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ABSTRACT

This paper investigates the number of solutions of a simulta-
neous set of polynomial equations. The set of constant terms of
these equations is allowed to vary and the behaviour of the solu-
tions for “almost all” sets of constant terms is described. Precise
conditions for the existence of each of an infinite number of so-
lutions, a finite number of solutions and a unique solution are de-
rived. The results extend to systems of rational functions and cope
with nuisance variables. Other contributionsinclude exhibiting the
equivalence of solutions of polynomial equations to extensions of
ring homomorphisms in commutative algebra.

1. INTRODUCTION

Determining when a polynomia map is invertible is an important
yet difficult problem encountered in control theory [7]. The tradi-
tional approach to studying polynomia mapsisby using algebraic
geometry. The main contribution of this paper isto present an al-
ternative, and simpler, approach based on commutative algebra.

This paper studiesthe archetypal system consisting of m com-
plex polynomial equations fi, - - - , fm inthen complex variables
L1, " ,Tn.

filz,ze,--- y20) =

: : @
fm(xl,l'g,"' 7‘T”) = Cm

The constants c1, - - - , ¢, € C are referred to as the RHS (right-
hand side) of (1). A physical interpretation of (1) isthat the under-
lying state x1, - - - , x,, cannot be observed directly but the results
ci, -+ ,cm Of M measurements f1,--- , f» can be. By choosing
fi,--, fm sothat (1) has aunique inverse, the state 1, - - - , xp
can be determined from the observations ci, - - - , ¢ .

This paper studies the global properties of (1) as the RHS
varies over the space C™. Although symbolic algorithms exist
for solving (1) for fixed values of the RHS [2], the ability of these
algorithmsto deduce global propertiesislimited. The standard ap-
proach to studying global propertiesis to use algebraic geometry,
and indeed, Theorem 1 in Section 2.2 can be derived using alge-
braic geometry (although a statement of it is not readily found in
the literature). Although Theorem 1 itself is not new, the novel
contributions are the simple method of proof based on studying
the number of extensions of a certain ring homomorphism, and
furthermore, the fact that the approach trivially extends to systems
of rational functions as well asto systems with nuisance variables.

Thiswork was supported by the Australian Research Council.

2. NUMBER OF SOLUTIONS

This section converts the problem of determining the number of
solutions of a system of polynomial equations to the problem of
determining the number of extensions of a ring homomorphism.
This transformed problem is solved by commutative algebra in
Section 2.2. The results are extended to cope with nuisance vari-
ables in Section 2.3 and rational functions in Section 2.4. For an
introduction to commutative algebra see [1, 6, 9]. All rings are
commutative with an identity element.

2.1. Transformation of Problem

Let S = C[z1,- - ,zx,] denote the polynomial ring in theindeter-
minates 1, - ,x,. Let @ : § — C be aC - homomorphism,
that is, ¢ is a function satisfying ¥(f1 + f2) = % (f1) + (f2),
V(f1f2) = v(f)Y(f2) and 1p(c) = ¢ for ¢ € C. Then ¢ corre-
sponds to asolution of (1) if it satisfies the constraints J (fi) = ci,
i =1,---,m, the solution being z; takesthevalue@(a:j),j =
1,-+- ,n. The constraints @(fi) = ¢; partially specify @in that
ifY: R — C, where R = C[f1,---, fm] C S, isthe unique
C - homomorphism satisfying ¥(f;) = ¢;, @ = 1,--- ,m then 0
satisfies J(fi) = ¢; if and only if J is a homomorphic extension
of ¢ (meaning the restriction of J to R isv). These ideas conduce
to the observation:

Thereisa one-to-one correspondence between extensions of
the C - homomorphism ¢ : R — C tothering S and solutions
of (2).

Remark: If ¢ does not exist for certain ¢; then (1) has no solu-
tions for these ¢;. The converse is not true. An extension ¢ of v
might not exist.

