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SUMMARY

The well-known Kalman �lter is the optimal �lter for a linear Gaussian state-space model. Furthermore,
the Kalman �lter is one of the few known �nite-dimensional �lters. In search of other discrete-time �nite-
dimensional �lters, this paper derives �lters for general linear exponential state-space models, of which the
Kalman �lter is a special case. One particularly interesting model for which a �nite-dimensional �lter is
found to exist is a doubly stochastic discrete-time Poisson process whose rate evolves as the square of the
state of a linear Gaussian dynamical system. Such a model has wide applications in communications systems
and queueing theory. Another �lter, also with applications in communications systems, is derived for estimat-
ing the arrival times of a Poisson process based on negative exponentially delayed observations. Copyright
? 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Doubly stochastic Poisson processes were �rst introduced in 1955 by Cox.1 A doubly stochastic
Poisson process is, loosely speaking, a Poisson process whose rate is modulated by a second
stochastic process.
Doubly stochastic Poisson processes are widely used in modelling communication systems.2; 3

At the optical level, photons of light strike a photodetector with a Poisson distribution. The Poisson
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rate corresponds to the intensity of the light. Tra�c arrival and departure in computer networks4

are also amenable to modelling by doubly stochastic Poisson processes.
This paper primarily considers a discrete-time doubly stochastic Poisson process. The rate is

determined by the square of the state of a discrete-time linear dynamical Gaussian system. The
main result of this paper is Theorem 4, which presents a �nite-dimensional �lter for the square of
the underlying state given the Poisson events. This result is interesting since there are very few
known �nite-dimensional �lters. (This paper de�nes a �nite-dimensional �lter to be one where
the �ltered density can be completely characterized by a �nite number of su�cient statistics.
If furthermore the number of su�cient statistics is a constant, independent of the number of
observations, the �lter is said to be strictly �nite-dimensional.)
The discrete-time case considered in this paper is worthy of consideration not only in its own

right, but also as an approximation to the continuous-time case. Moreover, the continuous-valued
Poisson rate can be used as an approximation in the case where the Poisson rate is discrete
(for example a Markov chain). If the number of discrete states is very large, it is attractive to
approximate discrete states by continuous-valued states.
Also presented is a sub-optimal �lter (Section 6) which is based on approximating the �ltered

density by an Edgeworth series. Such an approximation is quite natural in this context. The sub-
optimal �lter is computationally inexpensive and performs satisfactorily in simulations.

1.1. Applications

Recent applications of doubly stochastic Poisson processes include the following. In Reference 5
a doubly stochastic Poisson process is used to model (and thus �lter) the image of a faint object
that appears to be moving in a random walk when viewed with an imager having a �nite point-
spread function, such as when viewing a planet through a telescope. Doubly stochastic Poisson
processes have also been applied to modelling the surface reectivity of SAR images,6 modelling
a quantum-limited optical DPSK receiver7 and modelling network tra�c.8; 9

The papers10; 11 consider the estimation of Markov-modulated Poisson processes. As the number
of discrete states in the Markov model increases, it is possible to approximate discrete states by
continuous states, thus arriving at the models considered in the present paper.
The doubly stochastic Poisson process derived in this paper is currently being used to model

rainfall data. Other applications of Poisson processes to meteorology include References 12–14.
In summary, the present paper extends research in this �eld by showing how to construct the

optimal �lter for a certain class of doubly stochastic Poisson processes. Moreover, the optimal
�lter is �nite-dimensional. This allows the �lter to be easily implemented in practice.

1.2. Related work—Poisson processes

A brief summary of other work in the literature relating to �ltering of Poisson processes is
now given. Continuous-time �ltering results for a Poisson process whose rate evolves according
to either a �nite state or a di�usion Markov process have been widely studied, see References 2
and 15 for example. In Reference 15 stochastic di�erential equations are derived for the character-
istic function of the �ltered density. In general, going from this equation to an explicit formula for
the �ltered estimate is analytically intractible. The solution requires numerical integration, which
can be computationally infeasible. An approximation to these di�erential equations is also derived
in Reference 15 which leads to a sub-optimal �lter.
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More recently, continuous-time �lters for doubly stochastic Poisson processes whose rate evolves
according to a positive function of the state of a continuous-time linear Gaussian system are derived
in Reference 16. It should be noted that the results of the continuous-time case in Reference 16
cannot be used to derive the discrete time results presented in the present paper.
Some �ltering results for discrete time point processes are presented in Reference 17. These

results are used to estimate the state of a random time-division multiple access computer network.

1.3. Related work—Finite-dimensional �lters

The de�nition of a �nite-dimensional �lter, as given for example in Reference 18, is a �lter
whose �ltered density always belongs to a parametrized set of density functions. The parametrized
set is indexed by some subset of RN — the smallest such N being referred to as the dimension
of the �lter. The present paper renames such a �lter as a strictly �nite-dimensional �lter, to
distinguish it from the case when the dimension, although �nite, is allowed to increase as the
number of observations increases.
The key result in the literature is that, under regularity conditions, a strictly �nite-dimensional

�lter exists for a partially observable Markov process if and only if each of the conditional dis-
tributions involved form an exponential family of distributions.18 Here, the “involved conditional
distributions” include the �ltered density too. This result was proved earlier in Reference 19 but
under stronger regularity conditions.
The necessity of exponential families of distributions should come as no surprise. In Reference 20

(and later in Reference 21 under milder assumptions) it was shown that a sequence of i.i.d. random
variables possesses a �nite set of su�cient statistics if and only if the distribution of the random
variables belongs to an exponential family.

1.4. Outline of approach

While the main contribution of this paper is the �nite-dimensional �lter for the doubly stochas-
tic Poisson process, it is more illuminating to derive �nite-dimensional �lters for more general
models and then consider the doubly stochastic Poisson process as a special case. In particular,
the secondary aim of this paper is to show how classes of �nite-dimensional �lters may be found.
The Kalman �lter is the optimal �lter for the linear Gaussian state-space model:

xk+1 = Ak+1xk + wk+1; wk ∼ i:i:d: N(0; Qk) (1)

zk = Ckxk + ek ; ek ∼ i:i:d: N(0;�k) (2)

where xk ∈Rp is the state vector and zk ∈Rn the observation vector. The matrices Ak+1 ∈Rp×p
and Ck ∈Rn×p are deterministic. The state-space noise wk ∈Rp and the observation noise ek ∈Rn
are zero-mean independent Gaussian random vectors with covariance matrices Qk ∈Rp×p and
�k ∈Rn×n respectively.
A Gaussian distribution is a special example of an exponential family. Exponential families have

a very special geometric signi�cance.22 A parameterized exponential family forms an a�ne space.
(The converse is also true; if a parameterized family of distributions forms an a�ne space, it must
be an exponential family.)
It is natural to ask if the various properties of the Kalman �lter are speci�cally due to the

