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Optimization Algorithms Exploiting
Unitary Constraints

Jonathan H. MantgrMember, IEEE

Abstract—This paper presents novel algorithms that iteratively It is candidly stated that in terms of convergence speed
converge to a local minimum of a real-valued functionf(X) sub- and computational complexity, the proposed algorithms
ject to the constraint that the columns of the complex-valued ma- are not necessarily the best algorithms for any given cost
trix X are mutually orthogonal and have unit norm. The algo- . S . . -
rithms are derived by reformulating the constrained optimization fun_ctlon. Rather, the justification for this work is that it is
problem as an unconstrained one on a suitable manifold. This sig- believed to be the first work that presents general purpose and
nificantly reduces the dimensionality of the optimization problem. ready-to-use algorithms for solving optimization problems
Pertinent features of the proposed framework are illustrated by ~with complex-valued orthogonality constraints. Indeed, the
using the framework to derive an algorithm for computing the only prerequisite for being able to implement the four main
eigenvector associated with either the largest or the smallesteigen- = "~ . . . .
value of a Hermitian matrix. optlm_lzanon algorlthms (namely, AI_gonthm 15 of S_ectlon V-A,

Algorithm 17 of Section V-B, Algorithm 24 of Section VII-A,
and Algorithm 26 of Section VII-B) is to be able to compute
the derivative and Hessian of a cost functipniC**? — R,
as defined in Section Il. The relevance of these algorithms to
. INTRODUCTION signal processing is now delineated.

HIS paper derives novel algorithms for numerically mini- o
mizing a cost functiorf(X), f: C"*? — R subject to the A. Applications

orthogonality constraink / X = I, whereH denotes Hermi-  Ag the opening paragraph of [29] states, many signal pro-
tian transpose, andis the identity matrix. The complex-valuedcessing tasks involve the constrained minimization of the func-
case is considered for generality; the results in this paper fgmn f(X) = tr{XHRX}, whereR is a possibly time-varying
main valid if all quantities are restricted to being real-valued. §ovariance matrix. If the constraint 7 X = I, then it is by
has been shown recently [8] that the geometrically correct sgiw well known [10], [29] that the minimum occurs when the
ting for this constrained minimization problem is on the Stiefelgjumns ofx’ span the same subspace as spanned by the eigen-
manifold in general and on the Grassmann manifold(iX)  vectors associated with thesmallest eigenvalues @; this is
possesses the symmetrical property tha¥@) = f(X) for  an example wherg(X) = f(XQ) for any unitaryQ. There-
any unitary (that isQ”Q = QQ™ = I) matrix Q € C**?.  fore, the algorithms in this paper, when applied to the specific
However, not only did [8] consider only the real-valued casgggst functionf(X) = tr{X*" RX}, complement the growing
the approach therein relied on endowing the Stiefel manifolgerature on subspace estimation and tracking problems [6], [7],
with a Riemannian structure. The present paper presents a S{ij_]j_-], [14], [15], [19], [23], [25], [37] with applications in an-
pler framework for orthogonally constrained optimization probenna array processing [27], [36], frequency estimation [26], and
lems. so forth. This is discussed further in Section VIII.

Orthogonally constrained optimization problems tend to other problems in linear algebra can also be expressed as or-
occur in signal processing problems involving subspaces. Tiggonally constrained minimization problems [3], [10]. Exam-
is because the constraiit” X = I requires the columns of  pjes include finding the singular value decomposition (SVD)
to form an orthonormal basis, meaning that the cost functigf 3 matrix and computing a total least-squares solution [9].
f(X) can be interpreted as a function of an ordered set @fhereas iterative methods, such as those presented here, have
orthonormal basis vectors. Similarly, filX) = f(XQ) for et to outperform traditional methods for solving linear algebra
any unitary matrix?, then f(.X) is a function of the subspaceproplems in general, one advantage of iterative methods is their
spanned by the columns df, or equivalently, the range spaceyppjicability to adaptive engineering applications where minor
of X. This is because the range spacestoand X@ are the corrections to present estimates need to be performed regularly.
same. Another advantage is their computational robustness; iterative