2.1.1. Connection To Elimination Theory

This section is an aside. It illustrates the difference between the
algebraic approach adopted herein and the traditional approach
via elimination theory. Let I = (fi —c1, -, fm — cm) be the
elimination ideal of elimination theory [2, Sec. 3] and let R =
C[f1, -+, fm]- Both I and R are collections of polynomial con-
sequences of (1). However, I is larger in that every polynomial
consequence in Risasoin I (if f € Rthen f —¢(f) € I)
whereas the converse is not true. Unlike R, the ideal I contains
consequences specific to a particular value of the ¢; (for example,



thevalueof f = pf; where p isan arbitrary polynomial isin gen-
eral unknown unless ¢; = 0). Thering R is fixed whereas the
ideal I changes asthe ¢; do. This suggests R is more suited to the
study of global properties of (1) than I is.

2.2. Main Results

The results presented here are for complex polynomials. Proofs
and generalisations appear in Section 4.

The following definitions are used throughout. Define R =
C[fh'" 7fm] and S = (C[‘Tlf" 7$7’L] Whefef1,~~~ 7fm € S.
A prime denotes the field of fractions of an integral domain, thus

:(C(f17 7fm) and S’ :(C(xlf" 7$n)-

For agiven¢; € C, 9. : R — C denotes the unique (pro-
vided it exists) C - homomorphism satisfying ¢, (f;) = ¢; fori =
1,---,m (see Section 2.1). Note that ¢. existsif (c1, -+ ,cm)
liesin the image of the polynomial map (1).

Theorem 1 Let N =[S’ : R'] bethedimension of S’ as a vector
space over R'. If N = oo then for any point (ci,- -+ ,cm) inthe
image of (1), there are an infinite number of solutions of (1).

If N isfinite then thereexistsan f € R, f # 0, such that if
(c1,-+- ,cm) isin the image of (1) and is such that ¥.(f) # 0
then (1) has exactly N solutions.

If R = S (which implies, but is not implied by N = 1) then
for any point (c1, - - - , ¢ ) intheimage of (1), thereis exactly one
solution of (1).

Remark 1: For fixed f, 1.(f) isapolynomid incy,- - , ¢m.
Remark 2: Itisclear that if R = S then (1) has a polynomial
inverse, and if ' = S’ then (1) has arational inverse (arational
function isaratio of two polynomial functions).

The truth of Theorem 1 when N isfinite follows from Theo-
rem 7 of Section 4 because S is finitely generated over R and if
[S' : R']isfinite then S is agebraic over R (Lemma 24). The
N = oo case follows from Theorem 9.

2.3. Extension of Results— Nuisance Variables

The above results extend to when only certain functions of the z;
in (1) arerelevant. The ease with which thisisdone exemplifiesthe

advantage over an algebraic geometric approach. Let z,--- | zg
be complex polynomial functionsof z1,--- , zp.
2z = gi(z, T2, - ,Tn)
: @)
2k = gr(T1,T2, %)
DefineT = C[f1, -, fm, 91, - , gk]- Givenci, -+ ,cm IN(1),

the number of values z1, - - - , z; can take in (2) is the number of
extensions of ¢ from R to T' (Section 2.1). All results in Sec-
tion 2.2 apply with T replacing S.

Example: The system (1) can be used to model semi-blind iden-
tification [5]; let z; to z; represent the unknown input, let 41
to x,, represent the unknown channel parameters, and let ¢; to ¢y,
represent the output. If (1) has a unique solution then both the
channel and the input are identifiable. The input remains iden-
tifiable even though the channel does not (that is, equalisation is
always possible) if every solution of (1) assigns the same value to
x1,--- ,xk. Thissituation occurs (almost always) when R/ = T
where R = C[f17 7fm] andT = (C[f17 ,fm,xl,"' ,l‘k].

2.4. Extension of Results— Systems of Rational Functions

The above results extend to the f; in (1) being rational functions.
Define R = C[f1, -, fm] and T = R[zy,--- ,z,] where both
are subrings of the field C (z1,--- ,zy). Givenci, - ,cm, the
number of solutions of the rational system (1) isthe number of ex-
tensions of ¢ from R to T' (Section 2.1). All resultsin Section 2.2
apply with T replacing S.

Remark: The inverse of a system of rational functions with a
unigque solution almost everywhere is again a system of rational
functions (see Remark 2 after Theorem 1).