Gaussian noise distribution, or instead are due to the a�ne nature of the Gaussian distribution.
Therefore, this paper considers state-space models with exponential noise distributions. Further
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motivation for examining exponential noise models is based on the prominence of exponential
families of distributions involved in a strictly �nite-dimensional �lter.18

The precise exponential noise models we will consider are detailed in Section 2. The evolution of
the (unnormalized) �ltered density of the exponential noise models is derived in Section 3. When
applied to a doubly stochastic Poisson process, the �ltered density can be computed analytically.
Due to the practical importance of doubly stochastic Poisson processes, Section 4 is devoted
to the derivation and application of the �nite-dimensional �ltering equations for such a process.
Section 5 gives su�cient conditions for the �ltered density equations of Section 3 to lead to �nite-
dimensional �lters. Included in Section 5 is a �nite-dimensional �lter for the �ltering of Poisson
arrival times given only ‘randomly delayed’ observations. Section 6 introduces a general method
of obtaining sub-optimal �lters from the optimal �lters of Section 5.

Notation. �{x; y; : : :} denotes the smallest �-algebra such that each of the random variables
x; y; : : : are Borel-measurable. If �k is a vector, then its ith element is denoted by (�k)i.

(y
x

)
is the

binomial symbol. ∧ denotes minimum, i.e. x ∧ y= min{x; y}.

2. SIGNAL MODEL

After introducing exponential families of distributions, the exponential noise models studied in this
paper are expounded.

1. Exponential family: Following [Reference 23, Section 1.4], a family {P�} of distributions is
said to form an s-parameter exponential family if the distributions P� have densities of the form

p�(z) = exp

[
s∑
i=1

�iTi(z)− R(�1; : : : ; �s)
]
h(z); z ∈Rn (3)

with respect to some carrier measure �. Here, �i ∈R are the canonical parameters, while
Ti :Rn→R; R :Rs→R and h : Rn→ R are Borel-measurable functions. In this paper, the car-
rier measure � is the Lebesgue measure for a continuous distribution, or the counting measure
for a discrete distribution. Some common one and two parameter exponential families include the
Gaussian, Gamma, Chi-square and Beta continuous distributions and the Binomial, Poisson and
Negative Binomial discrete distributions. Two examples are now given.

2. Gaussian: The Gaussian density N(�; �2)

p(z)=
1√
2��

exp

[
−1
2

(
z − �
�

)2]
; z ∈R (4)

can be written as (cf., (3)) p(z)= exp[�1T1(z) + �2T2(z)− R(�1; �2)]h(z) where

�1 = − 1
2�2

; �2 =
�
�2
; T1(z) = z2; T2(z) = z; R(�1; �2) = − �22

4�1
− 1
2
log(−�1); h(z)= 1√

�
:

(5)

Notice that the canonical parameters (�1; �2) are not the ‘usual’ parameters (�; �2).
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3. Poisson: The Poisson density with rate �∈R, �¿0 is

p(z)=
�z

z!
exp[−�]; z=0; 1; 2; : : : (6)

This is equivalent to (3) with �1 = log �; T1(z)= z; R(�1)= exp[�1]; h(z)= 1=z!.
The signal model examined in this paper is now stated.
Signal model: For clarity of presentation both the state vector and the observation vector are

assumed to be one-dimensional, i.e., scalars. The exponential noise model studied in this paper is a
generalisation of the linear Gaussian state-space model (1), (2). The underlying probability space
is (
;F;P). The event space 
 = (R×R)∞ contains elements of the form {x0; z0; x1; z1; : : :}∈
.
(The random variables xk ∈R; k =0; 1; : : : are referred to as the state, while the zk ∈R; k =0; 1; : : :
are the observations.) The �-algebra F is F= �{x0; z0; x1; z1; : : :}. The probability measure P is
the measure† which gives the random variable wk de�ned by (7) the density (8) and the random
variable zk (de�ned above) the conditional density (9). In particular, the state equation

xk+1 =Ak+1xk + wk+1; x0 =w0 (7)

(where Ak+1 ∈R is a known scalar) de�nes the random variable wk+1 : 
→R. The density of wk ,
denoted by 	w(wk), belongs to a q-parameter independent continuous exponential family, i.e.

	(w)(wk ;�k)= exp

[ q∑
i=1

(�k)i T
(w)
i (wk)− Rw(�k)

]
h(w)(wk) (8)

where �k ∈Rq is a known parameter and T (w)i ; R(w) and h(w) are Borel-measurable functions (see
(3)). (Since wk is continuous, the carrier measure is the Lebesgue measure.) The observation zk
has an s-parameter independent exponential density

	(z)(zk ; �k)= exp

[
s∑
i=1

(�k)iT
(z)
i (zk)− R(z)(�k)

]
h(z)(zk) (9)

conditioned on the parameter �k ∈Rs given by
�k = rk(xk) (10)

Here, rk :R→Rs, k =0; 1; : : : ; are Borel-measurable functions. Note that the carrier measure for
the observation density (9) is the Lebesgue measure if zk is a continuous random variable, or the
counting measure if zk is a discrete random variable.

De�nition

Let Zk denote the observation history and Gk the complete history, i.e.

Zk = �{z0; : : : ; zk} (11)

Gk = �{x0; z0; : : : ; xk ; zk} (12)

†Existence and uniqueness up to sets of Lebesgue-measure zero follow from Kolmogorov’s theorem.
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Expectation with respect to the measure P is denoted by E[·]. In Section 3 a new measure �P is
introduced. Expectation with respect to �P is denoted by �E[·].
Aim: Given the observations {z0; : : : ; zk} the aim is to estimate (some measurable function g(xk)

of) the state xk . More precisely, the aim is to calculate the optimal (minimum mean-square error)
estimator E[g(xk) |Zk ].

