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ABSTRACT

This paper investigates the number of solutions of a simulta-
neous set of polynomial equations. The set of constant terms of
these equations is allowed to vary and the behaviour of the solu-
tions for “almost all” sets of constant terms is described. Precise
conditions for the existence of each of an infinite number of so-
lutions, a finite number of solutions and a unique solution are de-
rived. The results extend to systems of rational functions and cope
with nuisance variables. Other contributions include exhibiting the
equivalence of solutions of polynomial equations to extensions of
ring homomorphisms in commutative algebra.

1. INTRODUCTION

Determining when a polynomial map is invertible is an important
yet difficult problem encountered in control theory [7]. The tradi-
tional approach to studying polynomial maps is by using algebraic
geometry. The main contribution of this paper is to present an al-
ternative, and simpler, approach based on commutative algebra.

This paper studies the archetypal system consisting of� com-
plex polynomial equations ��� � � � � �� in the � complex variables
��� � � � � ��.
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(1)

The constants ��� � � � � �� � � are referred to as the RHS (right-
hand side) of (1). A physical interpretation of (1) is that the under-
lying state ��� � � � � �� cannot be observed directly but the results
��� � � � � �� of � measurements ��� � � � � �� can be. By choosing
��� � � � � �� so that (1) has a unique inverse, the state ��� � � � � ��
can be determined from the observations ��� � � � � ��.

This paper studies the global properties of (1) as the RHS
varies over the space �

� . Although symbolic algorithms exist
for solving (1) for fixed values of the RHS [2], the ability of these
algorithms to deduce global properties is limited. The standard ap-
proach to studying global properties is to use algebraic geometry,
and indeed, Theorem 1 in Section 2.2 can be derived using alge-
braic geometry (although a statement of it is not readily found in
the literature). Although Theorem 1 itself is not new, the novel
contributions are the simple method of proof based on studying
the number of extensions of a certain ring homomorphism, and
furthermore, the fact that the approach trivially extends to systems
of rational functions as well as to systems with nuisance variables.

This work was supported by the Australian Research Council.

2. NUMBER OF SOLUTIONS

This section converts the problem of determining the number of
solutions of a system of polynomial equations to the problem of
determining the number of extensions of a ring homomorphism.
This transformed problem is solved by commutative algebra in
Section 2.2. The results are extended to cope with nuisance vari-
ables in Section 2.3 and rational functions in Section 2.4. For an
introduction to commutative algebra see [1, 6, 9]. All rings are
commutative with an identity element.

2.1. Transformation of Problem

Let � � � ��� � � � � � ��� denote the polynomial ring in the indeter-
minates ��� � � � � ��. Let �� � � � � be a � - homomorphism,
that is, �� is a function satisfying ����� � ��� � ������ � ������,�������� � ������ ������ and ����� � � for � � � . Then �� corre-
sponds to a solution of (1) if it satisfies the constraints ������ � ��,
� � �� � � � ��, the solution being �� takes the value ������, 	 �

�� � � � � �. The constraints ������ � �� partially specify �� in that
if � � 
 � � , where 
 � � ��� � � � � � ��� � �, is the unique
� - homomorphism satisfying ����� � ��, � � �� � � � �� then ��
satisfies ������ � �� if and only if �� is a homomorphic extension
of � (meaning the restriction of �� to 
 is �). These ideas conduce
to the observation:

There is a one-to-one correspondence between extensions of
the � - homomorphism � � 
� � to the ring � and solutions

of (1).

Remark: If � does not exist for certain �� then (1) has no solu-
tions for these ��. The converse is not true. An extension �� of �
might not exist.