refinement can be used to improve a solution obtained by tradi-
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such that for given matrice4,, ..., 4,, € C**", the matrices C. Outline of Paper
XHA,X fori =1, ..., m are all (approximately) diagonal.
It can be posed as an orthogonally constrained minimizationTwo types of algorithms are derived in this paper. The first
problem by choosing the cost functigifX) to be the sum of type is based on the traditional steepest descent algorithm cou-
the squares of the off-diagonal elements of 81 4, X (cf.[1, pled with Armijo’s method for choosing the step size at each
Eq. (20))). iteration [22]. Although steepest descent algorithms were de-
The weighted low-rank approximation problem [12] is to findived in [7], only the case oK being a column vector was con-
a matrix having a prespecified rank and that best approximatgdered, and no step size rule was given. Steepest descent-type
a given matrix under a weighted norm. It is shown in [18] thatlgorithms were not explicitly considered in [8], which concen-
the weighted low rank approximation problem can be reformtrated instead on conjugate gradient and Newton-type methods.
lated as an orthogonally constrained minimization problem, andThe second type of algorithm derived in this paper is based
moreover, it is proved that the formulation is the most naturah the traditional Newton algorithm [22]. Although [8] derived
one because it uses the least possible number of parametersindilar Newton type algorithms to the ones presented here (al-
similar idea is used in [17] to reformulate the convolutive reseit for the real-valued case only), there is an important differ-
duced rank Wiener filtering problem as an orthogonally corence; in [8], the pertinent manifold was locally parameterized
strained minimization problem. (Prior to this reformulation, thby using the exponential map, whereas this paper locally pa-
authors were unaware of any general solution to the convolutrgmeterizes the manifold by a Euclidean projection of the tan-
reduced-rank Wiener filtering problem.) gent space onto the manifold. This difference affects the com-
In summary, a significant number of engineering problenmutational complexity and the rate of convergence of the algo-
can be formulated naturally as an orthogonally constrained miithms. The performance of the algorithms resulting from the
imization problem. The present paper not only provides nousVo different parameterizations was compared in [18] for a par-
algorithms for solving such problems, but it provides a generitular cost function, and it was shown that the Euclidean-pro-
framework in which existing methods can be better understogection-based parameterization resulted in less computational
complexity and faster convergence. (For other cost functions,
B. Related Work the converse may well be true. A more detailed discussion ap-

Although the references in [31] show that the theory behirR@ars in Section IX.) . o
the minimization of a cost function on a manifold was already Remark: Each algorithm is not simply an application of the

being studied in the seventies, general-purpose algorithms $é#epest descent or Newton method in some parameter space of
So|ving Orthogona”y constrained minimization prob|ems diﬂEdUCEd dimension. The novel feature is that the local cost func-