3. APPLICATION ORIENTATED RESULTS

This section gives anecessary and sufficient condition for [S' : R’
to befinite and several sufficient conditionsfor [S' : R'] = 1. The
notation of Section 2.2 isused; in particular R = C[f1,--- , fm]
and S = Clz1, -+ ,z,]. Severa proofs require concepts from
field theory which can be found in [6, Ch. 12].

Given m polynomia or rational functions f1,--- , fm € ',
the Jacobian matrix isthe m x n matrix of partial derivatives:

8h ... 84
GEEY Oxn
1=\ s ®
Ofm ... Ofm
GEEY Oxn

Proposition 2 If f1,--- , fm, € S’ thenrank {J} = tr. deg.c R’
(the transcendence degree of R’ over C).

The proof of Prop. 2 requires Lemma 3 as well as standard
facts on “derivations’ [3, 4, 9].

Lemma 3 Let V' be afinite dimensional vector space and V™ its
dual. If V =span{z1,--- ,zn}and V* = span{fi,- -, fm}
then dim V' = rank {M} where M is the m x n matrix with
elements M;; = fi(x;).

Proof of Prop.2.  Let ® g/ /¢ denote the vector space of deriva-
tions on S’ over C. The partial derivatives 8%1, o, 3% forma
basisfor D g/ ,c. Any derivation on R canbe extended to aderiva-

tion on S’, hence D/ /c = Span{ail o Bz . Define the
linear functionals df; : D g/, — C by dfi;(D) = D(f;) for any

D € D g /c. Thesefunctionas generate the dual space D/ /¢ of
Drryc, thatis, Dy ¢ = span {df1,--- ,dfn}. FromLemmas3,
dim D gr)c = rank {M} where M = J. It isa standard result
that dim © g /¢ = tr.deg.c R'. m|

Proposition 4 InTheorem 1, [S’ : R'] isfiniteif and only if J has
full column rank.

PROOF. BecauseC C R’ C S, tr.deg. s ' = tr.deg.c S’ —
tr.deg.c R' = n—tr. deg.c R' = n—rank {J} by Prop. 2. Now,
[S' : R]isfiniteif and only if tr. deg.5 S’ = 0, that is, if and
only if rank {J} = n. m|
Remark: Evaluating (3) at p € C* gives a matrix of numbers
denoted by .J,,, and moreover, J has full column rank if and only
if there exists ap such that J, hasfull column rank.

If f1,---,fn € S arealgebraically independent over C then
adding almost any other equation f,, 41 will usually ensure (1) has



a unique solution (Prop. 5). At the very worst, provided f,,+1 is
not arational function of f1,--- , f», thenumber of solutions will
at least halve (Prop. 6).

Proposition 5 Assume that [S” : R'] isfinite and that there exist
g1, ,gr € Ssuchthat S = Rlgy, - , gx]. Define f = a1 g1+
-+ argr Whereay, - - ,ap € R'. Then there exists a non-zero
polynomial h with coefficientsin S such that h(a, - -+ ,ax) # 0
implies S’ = R[f]'.

Proor. If §' = R'[f] then f is called a primitive element.
Because [S' : R'] isfinite, S isan algebraic extension of R, thus
R = S'[g1, -, gk] (Lemma 23). Because R’ has characteris-
tic zero, the field extension R C S’ is separable. Kronecker's
“method of indeterminates’ can be used to show the existence of
an h suchthat f = a1g1 + -+ - + akgk iSaprimitive element if
h(aw, -+ ,ak) # 0. (See proof of “primitive element theorem”
in[9, Ch. Il, Theorem 19].) a
Remark: If the coefficients «; are chosen to be complex then so
too can the polynomia h.

Proposition 6 If N = [S" : R] isfiniteand N > 1 then for any
fes—R,[S:R[f]]1<E.

Proor. R' C R[f] c §',thus N = [R[f] : R'][S" : R[f]]
(Lemma?27). Because f € R', [R[f]' : R'] > 2. O

4. HOMOMORPHIC EXTENSIONS

This section derives three general theorems on homomorphic ex-
tensions.

