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Optimal Training Sequences and Pilot Tones for
OFDM Systems
Jonathan H. Manton, Member, IEEE

Abstract—Orthogonal frequency-division multiplex (OFDM)
systems transmit data in blocks. The two simplest ways of iden-
tifying the channel in OFDM systems are to insert a training
sequence between consecutive blocks or to insert pilot tones inside
each block. This letter proves that both methods can achieve the
same level of performance under certain conditions on the block
length.

Index Terms—Channel estimation, orthogonal frequency-divi-
sion multiplex, pilot tones, training sequence.

I. INTRODUCTION

A N UNKNOWN finite-impulse response channel can be
identified in either the time domain, by using a training

sequence, or in the frequency domain, by using pilot tones.
This letter derives a necessary and sufficient condition for each
method to be optimal, and proves that both methods can esti-
mate the channel with the same accuracy.

Throughout, it is assumed that the known complex-valued
training sequence is sent through an un-
known channel whose length does not
exceed some known constant. The received symbols

are given by

(1)

where the represent additive white Gaussian noise with zero
mean and variance . This model, which is appropriate for
studying time domain channel estimation, will be shown in Sec-
tion III to encompass frequency domain channel estimation as
well. (This is not immediately apparent because the data sym-
bols and pilot tones are interleaved in OFDM systems [1].)

It is convenient to rewrite (1) in matrix form as

(2)

where is the Toeplitz matrix with th entry
. The superscript denotes Hermitian trans-

pose and is the identity matrix.
Section II studies the channel estimation problem in the time

domain, while Section III studies it in the frequency domain.
Section IV explains why optimal training sequences should still
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be used even if other information, such as second order statistics,
is used to enhance the channel estimate.

Notation: The complex conjugate of is denoted by .
Dirac’s delta function is defined to be zero except when

, in which case it equals one.

II. OPTIMAL TRAINING SEQUENCE

This section defines what it means for a training sequence to
be optimal and then derives a necessary and sufficient condition
for a training sequence to be optimal.

Based on the channel equation (2), a number of different
“optimal” channel estimators can be constructed. For instance,
and quite surprisingly, the James–Stein estimate ofin the re-
gression (2), as defined in [4], has a smaller mean-square error
(MSE) than the traditional maximum-likelihood
estimate (MLE)

(3)

under certain conditions. However, the James–Stein estimator
achieves a smaller MSE by introducing bias, and limited em-
pirical evidence suggests that this bias results in poorer source
estimates after channel inversion. Therefore, it is desirable to
limit attention to unbiased channel estimates. It is a standard
result [2] that the MLE in (3) is also the minimum variance
unbiased estimate. Its variance is

(4)

Remark: A necessary condition for the channel to be identi-
fiable is for , that is, must have at least as many
rows as columns.

Definition 1 (Optimal Training Sequence):The training se-
quence is said to be optimal if no other training sequence
of equal or less power , and possibly of different length,
results in a smaller variance of the minimum vari-
ance unbiased estimate, defined in (3).

The following preliminary result is required in the proof of
Theorem 1.

Lemma 1: Let be such that
for some constant . Then, provided the inverse exists,

, with equality if and only if
.

Proof: Let be the eigenvalues of .
If then the Lagrange multiplier
technique shows that

, with equality if and only if . If
then . Moreover, if
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then , implying
that .

Theorem 1 (Optimal Training Sequence):Let be a
training sequence and define, , and as in equations
(1)–(3).

1) The power constraint implies
.

2) The training sequenceis optimal if and only if
, in which case it achieves the lower bound

. A necessary condition for opti-
mality is that for and .

3) If then is optimal if and only if
it is of the form for constants and

.

Proof: Since
, , with

equality if and only if for and .
Lemma 1 thus implies with equality if
and only if . This, together with (4), proves Parts
1 and 2. Finally, if then expanding
in terms of the shows that at most one can be nonzero,
proving Part 3.

A training sequence of the form has a flat
power spectrum; it excites all channel frequencies equally. If

then there exist optimal training sequences which
do not excite all channel frequencies equally. Indeed, this is what
opens the possibility of optimal pilot tones existing.

III. OPTIMAL PILOT TONES

This section derives necessary and sufficient conditions for
pilot tones in OFDM systems to achieve the lower bound in Part
1 of Theorem 1.

Consider an OFDM system [1] with a cyclic prefix of length
and virtual sub-channels. Define

(5)

and let be the normalized DFT matrix
with th entry

(6)

The data vector is transmitted as .
The received signal, corrupted by additive white noise, is
as given in (2).

If is known to the receiver then the minimum variance un-
biased estimate of the channel is as given in (3), whereis
defined in (2). However, it is not necessary for all the elements
of to be known.

Lemma 2: Let be an arbitrary vector with cer-
tain elements known to the receiver and define . The
variance of the minimum variance unbiased estimate ofin (1)
is , where is the Toeplitz
matrix with th entry , and is

the diagonal matrix whoseth diagonal element is one if is
known and zero otherwise.

Proof: Rewrite (1) as where
is the Toeplitz channel matrix. The unknown elements of

can be removed by pre-multiplyingby . Indeed, since
is diagonal, .

Thus, where and .
Taking into account the singularity of , it can be shown
[2, p. 271] that the variance of the minimum variance unbiased
estimate of is .