not appear until the 1990s [8], [13], [28]. tion to which the steepest descent or Newton method is applied
The key principle in [8], [13], [28] was to exploit the geom-Changes at each iteration.
etry of the constraint surface, and in all cases, the algorithmsThe reason for presenting both steepest descent and Newton
performed a series of descent steps, with each descent step t&kea algorithms is because each one has its own advantages
along a geodesic. (A geodesic is the generalization of a straighd disadvantages. Steepest descent-type algorithms coupled
line to curved surfaces.) with Armijo’s step-size rule almost always converge to a local
The present paper breaks with tradition by not movingiinimum [22]. However, their rate of convergence is only
along geodesics. The reason for this is now explained. Thdireear, meaning that asymptotically, the number of correct
is no inherent connection between the (Riemannian) geodigits increases by a fixed amount per iteration (see [22]
etry imposed in [8], [13], and [28] on the constraint surfactr a precise definition). Newton-type algorithms, by using
{X € Rv*P: XTX = I} and an arbitrary cost functiofy X). second-order derivatives, are able to achieve quadratic conver-
(See Section IX for greater detail.) That is to say, althougfence, meaning that the number of correct digits ultimately
moving along geodesics is a sensible thing to do, it is ndbubles per iteration. This faster rate of convergence comes
the only sensible thing that can be done. A disadvantagewith two disadvantages: increased computational complexity
moving along geodesics is the computational cost involved frer iteration and no guarantee that the algorithm will converge
computing the path of a geodesic. This paper, by choosing rtota local minimum. Indeed, without appropriate checks, the
to follow geodesics, is able to achieve a modest reduction Wewton method will converge to the closest critical point,
the computational complexity of the algorithms. whether it is a local maximum, local minimum, or a saddle
The main distinction of the present paper, however, is thabint. In practice, the steepest descent and Newton algorithms
it considers the complex-valued case. The reason why the ale often used together; a few iterations of the steepest descent
gorithms in [8], [13], and [28] do not generalize immediatelalgorithm are performed first to move close to a local minimum
to the complex-valued case is because a nonconstant cost furefere the Newton algorithm is applied.
tion f: C**? — R cannot be analytic. This means that the gra- The rest of this paper is organized as follows. Section Il de-
dient and Hessian of (X) on a complex Riemannian mani-fines the derivative and Hessian of a cost functfef”>*? — R
fold are not well defined. Although the solution is straightforand is the only prerequisite for being able to implement the al-
ward—simply treajf (X)) as a function of the real and imaginarygorithms in this paper. The theory behind these algorithms is
components o (thatis,f: R™"*? x R**? — R) whenever ap- covered in Sections llI-VII. Section Il derives formulae for cal-
propriate—it necessitates the algorithms for the complex-valuedlating the critical point of a quadratic function defined on var-
case to be derived from scratch. ious vector spaces. These formulae are required in subsequent
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sections of the paper. Section IV introduces the complex Stiefdthough similar formulae can be derived f&x andCyx, itis
manifold, its tangent space, and the Euclidean projection opeften easier to determin@x, Hx, andCx analogously to the
ator. Section V derives two algorithms for minimizing a codbllowing example.

function on the Stiefel manifold. Similarly, Section VI intro- Example 1:If f(X) = (1/2)tr{X? AX} with A € C™*"
duces the Grassmann manifold, and Section VII derives alggermitian andX & C**?, then

rithms for minimizing a cost function on the Grassmann man-

ifold. A worked example, which is of independent interest (%X +1t2)

its own right, is given in Section VIII. Section IX discusses var- = 3 tr{(X +tZ2)" A(X +tZ)} 3)
ious aspects of the optimization framework presented here. See= f(X) + L ttr{Z" AX + X" AZ} + L2 u{Z" AZ} (4)
tion X concludes the paper. = F(X) +tRU{ZHAX) + %tQVGC{Z}HveC{AZ} (5)

Notation: The superscriptd” and H denote transpose and
Hermitian transpose, respectively. The Frobenius norm is usgdving thatDx = AX, Cx = 0, andHx = (I, ® A), the
throughout, that ig] X ||? = tr{ X# X'}, where t{-} is the trace last equality following from the fact that véeZ} = (I, ®
operator. The vec operator Vg€ } is the vector obtained by A)vec{Z}. Note thatH x = Hi andCx = C%, as required.
stacking the columns of the matriX on top of each other.
Kronecker’s product is denoted ky. The symbol/ denotes [ll. CRITICAL POINTS OF AQUADRATIC FUNCTION
the identity matrix whose size can be determined from its con-
text. Similarly, I,, denotes the-by-» identity matrix, whereas
1, , denotes thex-by-p matrix with ones along the diagonal.
A square matrixX satisfyingX? X = I is called unitary. §(Z)=Rtr{Z" D} + L vec{Z}" H vec{Z}
Given a matrixX € C_"XP s_atisfyingXHX = I_, its comp_le—_ 41l {vec{Z}TCvec{Z}} (6)
mentX, € C**("=P) js defined to be any matrix that satisfies 2
[X X, ¥ [X X,] = I. SinceX_ is not uniquely defined, im- whereD € C**?, H, C' € C"P*"? are arbitrary matrices sat-
plicit in any statement involving( | is that the statement holdsisfying H = H* andC = C7', subject toZ being restricted
for any choice ofX | . The square matrid is skew-Hermitian to one of the following three vector spaces. The reason for con-
if A4+ A7 = 0.Itis Hermitian if A = A . The subspace sidering these particular vector spaces will become clear in Sec-
spanned by the columns of a matikis denoted by X |. The tions V-B and VII-B. LetX € C™*? andX, € C"*("~P) pe
expression)(#") denotes a (possibly matrix-valued) functiorgiven matrices such thgk’ X, 1¥[X X ] = I.

