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Abstract

Much debate surrounds the pros and cons of linear precoders in wireless communication systems. This two-part paper
contributes to the debate by formulating the precoder design problem as an optimisation problem and studying the optimal
solutions, thereby gaining a better understanding of how precoders work and what they can do. Part I builds a mathematical
foundation for the study of linear precoders. It is shown that under a mean square error criterion, a natural convex geometry
arises. This geometry facilitates the derivation of a necessary and su6cient condition for a linear precoder to be maximally
robust, meaning the precoder’s worst case performance is no worse than that of any other linear precoder. Part II studies
precoders having the lowest average mean square error, deriving closed form solutions in special cases and developing a
stochastic optimisation algorithm for computing optimal precoders in general.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The underlying problem in wireless communica-
tions is how best to encode a message so that the
receiver can recover the message despite interference
caused by multipath propagation and additive noise
[17]. One proposed method for encoding the message
is to use a linear precoder [3,19], either on its own or
as the inner code in a two stage coding strategy, with

� This work was performed in part while the author was a Tan
Chin Tuan Exchange Fellow at Nanyang Technological University,
Singapore.

∗ Tel.: +61383446791; fax: +61383446678.
E-mail address: jon@ee.mu.oz.au (J.H. Manton).

the outer code being a standard error correcting code
over a Hnite alphabet [2,5,10]. Although the design of
linear precoders under the simplifying assumption that
the channel is known has been considered in [6,18,19],
the design of precoders for unknown channels has re-
ceived relatively little attention to date [14,15]. Fur-
thermore, it is not clear from the literature whether
linear precoders can oJer improved performance; in
[22] it is claimed they do whereas Debbah et al. [2]
suggests perhaps they do not. This two-part paper ad-
dresses both these issues.
Part I establishes a mathematical framework in

which to study linear precoders. It converts the pre-
coder design problem into a constrained optimisation
problem. It goes on to use the recently discovered
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convex geometry in linearly precoded systems [9] to
derive closed form solutions to this optimisation prob-
lem under a worst case criterion. Part II [10] derives
optimal solutions under a criterion measuring aver-
age performance rather than worst case performance.
These results indicate linear precoders protect mes-
sages from frequency distortion caused by multipath
propagation but not from additive white Gaussian
noise (AWGN).
The motivation for studying robust linear precoders

is the desire to design linear precoders which work
well over any channel. Robust precoders are suit-
able for broadcast systems over Hxed 1 channels and
where the individual channels between the transmitter
and each receiver diJer substantially. Unfortunately
though, one of the theoretical results of this paper
is that the guaranteed performance of maximally ro-
bust linear precoders comes at the cost of requiring
the number of transmitted symbols to be no less than
L times the number of source symbols, where L is
the channel length. Maximally robust linear precoders
are therefore only interesting from a theoretical per-
spective; they establish a benchmark against which to
compare all other robust precoders. Indeed, any other
robust precoder must trade oJ worst case performance
for better spectral utilisation (that is, less redundancy
introduced by the precoder).
Related work in the literature is now summarised.

Filter bank precoders, which are one way of imple-
menting linear precoders, were explicitly introduced in
[3]. Their purpose was not only to remove the need for
oversampling the channel output in order to identify
blindly the channel, but also to remove the conditions
on the locations of the channel zeros for blind iden-
tiHcation to be possible. It was soon realised (see the
references in [19]) that Hlter bank precoders had other
advantages, such as allowing the channel to be
equalised perfectly using an FIR equaliser [25] and
allowing the source symbols to be recovered regard-
less of the location of the channel zeros [19,21]. An
explanation for these advantageous properties was
given in [13] where it was shown that all redundant
Hlter bank precoders spread the spectrum of the trans-
mitted symbols in a predictable way. As previously
mentioned though, although the optimal design of

