that it captures, in a certain sense, all possible algorithms.
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Newton Method in a Different Coordinate System

Recall the Newton method Ng(x) = x −H−1
g (x)∇g(x).

If φ : Rn → Rn is a change of coordinates (diffeomorphism)
then we can form a new iteration function

Eg(x) = φ ◦ Ng◦φ ◦ φ−1(x)

which is simply Ng implemented in a new coordinate
system.

This can alter the domain of convergence, computational
complexity, even rate of convergence. (If φ can be chosen
so that g ◦ φ is quadratic then convergence in a single
iteration takes place. Morse’s Lemma ensures this can be
done locally.)
However, Eg is still a “Newton method”; nothing special
going on.
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Coordinate Adapted Newton Method

The best coordinate system φ to use depends on the cost
function.

If we know we are close to a minimum, and if we know the
class of possible cost functions, then we might have a
good idea what the function looks like.
Therefore, this motivates choosing φ to depend on the
current iterate!

xk+1 = φxk ◦ Ng◦φxk
◦ φ−1

xk
(xk ).

This is the algorithm proposed earlier when M = Rn.
It is not a “Newton method” in any sense; new
convergence proofs required etc.
Optimisation on manifolds has led to new ideas in the
Euclidean case too.
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Example of Coordinate Adapted Newton Method

Family of cost functions: f (x ; z) = (x − z)2 + 2(x − z)3.

Define φx(y) = y − (y − x)2 and note

f ◦ φz(x) = (x − z)2 − 5(x − z)4 + · · · .

The coordinate adapted Newton method is

Ef (x ; z) = φx ◦ Nf◦φx (x)

= z − 8(x − z)3 + · · ·

and has cubic convergence.
That is, changing coordinate systems at each point can
alter significantly the properties of the algorithm.
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Conclusion

The traditional Riemannian approach to optimisation on
manifolds does not take into account the class of cost
functions at hand.
We have proposed a more general framework, shown it
can lead to better algorithms, and given universal
convergence proofs.
The framework can take any algorithm Ng in Euclidean
space and extend it to an algorithm on an arbitrary
manifold. Local convergence properties of Ng are
preserved in the extended algorithm.
The degrees of freedom in the extension allow for the
domains of convergence, computational complexity etc, to
be controlled.
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