Notation: Uppercase X and Z denote indeterminates while low-
ercase |etters denote elements. If A isaring, A[X] isthe polyno-
mial ring in theindeterminate X whileif B isaring containing A
and z € B then A[z] isthering generated by A and z. If Aisan
integral domain then A’ denotes its field of fractions. If A ¢ B
areintegral domains then [B’ : A’] denotes the degree of the field
extension B’ over A’. All rings considered are commutative with
an identity element.

4.1. Statement of Theorems

Theorem 7 is proved in Section 4.3.

Theorem 7 Let A C B be two integral domains such that B is
finitely generated and algebraic over A and A isinfinite. There
exisssana € A, a # 0, suchthat, if ¢ : A — Qisaring
homomorphism into the algebraically closed field 2 and if £(a) #
0, then there are exactly [B’ : A’] extensions of ¢ to B.

Theorem 8 and Theorem 9 are proved in Section 4.4. The two
theorems complement each other.

Theorem 8 Let A C B beintegral domains with B finitely gen-
erated over Aand [B' : A'] = co. Thereexistsana € A, a # 0,
suchthat if ¢ : A —  isa homomorphism into the algebraically
closed field © and if £(a) # 0, then there are an infinite number
of extensions of £ to B.

Theorem 9 Let A C B beintegral domains with B finitely gen-
erated over A and [B' : A’] = co. Let ¢ : A — Q be a homomor-
phisminto the algebraically closed field 2. If there exists at least
one extension of £ to B then there exist an infinite number.

4.2. Preliminaries

Define ¢ : A[X] — A[z] to be the A - homomorphism satis-
fying ¢(X) = z. It iswell-defined, unique and onto. Its kernel
ker¢p = {f € A[X]: ¢(f) = 0} isthecollection of polynomials
f € A[X] satisfying f(z) = 0. The element z istranscendental
over A if ¢ isone-to-one. Otherwise z isalgebraic over A.

Lemma 10 extends the homomorphism { : A — C to a ho-
momorphism §A : Alz] — C. It requires the homomorphism &, the
extension of ¢ to the polynomial ring, defined by:

E:AX] > C[Z],  €(X)=17Z Ea)=¢(a),aeAd (4

For example, £(a2 X2 +a1X 4+ao) = £(az2)Z* +£(a1) Z+£(ao).

Lemma 10 Let A,C beringsand ¢ : A — C a homomorphism.
An extension Eofg to A[z] satisfying E(m) = z existsif and only if
z € Cisaroot of every polynomial in the set £ (ker ¢). I it exists,
itisunique.

PROOF.  Let f € kerg and f = &(f). Write f as f

0 aiX" (a; € A). Because f € ker ¢, f(x) =D 0, ax’
0. Applying Eto both sides shows 3~72  £(ai)z’ = 0 thus z isa
root of f. To prove sufficiency, let b € Afz] and g € A[X] such
that b = g(z). Define£(b) to be (£(g)) (z). Thisisunambiguous:
If g € A[X]issuchthatb = ga2(x) then g — g» € ker¢ and
by hypothesis on z, (£(g — g2)) () = 0 showing (£(g)) (z) =
(€(g2)) (2). To prove uniqueness, let ¢ and & be two homomor-
phisms such that E(x) = @(x)A Write any eIemenAt b e ALx] as
b=3 2 aix',a; € A. Then£(b) = Y2, &(ai)é(x)' = fg(bl)j

4.3. Finite Number of Extensions

&(ker ¢) must have a simple structure for Lemma 10 to be practi-
cal. It iswell-known that ker ¢ isa principa ideal if A isafield.
Lemma 12 generalises this to when A[z] is an integral domain.
First some definitions.

Definition 11 If A C B areintegral domainsand z € B isal-
gebraic over A then the minimal polynomial [6] of = over A’ is
the monic polynomial m’ € A’[X] of smallest degree such that
m'(z) = 0. Itisunique and irreducible.