3. DERIVATION OF UNNORMALIZED FILTERED DENSITY

In this section the unnormalized �ltered density for the state xk given the observations {z0; : : : ; zk}
is derived. Standard techniques based on the reference probability method24 are used.
On the probability space (
;F;P) (de�ned in Section 2) de�ne the new probability measure

�P by

dP

d �P

∣∣∣∣
Gk

= �k =
k∏
i=0

�i (13)

�k = exp

[ q∑
i=1

(�k)iT
(w)
i (xk − Akxk−1)−

q∑
i=1

�(�)iT
(w)
i (xk)− R(w)(�k) + R(w)( ��)

]

×exp
[

s∑
i=1

(�k − ��)iT
(z)
i (zk)− R(z)(�k) + R(z)( ��)

]
h(w)(xk − Akxk−1)

h(w)(xk)
; k =1; 2; : : :

(14)

�0 = exp

[ q∑
i=1

(�0 − ��)iT
(w)
i (x0)− R(w)(�0) + R(w)( ��)

]

×exp
[

s∑
i=1

(�0 − ��)i T
(z)
i (z0)− R(z)(�0) + R(z)( ��)

]
(15)

where ��∈Rs and ��∈Rq are constant vectors and �k is de�ned in (10). Then Girsanov’s theorem24
implies that under �P, xk and zk are i.i.d.; xk has density 	(w)(xk ; ��) where 	(w) is de�ned in (8);
and zk has density 	(z)(zk ; ��) where 	(z) is de�ned in (9).

Remark

The above holds irrespective of whether zk is a continuous or a discrete random variable. P
denotes the real-world probability, whereas working under �P is very convenient. The �ltered
density is derived under �P and then mapped back to P. This mapping is done using an abstract
version of Bayes’ theorem24 as follows. For any Borel-measurable test function g,

E[g(xk) |Zk ] =
�E[�kg(xk) |Zk ]
�E[�k |Zk ]

(16)

The unnormalized �ltered density at time k, denoted qk(x), is now formally de�ned.
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De�nition

De�ne the unnormalized �ltered density qk(x), for xk given {z0; : : : ; zk} implicitly by

�E[�kg(xk) |Zk ] =
∫
R
g(x)qk(x) dx (17)

for any Borel-measurable test function g.
The unnormalized �ltered density for the signal model is stated in Lemma 3.

Lemma 1 (Unnormalized �ltered density)

The unnormalized �ltered density qk de�ned in (17) for the exponential noise model de�ned in
Section 2 is recursively given by

qk+1(y) = Kk+1exp

[
s∑
i=1

(rk+1(y))iT
(z)
i (zk+1)− R(z)(rk+1(y))

]
(18)

×
∫
R
exp

[ q∑
i=1

(�k+1)iT
(w)
i (y − Ak+1x)

]
h(w)(y − Ak+1x)qk(x) dx; k =1; 2; : : :

q0(y) = K0 exp

[
s∑
i=1

(r0(y))iT
(z)
i (z0)− R(z)(r0(y)) +

q∑
i=1

(�0)iT
(w)
i (y)

]
h(w)(y) (19)

where Kk ∈R; k =0; 1; : : : are independent of y.

Proof : De�ne the function �k(x; y) to be the right-hand side of (14) with xk−1 replaced by x
and xk by y (i.e. �k ≡ �k(xk−1; xk)). Similarly �0(x) denotes the right-hand side of (15) with x0
replaced by x. The recursive update of the unnormalized �ltered density is derived as follows:

�E[�k+1g(xk+1) |Zk+1]= �E
[
�k

∫
R
�k+1(xk ; y) g(y)	(w)(y; ��) dy |Zk+1

]
(20)

=
∫
R

(∫
R
�k+1(x; y) g(y)	(w)(y; ��) dy

)
qk(x) dx (21)

=
∫
R
g(y)

(∫
R
�k+1(x; y)	(w)(y; ��) qk(x) dx

)
dy (22)

Here, (21) follows from (20) by (17) and the fact that, under �P; zk+1 is independent of
{z0; : : : ; zk ; xk}. Comparing (22) with (17) shows qk+1(y)=

∫
R �k+1(x; y)	

(w)(y; ��) qk(x) dx, and
(18) follows by expanding the integrand.
The initial (k =0) unnormalized �ltered density is derived thus:

�E[�0g(xo) |Z0]=
∫
R
g(x)(�0(x)	(w)(x; ��)) dx (23)

Comparing with (17) shows q0(x)= �0(x)	(w)(x; ��), and (19) follows upon expansion.
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4. DISCRETE-TIME FILTER FOR A DOUBLY STOCHASTIC POISSON PROCESS

This section applies the unnormalized �ltered density derived in Section 3 to a doubly stochastic
Poisson process. The reasons for the speci�c form of the doubly stochastic Poisson process chosen,
along with generalizations of the model, are given in further detail in Section 5.

Signal model (Doubly stochastic Poisson process)

The underlying process xk ∈R is a scalar linear dynamical system of the form

xk+1 = Ak+1xk + wk+1; wk ∼ i:i:d:N(0; �2k) (24)

x0 = w0; w0 ∼ i:i:d:N(0; �20) (25)

The noise wk ∈R is a scalar-independent Gaussian sequence with zero mean and variance �2k . The
parameters Ak ∈R and �2k ∈R are deterministic and assumed to be known. The process xk is not
observed directly. Instead, it is used to modulate a Poisson process with rate (ckxk)2, where ck ∈R
is a known deterministic parameter. The choice of (ckxk)2 ensures that the rate is non-negative
and that the �ltered density has the simple form of a polynomial times a Gaussian (see Section 5).
The observations {z0; : : : ; zk} thus have the following independent Poisson density:

	(z)(zk ; xk)=
(ckxk)2zk

zk !
exp[−(ckxk)2] (26)

Aim: Given the observations {z0; : : : ; zk} the aim is to derive an optimal recursive �lter for the
rate of the Poisson process, i.e., the aim is to compute E[x2k |Zk ]. Note that E[xk |Zk ] = 0 because
x0 is distributed symmetrically about the origin and the observations give no information about
the sign of xk , only its magnitude squared.
The optimal recursive �lter is presented in Theorem 1 below.