This section derives formulae for finding critical pointsf
the quadratic functiog: C**? — R defined by

of ¢ such thatt—™O(t™)| remains bounded &s— 0, where| - | V1) Vi, ={Z € C":Z = XA+ X, B}, whereA €
denotes absolute value (or norm). The sympdénotes,/—1, CP*? is skew-Hermitian, an® € C{*—P)*? s arbi-
whereask and< denote the real and imaginary parts of a com- trary.

plex quantity, respectively. V2) Vo ={Z € Cv":Z = XA+ X, B}, whereA €

CP*P is skew-Hermitian and has zero diagonal ele-
ments @;; = 0), whereasB € C(*~P)*? s arbitrary.
V3) Vs ={Z e C"*r.Z = X, B}, whereB € C"~P)xp
This paper chooses to express the second-order Taylor series is arbitrary.
approximation of an arbitrary (but sufficiently differentiable)smceg(z) is not analytic, it is necessary to think of it as a

Il. SECOND-ORDER APPROXIMATION

function f: C"** — R in the form quadratic function in the real and imaginary partszfThe
" consequence is that the vector spakgsVs, V3 are treated as
f(X+tZ)=f(X)+tRtr{Z" Dx } real vector spaces.

t? Proposition 2: Let V' < C"*P be a real vector space (such
+ 9 (VeC{Z}HHXVGC{Z} asVi, V, or V3), and defineg: V' — R as in (6). The point
+ R{vec{Z}  Oxvec[Z}}) +O(*) (1) Z = Z‘°P) is a critical point ofg(Z) if and only if Z(°P) is a
matrix in V' satisfying the linear constraints
whereDx € C"*? is the derivative off evaluated af\, and

H H T
Hyx, Cx € C"?*"P gre the Hessian of evaluated afX'. To VZeY, §R{tr{Z D} + [vec{Z} H +vec{Z} C]

ensure uniqueness, itis required that andC'x satisfyHx = vec{Z(C")}} =0. (7)
HY andCx = C¥%.

Remark: For the real-valued case R**? — R, the matrix Proof: Let B; €¢ C**? fori = 1, ..., d be an arbi-
Cx should be omitted from (1). trary basis fo”, whered is the dimension o¥. ExpressZ =

The termRtr{Z" Dx} in (1) was chosen because the Euz;;l «;E;, wherea; € R. Then
clideaninner producdtX, Y) = Rtr{Y# X} is the unique inner

product inducing the Frobenius norik || = tr{X* X} on 99(2) - R {tr{EiHD} + ved{E;} Hvec{Z}
C™*P space. The consequence of this choice is thaf itheel- da; ' ' - T '
ement of Dy equals +vecd{E; Y Cved{Z}}. (8)
9 9 1A critical point of a function is a point at which the first-order directional
(DX)ij — f + f (2) derivatives are all zero. A nondegenerate quadratic function has a unique critical

o ORX,; J 0SX,; point.
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TABLE |
MATLAB CODE THAT COMPUTES THE CRITICAL POINT OF THE QUADRATIC FUNCTION
g(Z) =Rw{ZHD} + (1/2)ved{ Z} *Hved( Z} + (1/2)R{ved| Z}TC vec{ Z} }, WHERE Z IS RESTRICTED TOBE OF THEFORM Z = X A + X | B WITH
A SKEW-HERMITIAN (cf. SECTIONIII). | T ISREQUIRED THAT [X X | | [X X ] =1, H = H¥ AND C = C7. (Xc CORRESPONDS TQY | .)