1 For time varying channels, maximising average performance
over time is likely to be more appropriate [10].

linear precoders for known channels has been studied
in [6,18,19], little attention has been given to design-
ing optimal linear precoders for unknown channels
[14,15].
The organisation of this paper is as follows. The

mathematical foundations of linear precoder design
are laid down in Section 2. The main results are that
the Cramer–Rao Bound (CRB) provides an intrin-
sic measure of performance of a linear precoder and
that optimal precoders exist under quite general con-
ditions. Section 3 deHnes three classes of robust lin-
ear precoders; maximally robust precoders, uniform
precoders and strictly uniform precoders. Section 4
proves the somewhat surprising result that these three
classes are identical. Section 5 derives necessary and
su6cient conditions for a precoder to be maximally
robust and presents explicit expressions for maximally
robust precoders introducing the least possible redun-
dancy. These minimally redundant maximally robust
precoders are discussed further in Section 6. Section 7
summarises the results of this paper; a full conclusion
appears at the end of Part II [10].

2. Foundations

This section formulates mathematically the optimal
precoder design problem and proves the existence of
optimal precoders.

2.1. Transmission model

The following two applications result in the same
problem formulation considered in this paper.
Packet Networks: Consider a wireless packet

network where short messages are sent sporadically
between users. The wireless link is capable of trans-
mitting a block x∈Cm of m symbols but the received
block will diJer from the transmitted block due to
multipath propagation and additive noise (explained
later). The underlying problem is how best to encode
each message as a codeword x in m-dimensional
space. This paper considers a special case of this
coding problem; it assumes the mapping from mes-
sages to codewords in Cm occurs in two steps. First
the message is mapped to a codeword s in Cp (using
a traditional error correcting code, for instance) and
then a linear precoder matrix P̃ ∈Cm×p is used to
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obtain the codeword x = P̃s in Cm. The following
issues are addressed (both here and in Part Two [10]):
How should the dimension p be chosen? Given p,
how should the precoder P̃ be designed? To what
extent can the linear precoder take the place of more
traditional error correcting codes?
Block transmissions: Consider transmitting a con-

tinuous stream of digitised voice data in real time. The
real time requirement is met if the data is broken into
blocks and each block transmitted separately. In other
words, the encoding problem is equivalent to the one
described above for packet networks. It is emphasised
though that this equivalence does not hold if either the
digitised voice data is allowed to be coded over multi-
ple blocks (by using interleavers, for instance) or if the
receiver is allowed to use previously received blocks
to assist in the decoding of the current block. Indeed,
if the channel is time varying and ergodic, it is possi-
ble to exploit the channel’s ergodicity [24] by coding
over multiple blocks to improve performance, and in
particular, the design criteria in this paper would not
be appropriate.
The transmission model is now formulated math-

ematically. The multipath propagation is mod-
elled by a Hnite impulse response (FIR) channel
h= [h0; : : : ; hL−1]T ∈CL of length L, where T denotes
transpose. For reasons given below, a mild restriction
is imposed on the class of precoders P̃ considered in
this paper. For given values of n and L, deHne the
cyclic preHx matrix C ∈C(n+L−1)×n to be

C =

[
0(L−1)×(n−L+1) IL−1

In

]
; (1)

where 0 and I are the zero and identity matrices of
sizes as given by their subscripts. DeHne D∈Cn×n to
be the discrete Fourier transform matrix whose ijth
element is given by Dij = e−—2�(i−1)( j−1)=n. Only pre-
coders of the form P̃=CDHP for some arbitrary matrix
P ∈Cn×p, with n¿p, are considered. The codeword
s∈Cp is thus mapped to x = CDHPs. The received
vector y∈Cn is the noisy convolution of x with h,
namely

y=HCDHPs + n; n ∼ N (0; I); (2)

whereH is the upper triangular n×(n+L−1) Toeplitz
channel matrix with Hrst row [hL−1; : : : ; h0; 0; : : : ; 0],
superscript H denotes Hermitian transpose and n de-
notes AWGN with unit variance (E[nnH] = I); the

true variance of the noise is unimportant. Henceforth,
P and not P̃ is referred to as the precoder matrix.