2.1.1. Connection To Elimination Theory

This section is an aside. It illustrates the difference between the
algebraic approach adopted herein and the traditional approach
via elimination theory. Let � � ��� � ��� � � � � �� � ��� be the
elimination ideal of elimination theory [2, Sec. 3] and let 
 �
� ��� � � � � � ���. Both � and 
 are collections of polynomial con-
sequences of (1). However, � is larger in that every polynomial
consequence in 
 is also in � (if � � 
 then � � ���� � �)
whereas the converse is not true. Unlike 
, the ideal � contains
consequences specific to a particular value of the �� (for example,



the value of � � ��� where � is an arbitrary polynomial is in gen-
eral unknown unless �� � �). The ring 
 is fixed whereas the
ideal � changes as the �� do. This suggests 
 is more suited to the
study of global properties of (1) than � is.

2.2. Main Results

The results presented here are for complex polynomials. Proofs
and generalisations appear in Section 4.

The following definitions are used throughout. Define 
 �
� ��� � � � � � ��� and � � � ��� � � � � � ��� where ��� � � � � �� � �.
A prime denotes the field of fractions of an integral domain, thus

� � � ��� � � � � � ��� and �� � � ��� � � � � � ���.

For a given �� � � , �� � 
 � � denotes the unique (pro-
vided it exists) � - homomorphism satisfying ������ � �� for � �
�� � � � �� (see Section 2.1). Note that �� exists if ���� � � � � ���
lies in the image of the polynomial map (1).

Theorem 1 Let 
 � ��� � 
�� be the dimension of �� as a vector
space over 
�. If 
 � � then for any point ���� � � � � ��� in the
image of (1), there are an infinite number of solutions of (1).

If 
 is finite then there exists an � � 
, � �� �, such that if
���� � � � � ��� is in the image of (1) and is such that ����� �� �
then (1) has exactly 
 solutions.

If 
 � � (which implies, but is not implied by 
 � �) then
for any point ���� � � � � ��� in the image of (1), there is exactly one
solution of (1).

Remark 1: For fixed � , ����� is a polynomial in ��� � � � � ��.
Remark 2: It is clear that if 
 � � then (1) has a polynomial
inverse, and if 
� � �� then (1) has a rational inverse (a rational
function is a ratio of two polynomial functions).

The truth of Theorem 1 when 
 is finite follows from Theo-
rem 7 of Section 4 because � is finitely generated over 
 and if
��� � 
�� is finite then � is algebraic over 
 (Lemma 24). The

 �� case follows from Theorem 9.

2.3. Extension of Results — Nuisance Variables

The above results extend to when only certain functions of the ��
in (1) are relevant. The ease with which this is done exemplifies the
advantage over an algebraic geometric approach. Let ��� � � � � ��
be complex polynomial functions of ��� � � � � ��.

�� � ������ ��� � � � � ���
...

...
...

�� � ������ ��� � � � � ���

(2)

Define � � � ��� � � � � � ��� ��� � � � � ���. Given ��� � � � � �� in (1),
the number of values ��� � � � � �� can take in (2) is the number of
extensions of � from 
 to � (Section 2.1). All results in Sec-
tion 2.2 apply with � replacing �.
Example: The system (1) can be used to model semi-blind iden-
tification [5]; let �� to �� represent the unknown input, let ����
to �� represent the unknown channel parameters, and let �� to ��
represent the output. If (1) has a unique solution then both the
channel and the input are identifiable. The input remains iden-
tifiable even though the channel does not (that is, equalisation is
always possible) if every solution of (1) assigns the same value to
��� � � � � ��. This situation occurs (almost always) when 
� � � �

where 
 � � ��� � � � � � ��� and � � � ��� � � � � � ��� ��� � � � � ���.

2.4. Extension of Results — Systems of Rational Functions

The above results extend to the �� in (1) being rational functions.
Define 
 � � ��� � � � � � ��� and � � 
���� � � � � ��� where both
are subrings of the field � ���� � � � � ���. Given ��� � � � � ��, the
number of solutions of the rational system (1) is the number of ex-
tensions of � from 
 to � (Section 2.1). All results in Section 2.2
apply with � replacing �.
Remark: The inverse of a system of rational functions with a
unique solution almost everywhere is again a system of rational
functions (see Remark 2 after Theorem 1).