Define ¢' : A'[X] — A’[z] to be the A’ - homomorphism
satisfying ¢'(X) = z. Thenker ¢’ = (m'). If A isan integra
domainand f € A — {0} (f € Abut f # 0) then Ay isthe
integral domain

Af:{%:aeA,be{l,f,f2,~--}} )

Define ¢ : Af[X] — Ay[z] to bethe Ay - homomorphism sat-
isfying ¢(X) = z.

Lemmal2 Let B = A[z] where A and B are integral domains
and z is algebraic over A. Let m' be the minimal polynomial of
x over A'. Thedegree of m' is[B’ : A']. Thereexistsan f € A,
f # 0, such that ker ¢y = (m').



PrOOF. Letn bethedegreeof m’. Thenn = [A'[z] : A’] ([8,
Prop. 4.3]). Because B' = A'[z] (Lemma23), n = [B' : A’]
too. Writem' asm’' = X™ + ‘;:—:X"’l +o R a € A,
b € A— {0} Definef = boby---bp_1 € A — {0} Then
m' € ker¢s. Letp € ker ¢;. There exist unique polynomias
g,r € Af[X] suchthat p = gm' + r and either r = 0 or the
degree of r islessthan n (Lemma 26). Because p(z) = 0, 7(z) =
p(z) — q(z)m'(z) = 0. Thereforer € ker ¢’ but unlessr = 0
this contradicts the minimality of m’ (Def. 11). Thusp = gm/’
which provesker ¢ = (m’). O
It is sufficient to consider A rather than A.

Lemmal3 Let A C B beintegral domainsand ¢ : A — K a
homomorphism into the field K. If f € A issuchthat £(f) # 0
then there is a unique extension &y of £ to Ay (5). Thereisa one-
to-one and onto mapping between extensions of £ to B and & to
By.

PrROOF.  Assume ¢(f) # 0. For g € R and p a nonnegative
integer, define ¢ (fip) = £ Itisthe unique extension of ¢

to Af Ifgf By — K isan extension of £; then the restriction
§of gf to B isan extension of £ (ifa € Atheng( ) = §f( ) =

&r(a) = &(a)). Similarly, any extensong B — Q uniquely
extends to £ ¢ on By. The homomorphism 3 ¢ is an extension of

& (if2 € Apthena € Aandb € {1,f,f*,---} C Athus
& (2) = ?{Z; $8 = ¢ (%)). Both mappings are thus one-
to-one and onto. ~ m|
The definition of £ (4) uniquely extendsto A¢[X]if £(f) # O:

& Af[X] > K[Z),  &(X) =2, &(a) =&5(a), a € Ay
(6)

where £ isthe unique extension of £ to Ay (Lemma 13).

Lemma 12 and Lemma 10 together suggest that the roots of
£¢(m') determine distinct extensions. Multiple roots lead to the
same extension. Lemma 29 takes care of this.

Lemma 14 Let B = A[z] where A and B are integral domains,
x isalgebraic over A and A isinfinite. There existsana € A,
a # 0,suchthatif £ : A — Q isaring homomorphisminto the
algebraically closed field @ and if £(a) # 0, then there are exactly
[B' : A'] extensions of ¢ to B.

ProOF.  Let m’ be the minimal polynomial of = over A", Its
degreeisn = [B’' : A'] (Lemma12). Choose f € A — {0} 0
that ker oy = (m') (Lemma 12). Later a € A will be chosen
so that £(a) # 0 implies £(f) # 0. Thus there exists a unique
extension &y : Ay — Q of ¢ (Lemma 13). Because By = Aj[z]
(Lemma 21), it suffices to show there are n extensions of & to By
(Lemma 13). Let g € Ay be the resultant of m' and its formal
derivative (Lemma 29). Because A’ has characteristic zero, m'
is separable over A’ ([8, Prop. 8.6]), thus g # 0 (Lemma 29).
Writeg = 2L where g1 € Aand g» € {1, f, f?,---}. Choose
a = fgi # 0. Then £(a) # 0 ensures £f(m') has exactly n
distinct roots in 2 (Lemma 29). The number of extensions of &
to By is the number of simultaneous roots of every polynomial
in the set £f(kers) = &;((m')) (Lemma 10). This equals n
(see below), completing the proof. Letp € &;((m')). Thenp =
&r(p) for somep € (m'), sop = qm for some ¢ € Af[ B
Because p = £;(qm’) = 7 (q)Ep(m’), if zisaroot of £;(m') it

isaso aroot of p. This shows the number of simultaneous roots
of £7({(m'}) equals n, the number of roots of £;(m’). m|
Theorem 7 extends Lemma 14 by induction.