function [Z] =
(n,p] =
% Form basis for tangent space

cpoint (X,Xc,D,H,C);

M(e,r) = -1; E(:,:,1i) = X*M; i =

size(X); np = n*p; d = p*x(2*n-p);

i+1;

E = zeros(n,p,d); i = 1;
for r=1:p J Diagonal elements of A
M = zeros(p,p); M(xr,r) = 1j; E(:,:,1i) = X«M; i = i+1;
end
for r=1:p-1 % Off-diagonal elements of A
for c=r+l:p
M = zeros(p,p); M(r,c) = 1;
M(xr,c) = 1j; M(c,r) = 1j; E(:,:,1) = X*xM; i = i+1;
end
end
for r=1:n-p % Elements of B
for c=1:p
M = zeros(n-p,p); M(r,c) = 1; E(:,:,i) = Xc*M; i = i+1;
M(r,c) = 1j; E(:,:,i) = Xc*M; i = i+1;
end
end

% Form linear equation and solve for alpha

A = zeros(d,d); b = zeros(d,1); vD
for r=1:d

vEr =

for c=1:d

A(r,c) =

end

b(r) = real (vEr’*vD);
end
alpha = -(A\b);

% Recover Z
Z = zeros(n,p);
for i=1:d
Z =2 + alpha(i)*E(:,:,1);
end

= reshape(D,np,1);
reshape(E(:,:,r),np,1); vErHC = vEr’*H + vEr.’xC;

real (vErHC*reshape (E(:,:,c),np,1));

If Z is a critical point, the®g(Z)/dc; = 0fori =1, ..., d.

and wherey = (I, ® X Y H(I,® X,)andG, = (I, ®

Since theE; spanV/, (8) shows that this requirement is equivaX , )* C(I, @ X ). If C = 0, then (9) simplifies to

lent to (7). O
A matrix expression foZ(°P) if V = V3 is given later in

Proposition 3. IfV = V; or V = V5, however, a simple ma-
trix expression does not exist. In order for the algorithms in this

[(L,oX YTH(I,©X,)|vec{BP} = —vec{ X D}. (10)

Proof: SinceZ andZ(P) are restricted to lie ifVs, they

paper to be immediately implementable, the Matlab code fgy,st pe expressible &= X | BandZ© = X, B(®) Thus,

solving (7) forZ(P) whenV = V; is given in Table I. (It works

(7) implies thatB(°P) must satisfy

by forming a basi€; as in the proof of Proposition 2 and then

finding «; to make (8) zero.) I = V4, then the following mod-
ifications must be made to Table I. The dimensiotefined on
line 2 should be changed to=p = (2*n — p — 1), and lines
5to 7 (thefor loop labeled “Diagonal elements af) should
be omitted.

Proposition 3: Define g: V3 — R as in (6). A critical point
of §(Z) occurs wherZ = X | B(°P), whereB(P) ¢ C(n—p)xp
satisfies

R{GL + G2} —{Gy + G2} | [Rvec[ B}
S{GL—Gop WGy Gz}} [%vec{B@lﬁ}}
_ [Rvec{X¥ D} 9
T {%vec{XfD}} ©)

0 =R{tr{(X, B)" D} + [vec{X B} H + vec{X  B}"C]

-vec{ X | B{P)} (11)
=R {vec{B}H vec{ X D}

+ [vec{BY (I, @ X1 )" H + vec[ B} (I, @ X 1)"C]

(LeX L)vec{B(CP)}} 12)

for all matricesB. Splitting all terms into their real and imagi-
nary parts proves th@(°?) must be given by (9). i = 0, then

it is readily seen that (9) can be written in the complex-valued
form (10). O
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IV. COMPLEX STIEFEL MANIFOLD wholeC™*? space, certain directiori$do not cause (X +¢%)
move away fromX ase increases. The collection of direc-