3. APPLICATION ORIENTATED RESULTS

This section gives a necessary and sufficient condition for ��� � 
��
to be finite and several sufficient conditions for ��� � 
�� � �. The
notation of Section 2.2 is used; in particular 
 � � ��� � � � � � ���
and � � � ��� � � � � � ���. Several proofs require concepts from
field theory which can be found in [6, Ch. 12].

Given � polynomial or rational functions ��� � � � � �� � ��,
the Jacobian matrix is the �	 � matrix of partial derivatives:

� �

�
���

���
���

� � � ���
���

...
...

���
���

� � � ���
���

�
��� (3)

Proposition 2 If ��� � � � � �� � �� then 	
�� 
�� � 
	� ����
�

�

(the transcendence degree of 
� over � ).

The proof of Prop. 2 requires Lemma 3 as well as standard
facts on “derivations” [3, 4, 9].

Lemma 3 Let � be a finite dimensional vector space and � � its
dual. If � � ��
� 
��� � � � � ��� and � � � ��
� 
��� � � � � ���
then ���� � 	
�� 
�� where � is the � 	 � matrix with
elements ��� � ������.

Proof of Prop. 2. Let�	�
� denote the vector space of deriva-
tions on �� over � . The partial derivatives �

���
� � � � � �

���
form a

basis for�	�
� . Any derivation on
� can be extended to a deriva-

tion on ��, hence ���
� � ��
�
�

�
���

� � � � � �
���

�
. Define the

linear functionals ��� � ���
� � � by ������ � ����� for any
� � ���
� . These functionals generate the dual space ����
� of
���
� , that is, ����
� � ��
� 
���� � � � � ����. From Lemma 3,
������
� � 	
�� 
�� where � � � . It is a standard result
that ������
� � 
	� ����

�

�. �

Proposition 4 In Theorem 1, ��� � 
�� is finite if and only if � has
full column rank.

PROOF. Because � � 
� � ��, 
	� ������ �
� � 
	� ����� �

��

	� ����

�

� � ��
	� ����

�

� � ��	
�� 
�� by Prop. 2. Now,

��� � 
�� is finite if and only if 
	� ������ �
� � �, that is, if and

only if 	
�� 
�� � �. �

Remark: Evaluating (3) at � � �
� gives a matrix of numbers

denoted by ��, and moreover, � has full column rank if and only
if there exists a � such that �� has full column rank.

If ��� � � � � �� � � are algebraically independent over � then
adding almost any other equation ���� will usually ensure (1) has



a unique solution (Prop. 5). At the very worst, provided ���� is
not a rational function of ��� � � � � ��, the number of solutions will
at least halve (Prop. 6).

Proposition 5 Assume that ��� � 
�� is finite and that there exist
��� � � � � �� � � such that � � 
���� � � � � ���. Define � � �����
� � �� ���� where ��� � � � � �� � 
�. Then there exists a non-zero
polynomial � with coefficients in �� such that ����� � � � � ��� �� �
implies �� � 
�� �� .

PROOF. If �� � 
��� � then � is called a primitive element.
Because ��� � 
�� is finite, �� is an algebraic extension of 
�, thus

� � ������ � � � � ��� (Lemma 23). Because 
� has characteris-
tic zero, the field extension 
� � �� is separable. Kronecker’s
“method of indeterminates” can be used to show the existence of
an � such that � � ���� � � � � � ���� is a primitive element if
����� � � � � ��� �� �. (See proof of “primitive element theorem”
in [9, Ch. II, Theorem 19].) �

Remark: If the coefficients �� are chosen to be complex then so
too can the polynomial �.

Proposition 6 If 
 � ��� � 
�� is finite and 
 � � then for any
� � � �
�, ��� � 
�� ��� � 


�
.