Remarks. Although (2) can be interpreted as send-
ing the precoded symbols Ps through an OFDM sys-
tem [23], it is only the cyclic preHx component of the
OFDM system that must be present because P is able
to cancel out the DH operation in (2) if it so desires.
Note too that a zero padded system is obtained by set-
ting the last L−1 rows of P to zero; this is elaborated
on in Part Two [10].

JustiHcation for restricting attention to precoders of
the form x = CDHPs is now given. Since x passes
through a channel with memory L− 1, the Hrst L− 1
symbols of x must clear the memory of the channel
while the last L−1 symbols of x must Qush the mem-
ory of the channel so no data is lost. This appears
to require 2L − 2 redundant symbols. However, the
cyclic preHx matrix C introduces only L − 1 redun-
dant symbols yet achieves a similar eJect [7,11]. A
more impressive feature of the cyclic preHx is it allows
channels with unstable inverses to be inverted accu-
rately with a linear block equaliser [7,11]. Therefore,
only linear precoders adding a cyclic preHx are con-
sidered here. The introduction of DH is for notational
convenience only; any precoder P̃ = CP1 is obtained
by setting P = DP1.

2.2. Figure of merit

Before a good linear precoder can be designed, it
is necessary to decide what good means. Empirical
evidence [2] suggests linear precoders on their own
perform much worse than linear precoders used in
conjunction with other error correcting codes (such
as convolutional codes). In fact, Part II [10] explains
why this is so. Consequently, this paper deHnes a good
precoder as one having the ability to achieve a low bit
error rate (BER) if it is used in conjunction with a suit-
ably powerful error correcting code at the transmitter
and an optimal maximum likelihood (ML) detector at
the receiver. That is to say, this paper considers the
intrinsic performance of a precoder, which is concep-
tually very diJerent from extrinsic indicators such as
the achievable BER with respect to a speciHc coding
and decoding algorithm.
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It is assumed throughout that the receiver has per-
fect knowledge of the channel h. This is a reasonable
simpliHcation because it is easier to make the channel
estimation error small rather than the symbol estima-
tion error small; optimal training sequences or pilot
tones [8] facilitate the estimation of the channel, for
instance. DeHne the CRB matrix [7]

R(h) = (PHDCHHHHCDHP)−1 (3)

which is a function of the channel vector h. It is
well-known the error covariance matrix E[(s− ŝ)(s−
ŝ)H] of any unbiased estimate ŝ of s in (2), given y
and h, is lower bounded by R(h). In fact, this lower
bound is met with equality if the ML estimator

ŝ = (PHDCHHHHCDHP)−1PHDCHHHy (4)

is used.
It is proposed to use tr{R(h)}, the trace of the CRB,

as a Hgure of merit for the following reasons. Assume s
comes from a Hnite set � of codewords. By deHnition,
the optimal ML detector outputs the element ŝq ∈�
which minimises the norm of the error vector n in (2);
here, q denotes quantisation. In fact, referring to (4),
ŝq is the point in � closest to ŝ as measured by the
weighted distance

d(ŝq ; ŝ) = (ŝq − ŝ)HR−1(h)(ŝq − ŝ); (5)

where R−1(h) is the inverse of the CRB matrix. Quan-
tisation errors occur frequently if two or more code-
words in � are too close to each other. The deHnition
of d(·; ·) shows that, loosely speaking, the “larger”
R(h) is, the closer codewords become in �. Therefore,
R(h) measures the intrinsic ability of a linear precoder
to reduce the overall BER of the system; the “smaller”
R(h) is, the easier it should be to design codeword
constellations and decoding algorithms having low
BERs.
The matrix R(h) itself is not suitable as a Hgure of

merit because matrices are not well-ordered; given
two CRBs, it is not always clear which is better. The
following two observations suggest it is appropriate
to use tr{R(h)} as a Hgure of merit. In (4), it can be
shown ŝ = s + ñ where ñ ∼ N (0; R(h)). If the trans-
mitter does not know R(h), as is the case here, the
channel capacity [1] is a function of the SNR alone,
or (the reciprocal of) tr{R(h)} in this instance. (Note
though that channel capacity can only be achieved
if the number of elements of s goes to inHnity.)