Theorem 1 (Optimal �nite-dimensional �lter)

At time k, the unnormalized �ltered density qk(x) de�ned in (17) for the doubly stochastic
Poisson process de�ned above can be expressed as

qk(x)=
Lk∑
t=0

Pk(t) xtexp
[
− x2

2
k

]
(27)

Thus, qk(x) is completely characterized by the Lk + 1 su�cient statistics Pk(t)∈R, t=0; : : : ; Lk ,
and the parameter 
k ∈R. These statistics are recursively computed by

Lk+1 = Lk + 2zk+1; Lo=2z0 (28)


−1
k+1 = 2c

2
k+1 + (�

2
k+1 + 
kA

2
k+1)

−1; 
−1
0 = 2c20 + �

−2
0 (29)

Pk+1(t + 2zk+1) =
Lk∑
�=t

Q�(�− t)Pk(�); P0(2z0)= 1 (30)
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where t ranges from 0 to Lk in (30), while Pk(m)= 0 for m¡2zk . Q�(m) in (30) is zero for m
odd, and for m even, is de�ned recursively:

Q�(m)=

{
A�k+1(�

2
k+1


−1
k + A2k+1)

−�; m=0

Q�(m− 2) (�−m+2)(�−m+1)m �2k+1 (1 +
�2k+1
A2k+1

−1
k ); m¿0 and even

(31)

Furthermore, the �ltered estimate of the Poisson rate is given by

E[x2k |Zk ] =
∑Lk

t=0 Pk(t) Sk(t + 2)∑Lk
t=0 Pk(t) Sk(t)

(32)

where Sk(t) is zero for t odd, and for t even, is de�ned recursively:

Sk(t)=
{
1; t=0
(t − 1)
k Sk(t − 2); t¿0 and even (33)

Proof : The doubly stochastic Poisson process (24)–(26) is a special case of the exponential
noise model (7)–(10), where

�k =
−1
2�2k

; T (w)1 (x)= x2; R(w)(�)=− 1
2
log(−�); h(w)(x)=

1√
�

(34)

rk(xk) = log(ckxk)2; T (z)1 (z)= z; R(z)(�)= exp[�]; h(z)(z)=
1
z!

(35)

Note that �k ; �k ∈R are scalars (i.e., q=1 and s=1 in (8) and (9) respectively).
The unnormalized �ltered density is given by substituting (34)–(35) into (18) and (19). In

particular, from (19),

q0(y)=
1√
�
K0 c

2z0
0 y2z0 exp

[
−
(
c20 +

1
2�20

)
y2
]

(36)

This is in the form (27) by de�ning L0 = 2z0, P0(2z0)= 1 and 
−1
0 = 2c20 + �

−2
0 where the mul-

tiplicative constant (1=
√
�)K0 c

2z0
0 has been omitted since only the unnormalized density is of

importance.
Using (18) it is now shown that if

qk(x)= x� exp
[
− x2

2
k

]
(37)

then

qk+1(y)=
1√
�
Kk+1 c

2zk+1
k+1 y

2zk+1

(√
2�

�∑
m=0

Q�(m)y�−m
)
exp
[
− y2

2
k+1

]
(38)
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where 
k+1 and Q� are de�ned in (29) and (31), respectively. Substituting (34)–(35) and (37)
into (18) gives, after rearrangement

qk+1(y) =
1√
�
Kk+1 c

2zk+1
k+1 y

2zk+1 exp
[
−1
2

(
1

�2k+1 + A
2
k+1
k

+ 2c2k+1

)
y2
]

×
∫
R
x� exp

[
−1
2

(
x − �
�

)2]
dx (39)

where �=(Ak+1=(�2k+1

−1
k + A2k+1))y and �

2 = (1=
k +(A2k+1=�
2
k+1))

−1. To show (39) is identical
to (38) requires proving

1√
2�

∫
R
x� exp

[
−1
2

(
x − �
�

)2]
dx=

�∑
m=0

Q�(m)y�−m (40)

Indeed,

1√
2�

∫
R
x� exp

[
−1
2

(
x − �
�

)2]
dx=

1√
2�

∫
R
(�x + �)� exp

[
−1
2
x2
]
dx (41)

=
�∑
m=0

(
�
m

)
��−m�m

1√
2�

∫
R
xm exp

[
−1
2
x2
]
dx (42)

Comparing (40) with (42) shows that

Q�(m)=
(
�
m

)(
�
y

)�−m
�m

1√
2�

∫
R
xm exp

[
−1
2
x2
]
dx (43)

The odd moments of a Gaussian distribution are zero, while the even moments are given by

1√
2�

∫
R
xm exp

[
−1
2
x2
]
dx=

{
1; m=0
1 · 3 · · · (m− 1); m¿0 and even (44)

Therefore,

Q�(m)
Q�(m− 2) =

(�− m+ 2)(�− m+ 1)
m

(
�
y

)−2
�2 (45)

which agrees with (31).
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Therefore, if qk(x) is given by (27), then from (38) it follows that

qk+1(y)=
√
2Kk+1c

2zk+1
k+1 y

2zk+1
Lk∑
�=0

Pk(�)
�∑
m=0

Q�(m)y�−m exp
[
− y2

2
k+1

]
(46)

from which (30) follows straightforwardly.
Lastly, the �ltered estimate (32) is derived. Combining (16), (17) and (27) gives

E[x2k |Zk ] =

∫
R x

2∑Lk
t=0 Pk(t) x

texp[− x2

2
 k
] dx∫

R
∑Lk

t=0 Pk(t) x
texp[− x2

2
 k
] dx

=
∑Lk

t=0 Pk(t)Sk(t + 2)∑Lk
t=0 Pk(t)Sk(t)

(47)

where Sk(t)= (1=
√
2�
k)

∫
R x

t exp[−x2=2
k ] dx. Applying integration by parts shows that Sk(t)
can be calculated by (33).

Implementation details and computational complexity

1. Computational complexity: The computational complexity of �ltering a block of observa-
tions {z0; : : : ; zk} is O(kN 2) where N = z0 + · · ·+ zk and k denotes time.

2. The parameter 
k in (29) is independent of the data and can be computed o�-line.
3. Only the coe�cients of the even powers of x in the density function (27) need be calculated
(cf. (30)), since Pk(t) is zero when t is odd.

4. When implementing the �lter, it is necessary to scale Pk(t) to avoid numerical underow or
overow.

5. OTHER FINITE-DIMENSIONAL FILTERS

This section gives su�cient conditions for a �nite-dimensional �lter to exist. The key idea is
to investigate �ltered densities which satisfy a closedness condition, de�ned in Section 5.1. Two
forms of the �ltered density which satisfy the closedness condition are subsequently considered.
The �rst form is a polynomial times a Gaussian, considered in Section 5.2. Section 5.3 consid-
ers a �ltered density having the form of a Gaussian mixture (i.e. a weighted sum of Gaussian
distributions). Both Sections 5.2 and 5.3 give conditions (stated as constraints on the functions
T (w)i ; T (z)i ; R

(w); R(z); h(w); h(z) and rk de�ned in Section 2) which ensure the existence of a �nite-
dimensional �lter.
Given a speci�c �ltering problem, it is straightforward to check if the su�cient conditions in

Sections 5.2 or 5.3 are satis�ed. If they are, then an explicit �ltering algorithm can be readily
derived from the unnormalized �ltered density (18), (19) in an equivalent way to the doubly
stochastic Poisson �lter derivation in Section 4.
Lastly, Section 5.4 presents a �nite-dimensional �lter for the arrival times of a Poisson process.