PROOF. 
� � 
�� �� � ��, thus 
 � �
�� �� � 
����� � 
�� ���
(Lemma 27). Because � �� 
�, �
�� �� � 
�� 
 �. �

4. HOMOMORPHIC EXTENSIONS

This section derives three general theorems on homomorphic ex-
tensions.
Notation: Uppercase � and � denote indeterminates while low-
ercase letters denote elements. If � is a ring, ���� is the polyno-
mial ring in the indeterminate � while if � is a ring containing �
and � � � then ���� is the ring generated by � and �. If � is an
integral domain then �� denotes its field of fractions. If � � �
are integral domains then ��� � ��� denotes the degree of the field
extension �� over ��. All rings considered are commutative with
an identity element.

4.1. Statement of Theorems

Theorem 7 is proved in Section 4.3.

Theorem 7 Let � � � be two integral domains such that � is
finitely generated and algebraic over � and � is infinite. There
exists an � � �, � �� �, such that, if � � � � � is a ring
homomorphism into the algebraically closed field � and if ���� ��
�, then there are exactly ��� � ��� extensions of � to �.

Theorem 8 and Theorem 9 are proved in Section 4.4. The two
theorems complement each other.

Theorem 8 Let � � � be integral domains with � finitely gen-
erated over � and ��� � ��� ��. There exists an � � �, � �� �,
such that if � � �� � is a homomorphism into the algebraically
closed field � and if ���� �� �, then there are an infinite number
of extensions of � to �.

Theorem 9 Let � � � be integral domains with � finitely gen-
erated over � and ��� � ��� ��. Let � � �� � be a homomor-
phism into the algebraically closed field �. If there exists at least
one extension of � to � then there exist an infinite number.

4.2. Preliminaries

Define  � ���� � ���� to be the A - homomorphism satis-
fying  ��� � �. It is well-defined, unique and onto. Its kernel
��	 � 
� � ���� �  ��� � �� is the collection of polynomials
� � ���� satisfying ���� � �. The element � is transcendental
over � if  is one-to-one. Otherwise � is algebraic over �.

Lemma 10 extends the homomorphism � � � � ! to a ho-
momorphism �� � ����� !. It requires the homomorphism ��, the
extension of � to the polynomial ring, defined by:

�� � ����� !���� ����� � �� ����� � ����� � � � (4)

For example, ��������������� � ������
��������������.

Lemma 10 Let ��! be rings and � � �� ! a homomorphism.
An extension �� of � to ���� satisfying ����� � � exists if and only if
� � ! is a root of every polynomial in the set �����	 �. If it exists,
it is unique.

PROOF. Let � � ��	 and �� � �����. Write � as � �	
�

��� ���
� (�� � �). Because � � ��	 , ���� �

	
�

��� ���
� �

�. Applying �� to both sides shows
	

�

��� ������
� � � thus � is a

root of �� . To prove sufficiency, let " � ���� and � � ���� such
that " � ����. Define ���"� to be



�����

�
���. This is unambiguous:

If �� � ���� is such that " � ����� then � � �� � ��	 and
by hypothesis on �,



���� � ���

�
��� � � showing



�����

�
��� �


������
�
���. To prove uniqueness, let �� and ��� be two homomor-

phisms such that ����� � ������. Write any element " � ���� as
" �

	
�

��� ���
�, �� � �. Then ���"� � 	

�

��� �����
������ � ����"�.

�

4.3. Finite Number of Extensions

�����	 � must have a simple structure for Lemma 10 to be practi-
cal. It is well-known that ��	 is a principal ideal if � is a field.
Lemma 12 generalises this to when ���� is an integral domain.
First some definitions.

Definition 11 If � � � are integral domains and � � � is al-
gebraic over � then the minimal polynomial [6] of � over �� is
the monic polynomial �� � ����� of smallest degree such that
����� � �. It is unique and irreducible.