The second observation is if two codewords are gen-
erated at random then tr{R(h)} gives a reasonable in-
dication of the distance, as measured by (5), between
them.

2.3. Optimal linear precoders

The channel dependent Hgure of merit tr{R(h)} in-
troduced in Section 2.2 can be used to form a channel
independent Hgure of merit f :Cn×p → R assigning
an overall Hgure of merit f(P) to a precoder P. Two
examples are the worst case MSE

f(P) = sup
h∈CL

‖h‖=1

tr{R(h)} (6)

and the average MSE

f(P) =
∫

tr{R(h)}p(h) dh (7)

for some probability density functionp(h) of h. (Since
tr{R(h)} scales as ‖h‖−2, the energy constraint ‖h‖=1
in (6) is the natural one to use. Here, the Euclidean
norm is used.)
The optimal precoder design problem is to Hnd a

precoder P minimising an appropriate overall Hgure
of merit; for this to be meaningful though, either a
peak or an average energy constraint must be imposed
on P. For reasons given in the remark below, the
peak energy constraint �max{PHP}6 1 is used, where
�max{PHP} denotes the largest eigenvalue of PHP.
Under this constraint, Theorem 1 shows it su6ces to
consider isometric precoders, meaning PHP= I where
I is the identity matrix.

Theorem 1. Let P1 ∈Cn×p be a linear precoder sat-
isfying the energy constraint �max{PH

1 P1}6 1. Let
R1(h) denote the CRB matrix associated with P1, as
de;ned in (3). There exists a precoder P ∈Cn×p sat-
isfying PHP = I and such that its associated CRB
matrix R satis;es tr{R(h)}6 tr{R1(h)} for all chan-
nel vectors h.

Proof. Use the thin SVD [4] to decompose P1 as
P1 = USVH where U is an n × p matrix and S is
diagonal. Then �max{PH

1 P1}6 1 implies all the diag-
onal elements of S lie between 0 and 1 inclusively.
Choose P=U . It is clear PHP=I by construction, and
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furthermore, it is straightforward to show

tr{R1(h)} = tr{(VSUHDCHHHHCDHUSVH)−1}
¿ tr{(UHDCHHHHCDHU )−1}
= tr{R(h)}: (8)

Remark. Since the linear precoder acts on codewords
rather than the raw message, in some ways it is more
natural for the precoder to preserve peak energy rather
than average energy. Nevertheless, the average energy
constraint tr{PPH}6p is also sensible. However, it
introduces secondary eJects by allowing the precoder
to weight the power distribution across sub-channels
(a form of water-Hlling) [10, Section 4], and in par-
ticular, it complicates the analysis and is not consid-
ered here. It is expected though that an average energy
constraint would not change qualitatively the results
in this paper [10, Section 4]. Moreover, it is remarked
that restricting attention to isometric precoders (pre-
serving peak energy) has been justiHed under infor-
mation theoretic criteria in [2,16].

Theorem 2 shows optimal linear precoders always
exist provided the Hgure of merit f(P) is continuous
in P.

Theorem 2. Let f :Cn×p → R be a continuous func-
tion and let

c = inf
P∈Cn×p

PHP=I

f(P): (9)

There exists a P satisfying PHP = I and such that
f(P) = c.

Proof. Let Pk ∈Cn×p be a sequence of matrices all
satisfying PH

k Pk = I and such that f(Pk) → c. Since
the set of all matrices satisfying PHP=I is compact (in
the usual topology), there exists a P satisfying PHP=I
and such that Pk′ → P for some subsequence k ′ of k.
By continuity of f, Pk′ → P implies f(Pk′) → f(P).
Thus, f(P) = c, as required.

Remark. If f(P) depends on P via tr{R(h)} only,
such as in (6) and (7), then f(PQ) = f(P) for
any unitary matrix Q. Minimising a function with
this property subject to the constraint PHP = I is

equivalent to minimising a cost function on a Grass-
mann manifold [12].