It shows how one-sided noise distributions (i.e. noise which is nonnegative) can also lead to
�nite-dimensional �lters.

5.1. Closed classes of �ltered densities

The exponential noise model de�ned in Section 2 contains the following arbitrary functions:
T (w)i ; T (z)i ; R

(w); R(z); h(w); h(z) and rk . The form of these functions determines whether or not the
integrals in (18) and (19) can be evaluated analytically. Lemma 2, combined with De�nition 1
below, gives su�cient and easily veri�able conditions for a �nite-dimensional �lter to exist.
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De�nition 1 (Closedness of �ltered density)

Let C denote a class of unnormalized probability densities. De�ne C to be closed if it satis�es
the following constraints:

1. If P(x)∈C and �∈R+ then �P(x)∈C.
2. If P1(x); P2(x)∈C then P1(x)P2(x)∈C.
3. If P1(x); P2(x)∈C and a∈R then P(y)=

∫
R P1(y − ax)P2(x) dx exists, can be computed

analytically, and furthermore P(y)∈C.

The next lemma shows the relevance of classes C which are closed.

Lemma 2

The (unnormalized) �ltered density qk(x), de�ned in Lemma 1, will always be an element of
C if:

1. C is closed (see De�nition 1).
2. For all k¿0; �∈R and i=1; : : : ; s,

exp[� (rk(y))i]∈C; exp[−R(z)(rk(y))]∈C; exp[�T (w)i (y)]∈C; h(w)(y)∈C: (48)

Proof : Take C to be closed. Then the conditions (48) ensure that (18) has the form qk+1(y)=
P1(y)

∫
R P2(y − Ak+1x)qk(x) dx, where P1; P2 ∈C. Therefore, if qk(x)∈C, then qk+1(x)∈C too.

The conditions (48) are su�cient to ensure q0(x)∈C (see (19)).

5.2. Polynomial times Gaussian �ltered density

The �ltered density for the linear Gaussian state-space model (1), (2) is well-known to be a
Gaussian distribution. (It is easily veri�ed that the family of (unnormalized) Gaussian distributions
is closed in the sense of De�nition 1.) A more general class of density functions‡ is de�ned by

C=


q(x) : q(x)=

N∑
j=0

ajxjexp[bx2 + cx]; aj; b; c∈R; b¡0

 (49)

Such a class is referred to as the class of polynomials times a Gaussian (PTG). It is readily
veri�ed that this class is closed (see De�nition 1). Therefore, Lemma 2 shows that, under certain
conditions on T (w)i ; R(z); h(w) and rk , the �ltered density will always belong to the class of PTGs.
These conditions are stated explicitly in the following lemma.

Lemma 3 (Su�cient conditions)

If the restrictions below are imposed on the signal model de�ned in Section 2; the �ltered
density will belong to the class C de�ned in (49), and is said to have the form of a PTG, a

‡ The class also includes functions which are not density functions. However, this causes no problems, since the �ltering
equations (18), (19) themselves ensure that the �ltered density is an unnormalized density function (i.e. non-negative and
integrable)
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polynomial times a Gaussian. (In the table below, a — denotes no restriction. R(z) ◦ rk denotes the
composite function, i.e. R(z)(rk(x)).)

T (w)i quadratic T (z)i —
R(w) — R(z) see R(z) ◦ rk
h(w) polynomial × exp(quadratic) h(z) —
(rk)i quadratic + log(polynomial) R(z) ◦ rk quadratic + log(polynomial)

Proof : Follows immediately from Lemma 2 and the fact that the class of PTGs is closed.

Remark

Although T (z)i and h(z) are marked as arbitrary, indirectly they are restricted by the restrictions
on R(z). Speci�cally, because

∫
R	

(z)(z; �) dz=1; R(z) is given by§

R(z)(�)= log
∫
R
exp

[
s∑
i=1

�iT
(z)
i (z)

]
h(z)(z) dz (50)

Models which satisfy the su�cient conditions in Lemma 3, yet have not been introduced into
the literature previously, include the following.
Doubly stochastic Poisson process: The doubly stochastic Poisson process has a �nite-

dimensional �lter, as derived in Section 4.
Doubly stochastic binomial process: The canonical parameter (see Section 2) of a binomial

distribution having success probability p is logp=(1− p). Rather than Poisson observations with
rate (ckxk)2 (see Section 4), a �nite-dimensional �lter also exists for Binomial observations with
canonical parameter �k = logp=(1− p)= log x2k .
There are myriad other noise densities which satisfy Lemma 3 yet do not have a name. Further-

more, models which do not meet the criteria directly can be approximated by models which do.
For example, an Edgeworth series (a polynomial times a Gaussian) can be used to approximate the
state-space noise density (8). Because most distributions can be approximated by an Edgeworth
series, 	(w) can be quite general.

5.3. Gaussian mixture �ltered density

Another interesting form the �ltered density can take is that of a weighted sum of Gaussian
densities, referred to as a Gaussian mixture. In Reference 25, all probability densities are approx-
imated by Gaussian mixtures, thus forcing the �ltered density to also have the same form. In
the same way, Lemma 3 used the recursive update equations (18) and (19) to determine su�-
cient conditions for the �ltered density to be a PTG (polynomial times a Gaussian), conditions

§ For convenience, zk is assumed to be continuous. If it is a discrete random variable, the integral can be replaced by a
suitable summation.
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on T (w)i ; T (z)i ; R
(w); R(z); h(w); h(z) and rk can likewise be given to ensure the �ltered density be a

Gaussian mixture.
The class of Gaussian mixtures is formally de�ned by

C=


q(x) : q(x)=

n∑
j=1

aj exp[bjx2 + cjx]; aj; bj; cj ∈R; aj¿0; bj¡0

 (51)

The class of Gaussian mixtures is closed (see De�nition 1). The next lemma gives conditions for
the �ltered density to be a Gaussian mixture.

Lemma 4 (Su�cient conditions)

If the restrictions below are imposed on the signal model de�ned in Section 2, the �ltered
density will belong to the class C de�ned in (51), and is said to have the form of a Gaussian
mixture. (In the table below, a — denotes no restriction. R(z) ◦ rk denotes the composite function,
i.e. R(z)(rk(x)).)