Define  � � ����� � ����� to be the �� - homomorphism
satisfying  ���� � �. Then ��	 � � ����. If � is an integral
domain and � � � � 
�� (� � � but � �� �) then �� is the
integral domain

�� �
��
"
� � � �� " �

�
�� �� ��� � � �


�
(5)

Define  � � �� ��� � �� ��� to be the �� - homomorphism sat-
isfying  ���� � �.

Lemma 12 Let � � ���� where � and � are integral domains
and � is algebraic over �. Let �� be the minimal polynomial of
� over ��. The degree of �� is ��� � ���. There exists an � � �,
� �� �, such that ��	 � � ����.



PROOF. Let � be the degree of ��. Then � � ������ � ��� ([8,
Prop. 4.3]). Because �� � ����� (Lemma 23), � � ��� � ���
too. Write �� as �� � �� �

����

����
���� � � � � � ��

��
, �� � �,

"� � � � 
��. Define � � "�"� � � � "��� � � � 
��. Then
�� � ��	 � . Let � � ��	 � . There exist unique polynomials
#� $ � �� ��� such that � � #�� � $ and either $ � � or the
degree of $ is less than � (Lemma 26). Because ���� � �, $��� �
���� � #�������� � �. Therefore $ � ��	 � but unless $ � �
this contradicts the minimality of �� (Def. 11). Thus � � #��

which proves ��	 � � ����. �

It is sufficient to consider �� rather than �.

Lemma 13 Let � � � be integral domains and � � � � % a
homomorphism into the field %. If � � � is such that ���� �� �
then there is a unique extension �� of � to �� (5). There is a one-
to-one and onto mapping between extensions of � to � and �� to
�� .

PROOF. Assume ���� �� �. For � � 
 and � a nonnegative

integer, define ��
�

�
��

�
� ����

�����
. It is the unique extension of �

to �� . If ��� � �� � % is an extension of �� then the restriction�� of ��� to � is an extension of � (if � � � then ����� � ������ �
����� � ����). Similarly, any extension �� � � � � uniquely
extends to ��� on �� . The homomorphism ��� is an extension of
�� (if �

�
� �� then � � � and " � 
�� �� ��� � � � � � � thus

��� 
�� � �
�����
�����

� ����
����

� ��


�
�

�
). Both mappings are thus one-

to-one and onto. �

The definition of �� (4) uniquely extends to�� ��� if ���� �� �:

��� � �� ���� %���� ������ � �� ��� ��� � ������ � � ��

(6)

where �� is the unique extension of � to �� (Lemma 13).
Lemma 12 and Lemma 10 together suggest that the roots of

�����
�� determine distinct extensions. Multiple roots lead to the

same extension. Lemma 29 takes care of this.

Lemma 14 Let � � ���� where � and � are integral domains,
� is algebraic over � and � is infinite. There exists an � � �,
� �� �, such that if � � � � � is a ring homomorphism into the
algebraically closed field � and if ���� �� �, then there are exactly
��� � ��� extensions of � to �.

PROOF. Let �� be the minimal polynomial of � over ��. Its
degree is � � ��� � ��� (Lemma 12). Choose � � � � 
�� so
that ��	 � � ���� (Lemma 12). Later � � � will be chosen
so that ���� �� � implies ���� �� �. Thus there exists a unique
extension �� � �� � � of � (Lemma 13). Because �� � �� ���
(Lemma 21), it suffices to show there are � extensions of �� to ��

(Lemma 13). Let � � �� be the resultant of �� and its formal
derivative (Lemma 29). Because �� has characteristic zero, ��

is separable over �� ([8, Prop. 8.6]), thus � �� � (Lemma 29).
Write � � ��

��
where �� � � and �� � 
�� �� ��� � � � �. Choose

� � ��� �� �. Then ���� �� � ensures ��� ��
�� has exactly �

distinct roots in � (Lemma 29). The number of extensions of ��
to �� is the number of simultaneous roots of every polynomial
in the set ������	 � � � ������

��� (Lemma 10). This equals �
(see below), completing the proof. Let �� � ������

���. Then �� �
������ for some � � ����, so � � #�� for some # � �� ���.
Because �� � ����#�

�� � ����#������
��, if � is a root of ������� it

is also a root of ��. This shows the number of simultaneous roots
of ��� ������ equals �, the number of roots of ��� ����. �

Theorem 7 extends Lemma 14 by induction.