3. Robust performance criteria

If the channel can be modelled as a random process
then a natural Hgure of merit is the average MSE (7),
as considered in Part II [10]. However, if the channel
characteristics are unknown, an indication of the per-
formance of a linear precoder can be based on its best
and worst case performances, deHned to be

f1(P) = inf
h∈CL

‖h‖=1

tr{R(h)} (10)

and

f2(P) = sup
h∈CL

‖h‖=1

tr{R(h)}; (11)

respectively. Here, R(h) is the CRB matrix (3) associ-
ated with the precoder P. The constraint ‖h‖2=hHh=1
is an energy constraint; tr{R(h)} scales as ‖h‖−2.
According to Theorem 1, it su6ces to consider pre-

coders P ∈Cn×p for which PHP = I . In this case,
f1(P)6p and f2(P)¿p because R(h) is the iden-
tity matrix when h= [1 0 · · · 0]T. This motivates the
following deHnitions.
Note: The deHnitions are with respect to a given

channel length L.

De�nition 3 (Maximally robust). A maximally ro-
bust precoder P ∈Cn×p is one which satisHes both
PHP = I and f2(P) = p. That is, no other precoder
has better worst case performance.

De�nition 4 (Uniform). A uniform precoder P ∈
Cn×p is one which satisHes both PHP = I and
f1(P) = f2(P). That is, its best and worst case per-
formances are the same.

De�nition 5 (Strictly uniform). A strictly uniform
precoder P ∈Cn×p is one which satisHes both PHP=I
and R(h) = I for all channels h having unit norm,
where R(h) is deHned in (3).

These three deHnitions are successively stronger
interpretations of “robust”. DeHnition 3 is only
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concerned with the worst case performance whereas
DeHnition 4 requires the performance to be inde-
pendent of the channel. DeHnition 5 is the strongest
interpretation; a strictly uniform precoder eliminates
multipath eJects completely because the ML estima-
tor (4) will have the same covariance matrix regard-
less of the channel h. Somewhat surprisingly though,
Section 4 proves these deHnitions are equivalent.

4. The equivalence of robust performance criteria

This section proves the equivalence of DeHnitions
3–5. In doing so, it is proved the Hgure of merit
tr{R(h)}, deHned in (3), is convex as a function of
the power spectrum of the channel h.
Referring to (3), deHne

�(h) = DCHHHHCDH (12)

where H, C and D are deHned in Section 2.2. It is
straightforward to show�(h) is a diagonal matrix with
kth diagonal element, indexed from zero, equal to

�kk(h) = |Hk |2; Hk =
L−1∑
i=0

hie−—2�(ik=n) (13)

for k=0; : : : ; n−1. In OFDM systems,Hk is referred to
as the attenuation in the kth sub-channel, and indeed,
the diagonal elements of � correspond to uniformly
spaced samples of the power spectrum

�(!) =

∣∣∣∣∣
L−1∑
i=0

hie−—!i

∣∣∣∣∣
2

(14)

of the channel h = [h0; : : : ; hL−1]T. Note the Hgure of
merit tr{R(h)} can be written in terms of � as

R(h) = tr{(PH�(h)P)−1}: (15)

The reason for introducing � is the Hgure of merit
(15) turns out to be convex in �.

Theorem 6. De;ne the set

C = {�∈Rn×n: �= �(h); h∈CL; ‖h‖2 = 1};
(16)

where �(h) is de;ned in (13). Then C is a compact
convex set. Furthermore, the function R :C → R de-
;ned by R(�) = tr{(PH�P)−1}, is convex.