T (w)i quadratic T (z)i —
R (w) — R (z) see R(z) ◦ rk
h(w) Gaussian mixture h(z) —
(rk)i quadratic R(z) ◦ rk quadratic

Proof : Follows immediately from Lemma 2 and the fact that the class of Gaussian mixtures is
closed.

Remark

Although T (z)i and h(z) are marked as arbitrary, indirectly they are restricted by the restrictions
on R(z). See (50).

5.4. Poisson arrival time �lter

Up until now, only �ltered densities with exp[−x2] terms have been considered in the present
paper. The Poisson arrival time �lter presented in this section arises from the consideration of
�ltered densities with exp[−x] terms.
After stating the signal model, some intended applications of the Poisson arrival time �lter are

discussed. The general form of the �ltered density is then given. Lastly, an algorithm for the
resulting �nite-dimensional �lter is presented.

Signal model (Poisson arrival times)

The underlying process xk ∈R is a scalar linear dynamical system of the form

xk+1 = Ak+1xk + wk+1; x0 =w0; Ak+1¿0 (52)
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	(w)(wk) =
1
ak
exp
[
−wk
ak

]
; wk¿0; k =0; 1; : : : (53)

The noise wk ∈R; wk¿0 is a scalar-independent negative exponentially distributed sequence with
parameter ak ∈R; ak¿0. The parameters Ak ∈R; Ak¿0 and ak¿0 are deterministic and assumed
to be known. The process xk is not observed directly. Instead, a ‘delayed’ version zk is ob-
served. The delay is another independent negative exponentially distributed random variable, with
(deterministic and known) parameter bk ∈R; bk¿0. The observations {z0; : : : ; zk} thus have the
following independent density:

	(z)(zk ; xk)=
1
bk
exp
[
− zk − xk

bk

]
; zk¿xk : (54)

Aim: Given the observations {z0; : : : ; zk} the aim is to derive an optimal recursive �lter for the
arrival times xk , i.e., the aim is to compute E[xk |Zk ].

Remark

1. If Ak =1, then xk models the arrival time of the kth Poisson event. Furthermore, if there is
a delay between the arrival of each Poisson event and its observation, then zk models the
observation time of the kth Poisson event. Based only on the observation times, the aim is
to determine the actual arrival times.

2. The requirement Ak¿0 in (52) ensures that the state xk in (52) is always non-negative. This
in turn ensures that the �ltered density qk(x) has one-sided support [0;∞] for all k.

3. Because the support of 	(z) in (54) depends on xk ; 	(z) is not a family of exponential
distributions, i.e.	(z) cannot be put into the form (9).

Practical applications: Let the state xk in (54) be the time that the kth event occurs. Furthermore,
as soon as an event occurs, a message is dispatched. Let the observation zk in (54) be the time
that the message arrives at its destination. Therefore, the observation time zk is the arrival time xk
plus the transit time of the message.
A simple example is the case of a sensor connected to the interrupt line of a CPU. When an event

is detected by the sensor, an interrupt will be generated. However, there will be a delay between
the interrupt being triggered and the CPU actually handling the interrupt. (The delay will be caused
by the CPU servicing higher-priority interrupts, for example.) Under certain circumstances, it is
reasonable to model this delay by a negative exponentially distributed random variable.
A more complex example of a negative exponentially distributed delay is in ATM networks.26

Assume there are a number of virtual circuits (VC) carrying voice calls. Each voice call can be
characterized by an on–o� two-state Markov chain. When it is in the ON state, it can be assumed
that cells are generated according to a Poisson process. When such calls are multiplexed together
and fed into an ATM node, it has been found27 that the queue length has a negative exponential
distribution. Since ATM cells are constant in length, the time spent in the queue for each cell is
proportional to the queue length and hence will also have a negative exponential distribution.
Therefore, if a cell is sent whenever some event occurs, the destination ATM node can be

expected to receive that cell delayed in time by a negative exponentially distributed amount. If the
events correspond to arrival times of a Poisson process, then the Poisson arrival time �lter can be
used to estimate the exact time the events occurred based on the arrival time at the destination
ATM node.
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Finite-dimensional �lter: For simplicity of derivation (see Remark 2 below the proof) only the
case ak¿bk in the model (52)–(54) is considered. This criterion is a realistic assumption since it
implies that the measurement delay is on average smaller than the underlying process delay.
The step function u(·) de�ned by

u(x) =
{
1; x¿0
0; x ¡ 0

(55)

is used in the optimal Poisson arrive time �lter derived in Theorem 2.

Theorem 2 (Optimal Poisson arrival time �lter)

At time k, the unnormalized �ltered density qk(x) de�ned in (17) or the Poisson arrival time
process de�ned above (52)–(54) can be expressed as

qk(x)=
k∑
i=0


 k−i∑
j=0

�(k)ij exp[c
(k)
j x]


 u(�(k)i − x); x¿0 (56)

Thus, qk(x) is completely determined by the �
(k)
ij ∈R; i=0; : : : ; k; j=0; : : : ; k − i; c(k)j ∈R;

j=0; : : : ; k and �(k)i ∈R; i=0; : : : ; k. These statistics are initialized to

�(0)0 = z0; c(0)0 =
1
b0

− 1
a0
; �(0)0;0 = 1 (57)

and are recursively updated by

�(k+1)k+1 = zk+1 �(k+1)i =Ak+1�
(k)
i ∧ zk+1; i=0; : : : ; k

c(k+1)0 =
1
bk+1

− 1
ak+1

c(k+1)j+1 =
1
bk+1

+
1
Ak+1

c(k)j ; j=0; : : : ; k

�(k+1)i; j+1 = �
(k)
ij

(
Ak+1
ak+1

+ c(k)j

)−1
; i=0; : : : ; k; j=0; : : : ; k − i (58)

�(k+1)i;0 = −
k−i∑
j=0

�(k)ij

(
Ak+1
ak+1

+ c(k)j

)−1
exp

[(
Ak+1
ak+1

+ c(k)j

)
�(k)i

]
; i=0; : : : ; k

�(k+1)k+1;0 =
k∑
i=0

k−i∑
j=0

�(k)ij

(
Ak+1
ak+1

+ c(k)j

)−1(
exp

[(
Ak+1
ak+1

+ c(k)j

)
�(k)i

]
− 1
)

Furthermore, the �ltered estimate of the Poisson arrival time is given by

E[xk |Zk ] =

∑k
i=0

∑k−i
j=0 �

(k)
ij S1(�

(k)
i ; c

(k)
j )∑k

i=0

∑k−i
j=0 �

(k)
ij S0(�

(k)
i ; c

(k)
j )