Proof of Theorem 7. Write � � ����� � � � � ���. Define
the integral domains !� � � and !� � ����� � � � � ��� for � �
�� � � � ��. Then !� � !������� with �� algebraic over !���
and !�� � !�������� (Lemma 23). Assume by induction on &
that there exists an �� � � such that ����� �� � implies there
are exactly �� � �!�� � !��� extensions of � to !�. This is
true for & � � (Lemma 14). Let these extensions be �

���
� for

� � �� � � � � �� . For each �, there exists a �� � !� such that
�
���
� can be extended to !��� in �!���� � !��� ways if ����� ���� ��

� (Lemma 14). If ����� ���� � � then �
���
� �"���� � � for any

"� � !�. There exists a "� such that "��� � � (Lemma 25);
let �� � "���. Thus ����� �� � implies ����� ���� �� �. Choose
���� � ������ � � � ��� . Then ������� �� � implies each of the
�� extensions to !� can be extended in �!���� � !��� ways to
!���. This is a total of ���� � ���!

�

��� � !��� ways. By the de-
grees theorem (Lemma 27), ���� � �!���� � !

�

��. This completes
the induction step. �

4.4. Infinite Number of Extensions

The following lemma is [1, Prop. 5.23].

Lemma 15 Let� � � be integral domains with � finitely gener-
ated over �. There exists an � � �, � �� �, such that if � � �� �
is a homomorphism into the algebraically closed field � and if
���� �� �, then there exists an extension �� � � � � of �.

Proof of Theorem 8. Choose an � � � transcendental over
� (Lemma 24). There exists a non-zero �� � ���� such that any
homomorphism �� � ���� � � satisfying ������ �� � extends to�� � � � � (Lemma 15). Thus the proof is complete once it is
shown there are an infinite number of extensions �� of � satisfying
������ �� �. Write �� � ���

� � � � � � �� where �� � �. Then
������ � ����������

�� � � �� �����. This is a non-zero polyno-
mial if ����� �� �; choose � � ��. Because � is an infinite field,
there are an infinite number of values ����� can be assigned such
that ������ �� �. Each such assignment determines an extension
�� of � (Lemma 10). �

The rest of this section builds up to a proof of Theorem 9. The
following lemma is fundamental [1, 6].

Lemma 16 (Noether’s Normalisation Lemma) Let & be a field
and � �� � a finitely generated &-algebra. Then there exist ele-
ments ��� � � � � �� � � which are algebraically independent over
& and such that � is integral over &���� � � � � ���.

Lemma 17 Let � � � be two rings such that � is integral over
�. Let � � � � � be a homomorphism into the algebraically
closed field �. Then � extends to a homomorphism �� � � � �.

SKETCH OF PROOF. This is [1, Exercise 5.2]. Let � be the
kernel of �; then � is a prime ideal of �. There exists a prime
ideal # of � such that # � � � � ([1, Th. 5.10]). It follows
that �'# is integral over �'� ([1, Prop. 5.6]). Let % denote the
field of fractions of �'#. It follows from [1, Th. 5.21] and the



preceding discussion that � can be extended to a valuation ring of
% containing �'�. Such a valuation ring is integrally closed and
so must contain any subring of % which is integral over �. Thus,
in particular, it contains �'# and so � can be extended to �'#. �

Lemma 18 Let & be a field and � �� � a finitely generated &-
algebra. Let � � & � � be a homomorphism into the algebraic
closure � of &. Then there exists an extension �� � � � � of �.
If there exists an � � � transcendental over & then there are an
infinite number of such extensions.