This section derives a number of fundamental properties 0f )
! ! IV " . proper 4 nsZ such thatr(X + ¢Z) = X 4+ O(<?) is called the normal

the complex Stiefel manifold. Although the complex Stiefelf® ) :
manifold has been studied from a number of perspectives in ce alX of 5t(n, p). The tangent space is defined to be the

literature [10], [21], the author has been unable to find explic‘i’[r_thogon"’lI complement_of the_normal space. (Orthogon_all_ty IS
statements of this section’s results elsewhere. with respect to the Euclidean inner product because this inner

Definition 4 (Stiefel Manifold): The complex Stiefel mani- product induces the Euclidean norm, see Section II.) The tan-
fold St(n, p) is the set gent and normal spaces are determined as follows. N
Remark: It can be shown that the above nonstandard defini-
St(n, p) = {X e C™P: X" X = I}. (13) tion of a tangent space meets all the criteria required of a tangent
' ' space in differential geometry. Moreover, the above definition
The complex Stiefel manifold embeds naturallyGfi*?. It leads to a concrete representation of the tangent space, which is
inherits the usual topology 08™*?, and in particular, it is a the most suitable one for this paper.
compact manifold. Lemma 8:Let X €  St(n,p), and choose any
The projection of an arbitrary matriX onto the Stiefelman- X1 € C™*(~») satisfying [X X, |[X X,] = 1. An
ifold is defined to be the point on the Stiefel manifold closegtrbitrary matrix Z € C"*? is uniquely decomposable as
to X in the Euclidean norm. There is no unique solutioXif Z = XA+ X, B+ XC, whereA € CP*? is skew-Hermitian,
does not have full column rank. Proposition 7, which is showld € C(—P)xp is arbitrary, andC € CP*? is Hermitian.
later, proves the converse; there is a unique solutio¥ ias Furthermore
full column rank.

Definition 5 (Projection): Let X € C™**? be a rankp matrix. (X +tZ) =X +H{XA+ X, B)+ 0. (15)
The projection operatar: C**? — St(n, p) onto the Stiefel
manifold St(n, p) is defined to be Proof: ThatXA + X, B+ XC is a unique decomposi-
tion of Z is clear. DefineX (t) = #(X + tZ), and letD be its
m(X) = arg Qegii(% ” X — Q> (14)  derivative att = 0 so thatX(¢) = X + tD + O(t?). Since

XOIX(t) = I +¢X"D+ DHX)+ O(t*) = I, D must
The following useful lemma follows immediately from thesatisfy X7 D + D X = 0. This constraint is most easily en-

fact that||U X V|| = ||X|| if U andV are unitary. forcible by expressing) asD = XA + X, B + XC, where
Lemma6: If I/ € C**" andV € CP*? are unitary matrices, A € CP*? is skew-HermitianB € C("~»)*? is arbitrary, and
thent(UXV) = Urn(X)V. C € CP*Pis Hermitian. ThenX # D+ DH X = 0is equivalent
Proposition 7: Let X € C™*? be a rankp matrix. Then, toC = 0. By definition, X (¢) is the closest point on the Stiefel
m(X) is well defined. Moreover, if the SVD of{ is X = manifold toX +¢Z. Thus,D = XA + X, B must minimize
USVH, thenn(X) = UL, ,VH. |IX+tZ—X —tD|?> = || X(A-A)+ X, (B-B)+XC|?