Proof of Theorem 7. Write B = Afz1, -+ ,zm]. Define
the integral domains Co = A and C; = Afz1, - ,x;] fori =
1,---,m. Then C; = Ci_i[z;] with z; algebraic over C;_,;
and C’ = Cj_,[z;] (Lemma 23). Assume by induction on k
that there exists an ar, € A such that £(ax) # 0 implies there
are exactly n, = [C}, : Cp] extensions of ¢ to Ck. Thisis
true for k = 1 (Lemma 14). Let these extensions be 5,(;) for
i = 1,--- ,ng. For each i, there exists a¢; € Cj such that

( ) can be extended to Ck+1 in [Ciyy @ Ch] ways if §,El>(ci) #*
0 (Lemma 14). If §k (c;) = 0 then 5,(5)(bici) = 0 for any
b; € Ck. There exists a b; such that blcl e A (Lemma 25);
let di = bic;. Thus&(ds) # 0 |mp||e£§ ( ;) # 0. Choose
Aky1 = ardids - - dnk Then £(ak+1) 7é 0 lmpII&s each of the
ny, extensions to Cj can be extended in [C},, : C}] ways to
Cr+1. Thisisatotal of ny1 = nix[Ch, : C}] ways. By the de-
grees theorem (Lemma 27), ny+1 = [C4, : Cp]. Thiscompletes
the induction step. m|

4.4, Infinite Number of Extensions

The following lemmais[1, Prop. 5.23].

Lemmal5 Let A C B beintegral domainswith B finitely gener-
ated over A. Thereexistsana € A,a # 0, suchthatif¢ : A — Q
is a homomorphism into the algebraically closed field 2 and if
&(a) # 0, then there existsan extensionf: B — Qofé.

Proof of Theorem 8.  Choose an x € B transcendental over
A (Lemma 24). There exists anon-zero a, € A[z] such that any
homomorphism &, : A[z] — Q satisfying . (az) # 0 extends to
gA : B — Q (Lemma 15). Thus the proof is complete once it is
shown there are an infinite number of extensions &, of ¢ satisfying
&x(az) # 0. Writeaz = anz™ + - -+ + ao Wherea; € A. Then
Ex(az) = &(an)éa(x)™ + - - - + &(ao). Thisisanon-zero polyno-
mial if £(an) # 0; choose a = a,. Because Q isan infinite field,
there are an infinite number of values &, (x) can be assigned such
that £, (a,) # 0. Each such assignment determines an extension
&, of € (Lemma 10). |

Therest of this section builds up to a proof of Theorem 9. The
following lemmais fundamental [1, 6].

Lemma 16 (Noether’s Normalisation Lemma) Let k be a field
and A # 0 afinitely generated k-algebra. Then there exist ele-
ments z1,--- ,z, € A which are algebraically independent over
k and such that A isintegral over k[z1,--- , z,].

Lemma 17 Let A C B betwo rings such that B isintegral over
A Let ¢ : A — Q be ahomomorphism into the algebraically
closed field 2. Then & extends to a homomorphismé : B — ().

SKETCH OF PROOF.  Thisis[1, Exercise 5.2]. Let p be the
kernel of &; then p is a prime ideal of A. There exists a prime
ideal ¢ of B suchthat g N A = p ([1, Th. 5.10]). It follows
that B/q isintegral over A/p ([1, Prop. 5.6]). Let K denote the
field of fractions of B/q. It follows from [1, Th. 5.21] and the



preceding discussion that £ can be extended to a valuation ring of
K containing A/p. Such avaluation ring is integrally closed and
S0 must contain any subring of K which isintegral over A. Thus,
in particular, it contains B/q and so ¢ can be extended to B/q. O

Lemma 18 Let k be a field and A # 0 a finitely generated k-
algebra. Let ¢ : k — Q be a homomorphism into the algebraic
closure Q2 of k. Then there exists an extension §A: A — Qofé€.
If there exists an = € A transcendental over k then there are an
infinite number of such extensions.