PROOF. By Lemma 16, � is integral over &���� � � � � ���. If
there exists an � � � transcendental over & then $ 
 �. Any
homomorphism on &���� � � � � ��� extends to � (Lemma 17). All
that remains is to show there are an infinite number of extensions
�� of � to &���� � � � � ��� if $ 
 �. Any element � � &���� � � � � ���
is uniquely expressible as a polynomial in the ��. Thus for any
��� � � � � �� � �, an extension �� of � to &���� � � � � ��� is well-
defined by the conditions ������ � �� for � � �� � � � � $. Since � is
an infinite field, there are an infinite number of distinct extensions.

�

Let � be a prime ideal. Define the local ring (a ring having a
unique maximal ideal) �� by

�� �
��
"
� � � �� " � �� �

�
(7)

Lemma 19 Let � � �� % be a homomorphism on the ring � to
the field %. Let � � ��	 � and �� the localisation of � at � (7).
Then there is a unique extension �� � �� � % of �. Furthermore
� � ��	 �� is the unique maximal ideal of the local ring ��.

PROOF. Because any subring of % is an integral domain, �
is a prime ideal, thus �� is well-defined. It can be shown that
��


�
�

�
� ����

����
for any � � �, " � � � � defines a homomor-

phism on ��. Clearly it is unique. It is also clear that ��	 �� ��
�
�
� � � �� " � �� �



. This is the form of the unique maximal

ideal of ��. �

In conflicting yet concise notation, define �� by

�� �
��
"
� � � �� " � �� �

�
(8)

Theorem 9 extends � to � by first extending it to ��, then to ��,
then restricting it to �.

Lemma 20 Let� � � be rings and % a field. Let �� � � � % be
a homomorphism and � � �� % its restriction. Define � � ��	 �

and �� by (8). Then there is a unique extension ��� � �� � % of��. Furthermore, ��� is an extension of �� in Lemma 19.

PROOF. Because � is prime, �� � is a multiplicatively closed

set and �� is well-defined. It can be shown that ��� 
�� � � �����
�����

for

any � � �, " � �� � defines a homomorphism on ��. Clearly
it is unique. Let �

�
� ��, that is, � � �, " � � � �. Then��� 
�� � � ����

����
� ��



�
�

�
showing ��� is an extension of ��. �

Proof of Theorem 9. Define � � ��	 � and let �� be the unique
extension of � to �� and � its kernel (Lemma 19). Define ��

by (8) so that �� � ��. The ideal ��� � �� equals either
� or ��. Assume ��� � �� � ��. Then no ideal � of ��

exists such that � ��� �� . This contradicts the existence of ���
(Lemma 20) since ��	 ��� � �� � � . Therefore ��� � �� �
� , allowing ��'� to be naturally imbedded in ��'��� . This
makes ��'��� a &-algebra where & � ��'� . Let � � � be
transcendental over � (Lemma 24) and thus over �� too. Because
������ ��� �� , the following diagram is commutative.

�� ����� ����� ����� ����� ��� ���
��'� ����� �����'������ ����� ��'���

(9)

Let �� ��� denote the image of � in ��'��� . It is transcen-
dental over & for otherwise �������� satisfies a monic polyno-
mial ����������� � ����� ��������������������� �
� � � � ��� � ������� where �� � ��. This means that �� �
�����

��� � � � � � �� � ������ . However ������ contains
no monic polynomials (Lemma 28). Let �� � ��'� � � be the
homomorphism induced by ��. From Lemma 18 there exist an in-
finite number of extensions ��� � ��'��� � � of ��. Each of
these extensions defines a distinct homomorphism ��� � �� � �

given by ����"� � ����" � ����. Each ��� contracts to a distinct�� � � � � (Lemma 20). �

4.5. Miscellaneous Lemmas

This section is a collection of lemmas required above. Straightfor-
ward proofs are omitted.