Proof (taken from Manton [9]): It is a direct conse-
quence of the spectral representation theorem that a
function �(!) is the power spectrum of an FIR chan-
nel of length at most L if and only if it can be written
as

�(!) = �0+
L−1∑
i=1

�i cos(!i) +  i sin(!i); �i;  i ∈R

(17)

and is everywhere non-negative (∀!; �(!)¿ 0). Fur-
thermore, it follows from Parseval’s theorem that the
channel h has unit norm if and only if its power
spectrum (14), when written in the form (17), has
�0 =1. Let h1 and h2 be any two channel vectors with
unit norm, and let �1 and �2 be the corresponding
power spectrums (14). For any given 06 �6 1, de-
Hne � = ��1 + (1− �)�2. Then, from (17) and Par-
seval’s theorem, it follows that there exists an h with
unit norm and such that its power spectrum is �. Since
�kk(h) = �(2�k=n), it is clear �(h) = ��(h1) + (1−
�)�(h2)∈C, proving C is convex. Clearly, C is com-
pact since the non-negativity of (17) implies C is a
closed and bounded set.
To prove the convexity of R(�), it must be proved

that

∀�∈ (0; 1); g(�)6 �g(1) + (1− �)g(0); (18)

where g(�) = tr{(PH(��1 + (1− �)�2)P)−1} for ar-
bitrary �1; �2 ∈C. If either g(0) or g(1) is inHnite,
(18) holds by convention [20, Section 2.1]. DeHne
Z=(PH(��1+(1−�)�2)P)−1, assuming for the mo-
ment that the inverse exists. Note that Z is positive
deHnite and Hermitian for 06 �6 1. Then

1
2
d2g(�)
d�2

= tr{ZPH(�1 − �2)PZPH(�1 − �2)PZ}
(19)

= tr{ZPH�1PZPH�1PZ

−2ZPH�1PZPH�2PZ

+ZPH�2PZPH�2PZ} (20)

= tr{((A− B)Z)H((A− B)Z)} (21)

¿ 0; (22)

where A = Z1=2PH�1P, B = Z1=2PH�2P and Z1=2 is
any matrix such that (Z1=2)HZ1=2 = Z . This proves
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not only that g(0) and g(1) being Hnite implies Z
is well-deHned for 06 �6 1, but that (18) always
holds.

In light of Theorem 6, the best and worst perfor-
mances of a precoder P, deHned in (10) and (11), can
be rewritten as

f1(P) = min
�∈C

tr{(PH�P)−1};

f2(P) = max
�∈C

tr{(PH�P)−1}: (23)

Theorem 7. Referring to the de;nitions in Section 3,
the following three statements are equivalent:

(1) The precoder P is maximally robust.
(2) The precoder P is uniform.
(3) The precoder P is strictly uniform.

Proof. If L = 1 the theorem holds trivially. Assume
L¿ 2. It follows from (17) that � = I is an interior
point of the convex set C. Thus, the only way for the
convex function tr{(PH�P)−1} to achieve its maxi-
mum at �= I is if it is everywhere constant, proving a
maximally robust precoder is uniform. Let P be a uni-
form precoder and consider the function g(�) deHned
just after (18), with �1 chosen arbitrarily and �2 = I .

Then, since P is uniform, d2g
d�2

∣∣∣
�=0

=0. Thus, (21) im-

plies (A−B)Z=0, or equivalently, PH�1P=PHP=I ,
proving P is strictly uniform. If P is strictly uniform it
is clearly maximally robust, completing the proof.

5. Maximally robust precoders

This section derives necessary and su6cient condi-
tions for a precoder to be maximally robust. Since The-
orem 7 implies these conditions also apply to uniform
and strictly uniform precoders, the results below are
stated for strictly uniform precoders for convenience.
The following lemma provides a simple test for

maximal robustness, or equivalently, for strict unifor-
mity.