(59)
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where

S0(�
(k)
i ; c (k)j ) =



� (k)i ; c (k)j =0
exp[c(k)j �

(k)
i ]−1

c(k)j
; c(k)j 6= 0

S1(�
(k)
i ; c(k)j ) =




(�(k)i )
2

2 ; c(k)j =0
1+(c(k)i �

(k)
i −1)exp[c(k)j �(k)i ]
(c(k)j )

2
; c(k)j 6= 0

(60)

Proof : Due to the parameter-dependent support of the observation noise density 	(z), the signal
model does not belong to the class of signal models de�ned in Section 2. However, the derivation
of the unnormalized �ltered density (Section 3) is applicable to any partially observable Markov
process. De�ne

�0(x0) =
(1=a0)exp [−x0=a0] (1=b0)exp [−(z0 − x0)=b0]

�p(x0) �p(z0)
u(z0 − x0) (61)

�k(xk−1; xk) =
(1=ak)exp [−(xk − Akxk−1)=ak ] (1=bk)exp [−(zk − xk)=bk ]

�p(xk) �p(zk)

×u(xk − Akxk−1) u(zk − xk) (62)

where �p(x)= exp[−x] and u(·) is de�ned in (55). Then, as shown in the proof of Lemma 1, the
unnormalized �ltered density qk is given recursively by

q0(x) = �0(x) �p(x); x¿0 (63)

qk+1(y) =
∫ ∞

0
�k+1(x; y) �p(y)qk(x) dx; y¿0 (64)

Substituting (61) into (63) gives

q0(x)=K0 exp
[(

1
b0

− 1
a0

)
x
]
u(z0 − x0); x¿0 (65)

where K0 ∈R does not depend on x. This is equivalent to (56) when (57) holds. To verify (58),
it is necessary to show that if qk(x)= exp[c

(k)
j x]u(�

(k)
i − x); then

qk+1(y) =
{
1
�
exp
[(

�
Ak+1

+ c(k+1)0

)
y
]
− 1
�
exp[��(k)i ]exp[c

(k+1)
0 y]

}
u(Ak+1�

(k)
i − y)

× u(zk+1 − y) +
{
1
�
(exp[��(k)i ]− 1)exp[c(k+1)0 y]

}
u(zk+1 − y) (66)

=
{
1
�
exp[c(k+1)j+1 y]−

1
�
exp[��(k)i ]exp[c

(k+1)
0 y]

}
u(�(k+1)i − y) (67)

+
{
1
�
(exp[��(k)i ]− 1)exp[c(k+1)0 y]

}
u(zk+1 − y)
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where

� =
Ak+1
ak+1

+ c(k)j ; c(k+1)0 =
1
bk+1

− 1
ak+1

(68)

�(k+1)i = Ak+1�
(k)
i ∧ zk+1; c(k+1)j+1 =

�
Ak+1

+ c(k+1)0 =
1
bk+1

+
1
Ak+1

c(k)j (69)

Substituting qk(x)= exp[c
(k)
j x]u(�

(K)
i − x) into (64) gives

qk+1(y)= exp[c
(k+1)
0 y]

∫ �(k)i ∧y=Ak+1

0
exp [�x] dxu(zk+1 − y) (70)

where � and c(k+1)0 are de�ned in (68). Equation (66) follows upon evaluating the integral in (70)
assuming � in (68) is non-zero (see Remark 2 below).
Finally, by combining (16), (17) and (56), the �ltered arrival time can be computed:

E[xk |Zk ] =

∫∞
0 zqk(x)dx∫∞
0 qk(x)dx

(71)

=

∑k
i=1

∑k−i
j=0 �

(k)
ij S1(�

(k)
i ; c

(k)
j )∑k

i=0

∑k−i
j=0 �

(k)
ij S0(�

(k)
i ; c

(k)
j )

(72)

where

S0(b; c) =
∫ ∞

0
exp [cx] dx; S1(b; c)=

∫ b

0
x exp[cx]dx (73)

Evaluating the above integrals gives (60).

Remark

1. Computational complexity: The computational complexity involved in �ltering a block of
observations {z0; : : : ; zk} is O(k3). The amount of storage required is O(k2).

2. Division by zero will occur if �=(Ak+1=ak+1) + c
(k)
j =0 in (66) above. Note that ak¿bk

ensures that (Ak+1=ak+1) + c
(k)
j ¿0; k =0; 1; : : :. It can be shown that �=0 signi�es that the

�ltered density qk+1 contains a polynomial term. In general, the �ltered density qk(x) (17)
for the Possion arrival time model (52)–(54) is always of the form

qk(x)=
∑
i

(∑
j

fij(x)ecijx
)
u(�i − x) (74)

where the fij are polynomials. The two sums will always have �nite (but in general growing
with time k) limits.

3. Since �(k+1)i =Ak+1�
(k)
i ∧ zk+1; it is posible for some of the �(k)i to be equal. If this occurs,

the corresponding �(k)ij can be merged into one term.
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6. SUB-OPTIMAL FILTERS

This section shows how to construct a sub-optimal �lter based on any of the optimal �lters
in Sections 4 and 5.2. The resulting sub-optimal �lter has a signi�cantly lower computational
complexity compared to the original �lter. After outlining the key idea, namely to approximate
the �ltered density by an Edgeworth series, the sub-optimal �lter for the doubly stochastic Poisson
model (Section 4) is stated.
The optimal �lters in Sections 4 and 5.2 have a �ltered density qk(x) (17) in the form of a

polynomial times a Gaussian. If the polynomial has many non-zero coe�cients, the update (30)
requires many multiplications. Therefore, the computational complexity can be signi�cantly reduced
if at each instant, the �ltered density is approximated by a low-order polynomial times a Gaussian.
Such an approximation can be achieved by using an Edgeworth series expansion.28 The Edgeworth
series expansion has the property that the lth-order expansion has the same l cumulants as the
original density.
To demonstrate how to construct a sub-optimal �lter, the corresponding sub-optimal �lter for

the doubly stochastic Poisson process �lter (Theorem 1) is now derived. For convenience, a
fourth-order Edgeworth series expansion is used. Since the odd cumulants of the �ltered density
qk(x) (27) are zero, the choice of a fourth degree polynomial matches both the variance and the
fourth-order cumulant, allowing for departure from normality.
Let pk(x) be the (unnormalized) density we wish to approximate. pk(x) is assumed to have its

odd cumulants identically zero.