Remark: If fewer than elements of are known then
will be singular, proving that at leastelements must be known
in order to identify the channel.

Comparing Lemma 2 and (4) shows that not knowing an ele-
ment of results in the same performance as would be obtained
if the element of was known to be zero. It therefore suffices to
consider only pilot tone vectors, which are now defined.

Definition 3 (Pilot Tone Vector):The vector is called a pilot
tone vector if all its nonzero elements are known to the receiver.

Since Lemma 2 and (4) showed that a pilot tone vectoris
equivalent to the training sequence , it makes sense
to define an optimal pilot tone vector as follows.

Definition 3 (Optimal Pilot Tones):The pilot tone vector
is said to be optimal if the corresponding training sequence

is optimal according to Definition 1.
Remark: There is a one-to-one correspondence between op-

timal pilot tones and optimal training sequences. Indeed, ifis
an optimal training sequence then, by Theorem 1, for

and . Thus, there exists anfor which
.

The following lemma is required in the proof of Theorem 2.
Lemma 3: Define the entries of to be

where for .

1) The null space of is one dimensional.
2) If then for , and, if

, then the must satisfy
for .

Proof: Part 1 follows from the fact that a square Van-
dermonde matrix has full rank if all its generating elements
are nonzero and distinct. If then this also
proves that for . Define the polynomials

for . Recursively define
for and by the rule

. Te-

dious algebraic manipulation shows that contains no terms
in , and moreover, .
Therefore, if and then

must hold for , and, by
symmetry, must therefore hold for .

Theorem 7 (Optimal Pilot Tones):Let be a pilot
tone vector and define, and as in (1), (5) and (6).

1) The pilot tone vector is optimal if and only if it satisfies
the following two conditions:

for

(7)
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for

(8)

2) If is not a multiple of then there does not exist
an optimal pilot tone vector with elements nonzero.

3) If there exists an integersuch that , then
is optimal with elements nonzero if and only if it has

the form for constants
and .

Proof: The th element of is

(9)

Thus, the condition for and in
Theorem 1 can be expressed as (7). Under this condition,
is a Toeplitz matrix. Let be such that . Then

(10)

Thus, the condition in Theorem 1 can be ex-
pressed as . For , this is equivalent to (8).
Under condition (7), automatically equals . This proves
Part 1.

Assume that the elements are nonzero. Define
and let the unusual notation denote the

vector . Then, the constraints (7)
and (8) can be written in matrix form as and ,
where the th element of the matrix is

with . From Lemma 3, the
dimension of the null space of is one. Therefore, a necessary
condition for to satisfy both and is for

for some constant . Since no element of is
zero, the only way for to hold is if
for some constant . From Lemma 3, this implies the
must be uniformly spaced, proving Parts 2 and 3.

Theorem 2 implies that there is no need to use a training se-
quence in OFDM systems. Indeed, the shortest optimal training
sequence is of length while the smallest number of opti-
mally placed pilot tones is . This also implies that the extra

symbols required for the cyclic prefix in OFDM sys-
tems are not at all inefficient; , the

smallest number of transmitted symbols required to identify the
channel. The results of this section also imply that, somewhat
counter-intuitively, the accuracy of the channel estimate based
on optimally spaced pilot tones is not affected by channel spec-
tral nulls.

IV. I NCORPORATINGOTHER INFORMATION

Blind estimation techniques can identify the channel based
on known statistical or algebraic properties of the data symbols.
(Algebraic properties arise from precoding the source symbols
[3].) It is natural to ask whether or not the optimal training se-
quences and pilot tones proposed in this paper remain optimal if
other information is used to enhance the channel estimate. This
section briefly shows that, in certain cases at least, they do re-
main optimal.

Consider a training sequence followed by a data sequence.
Let denote the channel estimate (3) obtained by using the
training sequence. Assume that some property of the data se-

quence is used to obtain another channel estimate. If the

channel noise is white then and will be statistically in-
dependent. Therefore, there is no reason not to use an optimal
training sequence.

A similar argument holds for an OFDM system. As the proof
of Lemma 2 shows, the channel estimatebased on the pilot
tones is independent of the other data symbols sent. Thus, if the
channel noise is white Gaussian,will be independent of any
channel estimate based on the data symbols.

V. CONCLUSION

This letter derived necessary and sufficient conditions for
training sequences and pilot tones to be optimal. It was proved
that training sequences and pilot tones both can achieve the
lower bound on the variance of the channel estimate.

REFERENCES

[1] B. Le Floch, M. Alard, and C. Berrou, “Coded orthogonal frequency
division multiplex,”Proc. IEEE, vol. 83, pp. 982–996, June 1995.

[2] J. R. Magnus and H. Neudecker,Matrix Differential Calculus with Ap-
plications in Statistics and Econometrics. New York: Wiley, 1994.

[3] J. H. Manton and Y. Hua, “A frequency domain deterministic approach
to channel identification,”IEEE Signal Processing Lett., vol. 6, pp.
323–326, Dec. 1999.

[4] J. H. Manton, V. Krishnamurthy, and H. V. Poor, “James–Stein state
filtering algorithms,” IEEE Trans. Signal Processing, vol. 46, pp.
2431–2447, Sept. 1998.