Lemma 8. A linear precoder P ∈Cn×p satisfying
PHP=I is strictly uniform over channels up to length
L if and only if PH diag{ci}P= PH diag{si}P=0 for

i = 1; : : : ; L − 1, where diag converts a vector into a
diagonal matrix and

ci = [cos(0) cos(2�i=n) cos(2�2i=n) · · ·
cos(2�(n− 1)i=n)]T; (24)

si = [sin(0) sin(2�i=n) sin(2�2i=n)

sin(2�(n− 1)i=n)]T: (25)

Proof. By deHnition, P is strictly uniform if and only
if PH�P = I for all �∈C, where C is deHned in
(16). The lemma follows from the fact that, as can be
seen from (17) and Parseval’s theorem in the proof of
Theorem 6, the a6ne hull of C is the set

I + span{diag{c1}; : : : ; diag{cL−1}; diag{s1}; : : : ;
diag{sL−1}}: (26)

The next lemma requires the vector

H = [H0; : : : ;Hn−1]T ∈Cn (27)

where H0; : : : ;Hn−1 are deHned in (13).

Lemma 9. If the precoder P= [u1; : : : ; up]∈Cn×p is
strictly uniform then its columns satisfy

ui ⊥ uj; Vi ⊥ Vj; A|ui|2 = 0 (28)

for i; j=1; : : : ; p with i 
= j. Here, ⊥ denotes orthog-
onality (x ⊥ y i= xHy = 0), |ui|2 denotes the vector
obtained from ui by taking the square of the magni-
tude of each element,

Vi = {y∈Cn: y= diag{H}ui ; h∈CL} (29)

where H is de;ned in (27) and

A= [ c1 · · · cL−1 s1 · · · sL−1 ]T; (30)

where ci and si are de;ned in (24) and (25). Further-
more, the sets Vi are vector spaces.

Proof. If P is strictly uniform then, by deHnition,
PH�P = PHP = I for all �∈C, where C is de-
Hned in (16). Thus ui ⊥ uj for i 
= j. Furthermore,
uHi �ui = 1 and uHj �ui = 0 for all �∈C and i 
= j.
From (13), � = diag{H}Hdiag{H}. The condition
uHj diag{H}Hdiag{H}ui = 0 for all h with unit norm
is su6cient to imply that Vi ⊥ Vj, even though there
is no norm constraint in (29). That the Vi are vector
spaces follows from H being linear in h; see (13).
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Since PHP=I , the constraint uHi �ui=1 is equivalent
to uHi (�−I)ui=0, and furthermore, this can be written
as

∑n
k=1 �k |(ui)k |2 = 0, where �k is the kth diagonal

element of (�− I) and (ui)k is the kth element of ui.
This, together with the fact that the a6ne hull of C is
the set (26), proves that uHi (�− I)ui=0 for all �∈C
implies A|ui|2 = 0.

The usefulness of Lemma 9 is it makes precise the
following three intuitive requirements for a precoder
to be strictly uniform. Note Hrst that since the sym-
bols s are transmitted as Ps, the ith column ui dictates
how the ith symbol is sent. The total received energy
must be independent of the shape of the channel spec-
trum; for the ith symbol, this requires A|ui|2 = 0. The
transmitted symbols must start oJ orthogonal; this re-
quires ui ⊥ uj for i 
= j. Lastly, the received symbols
must remain orthogonal regardless of the channel; this
requires Vi ⊥ Vj for i 
= j.

Theorem 10. A necessary condition for the linear
precoder P ∈Cn×p to be either maximally robust or
strictly uniform over channels up to length L is for
n¿pL.

Proof. DeHne Vi as in (29). It will be proved that if P
is strictly uniform then dim Vi = L. Since the Vi ⊂ Cn

for i = 1; : : : ; p are mutually orthogonal (see Lemma
9), their union will thus span pL dimensions. This is
only possible if n¿pL, proving the theorem.