Lemma 5 (Edgeworth series approximation)

Given an unnormalised density function pk(x) with odd cumulants identically zero, the density
�qk(x)=K[P0 + P2x

2 + P4x4]exp[− 1
2x
2=V ] will have the same �rst four cumulants provided:

P0 =m22(3�4 + 24); P2 = − 6m2�4; P4 = �4; V =m2 (75)

where

m2 =

∫
R x

2pk(x) dx∫
R pk(x) dx

; m4 =

∫
R x

4pk(x) dx∫
R pk(x) dx

; �4 =
m4
m22

− 3 (76)

and K is the normalizing constant to make �qk(x) integrate to one.

Proof : Since pk(x) has its odd cumulants identically zero, we need only consider even cumu-
lants. The standardized density [1 + (�4=4!)(z4 − 6z2 + 3)]exp[− 1

2 z
2] has mean zero, variance one

and fourth-order culumant �4. The result now follows easily.

Due to the Edgeworth series expansion matching cumulants, using either pk(x) or its approxi-
mation �qk(x) as the �ltered density in (32) gives the same estimate of x

2
k .

The following algorithm summarizes the implementation of the sub-optimal �lter for the doubly
stochastic Poisson process de�ned in Section 4.
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Algorithm 1 (Sub-optimal �lter)

Let �qk(x); k =0; 1; : : : ; denote the unnormalized sub-optimal �ltered density. The sub-optimal
�lter, at time k = 0, is initialized by de�ning p0(x)= q0(x) where q0(x) is de�ned in (36). For
each time instant k =0; 1; : : : the sub-optimal �ltered density is updated as follows.

1. Use Lemma 5 to calculate m2, m4, �4 and �qk(x).
2. Output m2 as the �ltered estimate for x2k .
3. Substitute �qk(x) for qk(x) and pk+1(x) for qk+1(x) in (27), Theorem 1, to compute pk+1(x).
4. Set k = k + 1.

7. NUMERICAL EXAMPLE

This section presents computer simulations to illustrate the performance of the proposed optimal
and sub-optimal �lters for the doubly stochastic Poisson process. The doubly stochastic Poisson
process model (24)–(26) with parameters Ak = 0·95; ck = 0·6 and �2k = 1

2 was used to generate
20 Poisson distributed observations of the linear Gaussian dynamical system. Both the optimal
�lter (Theorem 1 of Section 4) and the sub-optimal �lter (Algorithm 1 of Section 6) were used
to estimate the state of the system given these observations. Figure 1 shows, for each time
instant k, the true value of the rate (ckxk)2, the integer-valued observation zk , and the optimal
�ltered estimate E[(ckxk)2 | Zk ]. Figure 2 shows the sub-optimal �ltered estimate. The optimal
�ltered rate was 2·6 dB better than the estimator [(ckxk)2 = zk . The sub-optimal �ltered rate was
2·2 dB better, only 0·4 dB worse than the optimal �lter. Figure 3 shows the optimal and the sub-
optimal �ltered rates in the one graph for comparison. Note that in this example, the sub-optimal
�lter performs comparably to the optimal �lter.
The same doubly stochastic Poisson process model was then used to generate 100 observations.

The sub-optimal �ltered rate is shown in Figure 4. The improvement over using the observations
alone (i.e., [(ckxk)2 = zk) was 0·7 dB. Note that around k =45 to 50, due to two large (zk =10)
observations, the �ltered rate di�ered signi�cantly to the true rate in this region. Overall though,
the sub-optimal �ltered rate followed the true rate reasonably well.
Table I shows the improvement in the mean-square error (MSE) of the optimal and sub-optimal

doubly stochastic Poisson process �lters. The improvement is relative to the simple estimate of the
rate based on the observations alone, namely [(ckxk)2 = zk . The precise model used was the doubly
stochastic Poisson process model (24)–(26) with parameters �2k =

1
2 ; and Ak =0·1; 0·5; 0·8; 0·95,

ck =0·25; 0·5; 0·75 as indicated in the table. For each trial, eight observations were generated,
and the �ltered rate calculated for each of the eight time instants. The MSE was calculated by
performing 250 trials, and averaging the squared-errors resulting from each trial. There are three
general observations that can be made based on Table I:

1. As Ak → 0 and ck → 0, the sub-optimal �lter performs almost identically to the optimal �lter.
2. The improvement in MSE increases as ck → 0.
3. The improvement in MSE increases initially but then decreases as Ak decreases towards zero,
(see for example the last column of Table I)

These observations can be explained as follows. In an intuitive sense, the total information
available about the true rate consists of two parts, the observations zk ; and the correlations between
the xk caused by the model (7). The more information that is contained in the correlations relative
to the actual observations, the better the optimal �lter will perform compared to the simple estimate
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Figure 1. Simulation example of the optimal �lter applied to a doubly stochastic Poisson process

Figure 2. Simulation example of the sub-optimal �lter applied to a doubly stochastic Poisson process
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Figure 3. Comparison of the optimal and sub-optimal �lters applied to a doubly stochastic Poisson process

Figure 4. Simulation example of the sub-optimal �lter applied to a doubly stochastic Poisson process over a longer time
frame
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Table I. The improvement (dB) obtained by applying the optimal and sub-optimal �lters
to the doubly stochastic Poisson process with parameters �2k =

1
2 and Ak ; ck

Ak Filter ck =0·25 ck =0·5 ck =0·75

0·1 Optimal 13·2 6·84 3·90
Sub-optimal 13·2 6·84 3·90

0·5 Optimal 11·6 7·02 4·43
Sub-optimal 11·6 7·01 4·43

0·8 Optimal 8·90 5·04 2·91
Sub-optimal 8·90 4·82 2·60

0·95 Optimal 7·56 4·31 2·76
Sub-optimal 7·41 3·23 1·82

based on the observations alone. Therefore, the improvement in MSE will increase if either the
amount of information present in the observations zk decreases, or if the correlation between the
xk increases.
The information contained in the observations zk decreases as the rate dies o� to zero. This

in turn is caused by ck → 0, or similarly, by the average value of x2k being small. The latter is
caused to some extent by Ak being small. Therefore, for large Ak; as Ak decreases, it appears
from Table I that the improvement in MSE increases, which is attributed to the average value of
x2k decreasing and thus removing information from the observations. However, reducing Ak also
reduces the correlation between the xk . There comes a point beyond which decreasing Ak causes
the improvement in MSE to decrease.
Lastly, the sub-optimal �lter is expected to perform comparably to the optimal �lter when

the amount of information which the optimal �lter can exploit decreases. This is the case either
when the correlation between the xk is small (i.e. Ak → 0), or when the observations contain little
information (i.e. ck → 0).
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