PROOF. By Lemma 16, A isintegra over k[z1,--- ,z,]. If
there exists an x € A transcendental over k thenr > 1. Any
homomorphism on k[z1,- - - , z,] extendsto A (Lemma 17). All
that remains is to show there are an infinite number of extensions
& ofEtoklxy, -,z ]ifr > 1. Anyelementz € klz1, -, 2]
is uniquely expressible as a polynomial in the z;. Thus for any
z1,++ ,2r € Q, an extension & of € to k[z1,--- ,z,] iswell-
defined by the conditions & (z;) = z; fori = 1,--- ,r. SinceQ is
aninfinite field, there are an infinite number of distinct extensions.
a
Let p be aprime ideal. Define the local ring (aring having a
unique maximal ideal) A, by

Ap:{%:aeA,beA—p} (7)

Lemma 19 Let¢ : A — K beahomomorphismonthering A to
the field K. Let p = ker ¢ and A, the localisation of A at p (7).
Then thereis a unique extension &, : A, — K of £. Furthermore
M = ker &, isthe unique maximal ideal of the local ring A4,.

PROOF. Because any subring of K is an integra domain, p

is a prime ideal, thus A, is well-defined. It can be shown that

& (2) = éEZ; foranya € A, b € A — p defines a homomor-

phism on A,. Clearly it isunique. It isalso clear that ker&, =

{%: a€pbe A—p}. Thisistheform of the unique maximal

ideal of A,. a
In conflicting yet concise notation, define B, by

Bp:{%:aEB,bEA—p} )

Theorem 9 extends £ to B by first extending it to A,, then to B,
then restricting it to B.

Lemma20 Let A C B beringsand K afield. LetgA: B — K be
ahomomorphismand § : A — K itsrestriction. Definep = ker ¢
and B,, by (8). Then thereis a unique extension §p B, - K of
§ Furthermore, gp is an extension of &, in Lemma 19.

PrROOF. Becausepisprime, A — p isamultiplicatively closed
set and B,, iswell-defined. It can be shown that £, (%) = gb; for
any a € B,b € A — p defines a homomorphism on B,,. Clearly
itisunique. Let § € A, thatis,a € A, b € A—p. Then

& (2) = & =¢, (%) showing &, isan extension of ¢,. O

Proof of Theorem 9.  Definep = ker £ and let &, be the unique
extension of £ to A, and M its kernel (Lemma 19). Define B,
by (8) so that A, C B,. Theided B,M N A, equals either
M or A,. Assume B,M N A, = Ap,. Thenno ideal I of B,

exists such that I N A, = M. This contradicts the existence of §Ap
(Lemma 20) since kergp N A, = M. Therefore B,M N A, =
M, alowing A, /M to be naturally imbedded in B, /B, M. This
makes B, /B, M ak-agebrawherek = A,/M. Letz € B be
transcendental over A (Lemma 24) and thus over A, too. Because
Aplz]M N A, = M, the following diagram is commutative.

A, — Aplr] — B,

! ! Lo

Ap/M —— A,[z]/Ap[z]M —— B,/B,M

Let z + B, M denote theimage of z in B, /B, M. It istranscen-
dental over k for otherwise z + A, [z] M satisfiesamonic polyno-
mial (z + Ap[z]M)" + (an—1 + Ap[z]M)(z + Ap[z]M)" ' +

-+ (a0 + Ap[z]M) where a; € A,. This means that =™ +
an—12" "t + - +ap € Ay[xr]M. However A,[z]M contains
no monic polynomials (Lemma 28). Let ¢ : A,/M — Q bethe
homomorphism induced by &,. From Lemma 18 there exist an in-
finite number of extensions £ B,/B,M — Q of £'. Each of
these extensions defines a distinct homomorphism &, : B, — Q
given by &,(b) = (b + B,M). Each &, contracts to a distinct
E: B — Q (Lemma 20). m|

4.5. MiscellaneousLemmas
This section is a collection of lemmas required above. Straightfor-
ward proofs are omitted.

Lemma?2l If B = A[z] areintegral domainsand f € A — {0}
thean :Af[x]

Lemma?22 Let A C B beintegral domains. Then z € B is
algebraic over A if and only if z isalgebraic over A,

Lemma23 If B = Az, -
x; are algebraic over A then B’ =

, x| areintegral domains and the
Alzy, -+, xn].