First, it is proved that ui, the ith column of P,
contains at least L non-zero elements. Assume to the
contrary that it contains between 1 and L−1 non-zero
elements. (It cannot be the zero vector because PHP=
I .) Since A|ui|2 = 0 in Lemma 9, this implies there
exist L − 1 columns of A which are linearly depen-
dent. Assume these columns, indexed from zero, are
numbered j1; : : : ; jL−1, and deHne �k = e—2�jk =n. Then,
by expressing the elements of A as the sums of expo-
nentials, it can be shown that the dependence of L−1
columns of A implies the square Vandermonde matrix
generated by �1; : : : ; �L−1 is rank deHcient. However,
since the �k are distinct, this is not possible. Thus, ui
must have at least L non-zero elements.
Finally, it is proved that ui having at least L non-zero

elements implies dimVi = L. Let D∈Cn×L be the
truncated discrete Fourier transform matrix, so that
H =Dh; see (13). Then Vi in (29) consists of all vec-

tors of the form diag{ui}Dh. It has dimension L unless
there exists a non-zero h such that diag{ui}Dh = 0.
Assume such an h exists. Then, since ui has at least L
non-zero elements, there exists an L×L sub-matrix D̃
ofD such that D̃h=0. However, D̃ is a square Vander-
monde matrix with distinct generators and thus D̃h=0
implies h= 0, a contradiction.

Theorem 11 exhibits a class of maximally robust
precoders introducing the least amount of redundancy.
This class is discussed further in Section 6.

Theorem 11. Precoders of the form P = L−1=2(1L ⊗
Ip), where 1L is the column vector of L ones, Ip is the
p × p identity matrix and ⊗ is Kronecker’s prod-
uct, are strictly uniform over channels up to length L.
Moreover, they introduce the least amount of redun-
dancy necessary to achieve either maximal robust-
ness or strict uniformity.

Proof. It is straightforward to verify the conditions
in Lemma 8 are satisHed. Furthermore, the size of P
satisHes the lower bound in Theorem 10.

6. Minimally redundant maximally robust
precoders

In [8] it was proved that sending L equally spaced
pilot tones allows the receiver to identify the channel
with the same accuracy regardless of the shape of the
channel spectrum. This is because the total received
energy over L equally spaced sub-channels, given by

L−1∑
j=0

|Hk+jp|2 = L‖h‖2; k = 0; : : : ; p− 1; (31)

depends only on the magnitude ‖h‖2 of the channel.
(In (31), H is as deHned in (27) with n= pL.)
It is apparent from (31) that if the same symbol

is sent over L equally spaced sub-channels then, be-
cause the total received energy is independent of the
shape of the channel spectrum, the receiver is able to
estimate the symbol in AWGN with the same accu-
racy regardless of the shape of the channel spectrum.
The precoder P= L−1=2(1L ⊗ Ip) in Theorem 11 does
just this; it transmits each symbol on L equally spaced
sub-channels.
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As well as having a simple frequency domain struc-
ture, precoders of the form P = L−1=2(1L ⊗ Ip) have
a simple time domain structure. It can be shown that
DHPs, the inverse discrete Fourier transform of Ps
(see Section 2.1), has L − 1 consecutive zeros be-
tween each non-zero element. These zeros eliminate
inter-symbol interference.
Unfortunately then, maximally redundant precoders

are unattractive from a practical point of view. From
a theoretical perspective though, Theorems 7 and 10
establish the important result that any precoder intro-
ducing less than (L − 1)p redundant symbols must
trade oJ worst case performance for this decrease in
redundancy.

7. Summary

This paper presented the Hrst half of a theoretical
study of the linear precoder design problem. Section
2 deHned an intrinsic Hgure of merit for a linear pre-
coder and introduced a newway of formulating mathe-
matically the linear precoder design problem. Starting
from Section 3, attention was restricted to robust lin-
ear precoders, where three successively stronger def-
initions of robust precoders were given. Somewhat
surprisingly, it was shown in Section 4 that these def-
initions are equivalent. Robust precoders so deHned
were referred to as either maximally robust precoders
or strictly uniform precoders, the former name re-
ferring to their best worst case performance and the
latter to their ability to eliminate multipath eJects
completely. Necessary and su6cient conditions for a
precoder to be maximally robust were given in Section
5 along with explicit expressions for a class of max-
imally robust precoders introducing the least amount
of redundancy. Section 6 explained how maximally
robust precoders achieve their robustness. Part II [10]
continues this study and makes concluding remarks.
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