Lemma 21 If � � ���� are integral domains and � � �� 
��
then �� � �� ���.

Lemma 22 Let � � � be integral domains. Then � � � is
algebraic over � if and only if � is algebraic over ��.

Lemma 23 If � � ����� � � � � ��� are integral domains and the
�� are algebraic over � then �� � ������ � � � � ���.

Lemma 24 Let � � � be integral domains and � finitely gener-
ated over �. Then � is algebraic over � if and only if ��� � ��� is
finite.

Lemma 25 Let � � � be integral domains with � algebraic
over �. For any � � � there exists a " � � such that "� � �.

Lemma 26 Let 
 be an integral domain. Let � � 
��� be a
monic polynomial of degree �. Then for any polynomial � � 
���
there exist unique polynomials #� $ � 
��� such that � � #�� $
and either $ � � or $ has degree less than �.

Lemma 27 (Degrees Theorem) Let ( � % � ) be extensions
of fields. Then �) � ( � is finite if and only if �) � %� and �% � ( �
are finite; furthermore, when this is the case, �) � ( � � �) �
%��% � ( �.

Lemma 28 Let � � � be rings with � � ���� and � transcen-
dental over �. Let � be a proper ideal in �. Then �� � ����
where ���� denotes the set of polynomials with coefficients in � . In
particular, �� contains no monic polynomial in ����.



4.5.1. Resultants and Multiple Roots

Let % be a field and �� � � %��� two polynomials. If � �
���

� � � � � � �� and � � "��
� � � � � � "� where ��� "� � %

then the resultant [2, Sec. 3.5] of � and �, denoted ��� ��� ��,
is a polynomial in the �� and "� with coefficients either � or ��.
Its importance is that � and � have a common factor in %��� of
degree 
 � if and only if ��� ��� �� � �.

Lemma 29 Let � be an integral domain and � � � � % a ho-
momorphism into the field %. Define �� by (4). Let � � ����
be monic and define �� � ����� � %���. Let � � ��� ��� ���
where �� is the formal derivative of �. Then � � � and is such
that ���� � � if and only if �� has a repeated root in a splitting
field of %. Furthermore � � � if and only if� has a repeated root
in a splitting field of ��.

PROOF. The resultant commutes with homomorphisms and for-
mal derivatives, thus

��� � ��� � ��� � ���


������ ������

�
� ����� ������� � �����

By [8, Lemma 8.5], � has a multiple root in a splitting field of
�� if and only if � and �� have a common factor in �����, that
is, if and only if � � �. Analogously, �� has a multiple root in a
splitting field of % if and only if �� and � �� have a common factor
in %���, that is, if and only if ���� � �. �

5. CONCLUSION

Precise conditions for a system of polynomial equations (1) to have
a unique solution are derived in a series of results (Theorem 1,
Prop. 4, Prop. 5). The distinguishing feature of this work is that
the number of solutions is studied by exploiting the one-to-one
correspondence between solutions and extensions of ring homo-
morphisms described in Section 2.1.

It is expected that this “ring-homomorphic” approach to the
study of polynomial equations will lead to the discovery of fur-
ther properties of polynomial equations. Indeed, this approach has
certain advantages over other ways in which polynomial equations
have been studied; Section 2.1.1 explains the difference between
this approach and that of elimination theory, while Section 2.3 and
Section 2.4 show that the ring-homomorphic approach readily ex-
tends to cope with nuisance variables and rational functions.

Section 4 derived quite general theorems on the number of
distinct extensions of a ring homomorphism. Although existence
proofs such as Lemma 15 are available in the literature, the results
on the number of distinct extensions seem to be confined to Galois
theory. Since Galois theory considers field extensions, Theorem 7
can be interpreted as a generalisation to integral domains.
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