Lemma24 Let A C B beintegral domains and B finitely gener-
ated over A. Then B isalgebraic over A if and onlyif [B' : A']is
finite.

Lemma25 Let A C B be integral domains with B algebraic
over A. For any ¢ € B thereexistsab € B suchthat bc € A.

Lemma 26 Let R be an integral domain. Let m € R[X] be a
monic polynomial of degree nn. Then for any polynomial f € R[X]
there exist unique polynomialsq, r € R[X] suchthat f = gm +r
and either » = 0 or r has degree lessthan n.

Lemma 27 (Degrees Theorem) Let FF C K C L be extensions
of fields. Then [L : F]isfiniteif and only if [L : K] and [K : F]
are finite; furthermore, when thisisthecase, [L : F] = [L :
K]|[K : F].

Lemma 28 Let A C B beringswith B = A[z] and z transcen-
dental over A. Let I be a proper ideal in A. Then BI C I[z]
where I[x] denotes the set of polynomials with coefficientsin I. In
particular, BI contains no monic polynomial in A[z].



4.5.1. Resultants and Multiple Roots

Let K be afield and f,g € K[X] two polynomids. If f =
amX™ + - +apandg = b, X" + --- + bp Wherea;,b; € K
then the resultant [2, Sec. 3.5] of f and g, denoted Res (f, g),
is a polynomial in the a; and b; with coefficients either 1 or —1.
Its importance is that f and g have a common factor in K[X] of
degree > 1 if and only if Res (f, g) = 0.

Lemma29 Let A be an integral domainand ¢ : A — K a ho-
momor phism into the field K. Define £ by (4). Let m € A[X]
be monic and define m = £(m) € K[Z]. Let g = Res (m,dm)
where dm is the formal derivative of m. Then g € A and is such
that £(g) = 0 if and only if m has a repeated root in a splitting
field of K. Furthermore g = 0 if and only if . has a repeated root
in a splitting field of A’.

PROOF.  Theresultant commutes with homomorphisms and for-
mal derivatives, thus

Res (m, dm) = Res (E(m), E(dm)) = ¢(Res (m,dm)) = £(g).

By [8, Lemma 8.5], m has a multiple root in a splitting field of
A" if and only if m and dm have a common factor in A'[X], that
is, if and only if g = 0. Analogously, m has a multiple root in a
splitting field of K if and only if m and dm have acommon factor
in K[Z], that is, if and only if £(g) = 0. |

5. CONCLUSION

Precise conditions for asystem of polynomial equations (1) to have
a unigue solution are derived in a series of results (Theorem 1,
Prop. 4, Prop. 5). The distinguishing feature of this work is that
the number of solutions is studied by exploiting the one-to-one
correspondence between solutions and extensions of ring homo-
morphisms described in Section 2.1.

It is expected that this “ring-homomorphic” approach to the
study of polynomial equations will lead to the discovery of fur-
ther properties of polynomial eguations. Indeed, this approach has
certain advantages over other ways in which polynomial equations
have been studied; Section 2.1.1 explains the difference between
this approach and that of elimination theory, while Section 2.3 and
Section 2.4 show that the ring-homomorphic approach readily ex-
tends to cope with nuisance variables and rational functions.

Section 4 derived quite general theorems on the number of
distinct extensions of a ring homomorphism. Although existence
proofs such asLemma 15 are available in the literature, the results
on the number of distinct extensions seem to be confined to Galois
theory. Since Galois theory considers field extensions, Theorem 7
can be interpreted as a generalisation to integral domains.
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