Proof: It is shown that the unique solution offor sufficiently smallt. The minimum occurs whed = A and
arg minge sin, p) 1% — Q?isQ = I, », which, when com- B =1B (which is a consequence of Lemma 10 shown later),
bined with Lemma 6, proves that (14) has the unigue soluti@@mpleting the proof. O
Q=UL, ,V".Since|> - Q| =tr{(X - Q)" (X - Q)} = Lemma 8 shows that(X +eXC) = X +O(e?), and in fact,

p + {28} — 2Rtr{Z7Q}, it is sufficient to show that it can be shown that(X 4 «XC) = X for |¢| > 0 sufficiently
Rtr{ZTQ} < Rtr{¥?1, ,} with equality if and only if small. This leads to the following definition.
@ = I, ,. The inequality holds becausg;; > 0 and Definition 9 (Normal Space):The normal spac&'x (n, p)
RQ:i < |Qis| < 1, where the latter is implied b@Q = I. atX € St(n, p) of the Stiefel manifoldSt(n, p) is
Moreover,RQ);; = 1fori =1, ---, pifandonly if @ = I,, ,,
proving the only if part. O Nx(n,p)={NeCY"N=XC, CeCr? C= CH}.
Associated with each point of a manifold is a vector space (16)
called the tangent space. The tangent space of an abstract mahemma 8 suggests that the tangent space consists of direc-
ifold is only unique up to isomorphism. For example, two diftions of the formX A + X, B. The following lemma confirms
ferent representations of the tangent space about each poirthat these directions are indeed orthogonal to the normal space.
the real Stiefel manifold appear in [14] and [8]. The representa-Lemma 10:Let X € St(n, p) and X, € C"*("~7) sat-
tion in [14] comes from the Lie group structure, whereas the rejsfy [X X ]#[X X ] = I. Then, for any skew-Hermitiad €
resentation in [8] comes from the embedding of the real StiefeP*?, arbitrary B € C(*~?)*? and HermitianC € CP*?,
manifold inR™*?. This paper chooses to use a representatiéttr{(XA + X, B)YXC} = 0. Thatis,XA + X, B is or-
of the tangent space that comes from the projection operatoithogonal toX C, and furthermorel| XA + X, B + XC||? =
This choice fits in naturally with the optimization scheme profj X A + X, B||> + || X C||?.
posed in the next section. Proof: Since A is skew-Hermitian and” is Hermitian,
Let X € St(n, p), and consider the perturbed pointX + Rtr{(XA + X, B)!XC} = Ru{A¥C} = 0. Further-
€Z) € St(n, p) for some matrixZ € C**? and scalar € R. more,||XA + X, B + XC|? = tr{(XA+ X, B)¥(XA +
(For |¢| sufficiently small, X + ¢Z has full rank, and hence, X; B) + (XC)?(XC)} + 2Rt {(XA + X, B)!XC} =
(X + ¢Z) is well defined.) SinceSt(n, p) does not fillup the || XA+ X, BJ]? + || X CJ?. O
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Definition 11 (Tangent Space)The tangent spacEx (n, p) Proof: As in Definition 11, writeZ = XA + X B. If
atX € St(n, p) of the Stiefel manifoldSt(n, p) is X + Z did not have full rank, then there would exist a nonzero
B nxp. y vectorz such that( X + XA + X, B)z = 0. Premultiplying
Ix(n,p) = {Z €C Z=XA+ X, B, AT by X5 shows that this impliestz = —z. However, this is

A+ AT =0, B¢ C(n—p)Xp} . @7 not po_ssible sincel, being s_keW-Herrr_litian, has purely imagi-
nary eigenvalues. That( Z) is well-defined now follows from
Itis readily verified thaf’x (n, p) is areal vector space. Its di- Proposition 7. O
mension, when considered as a vector spacefdvsicomputed  Given a local parameterization the local cost function is
as follows. SinceB has(n — p)p complex-valued elements, itdefined to bef o A, which is the composition of andh. For
contributes an amourt(n — p)p to the overall dimension of instance, ifA(Z) = #(X + Z), then the local cost function
Tx(n, p). Becaused is skew-Hermitian, it is completely spec-¢: Tx (n, p) — Ris
ified once itsl + - - - + (p — 1) complex-valued upper diagonal i
elements are given as well as fisdiagonal elements, which 9(2) = J(x(X + 2)). (19)
must be purely imaginary. Thus, the overall dimensionis ~ Whereas the cost functiofiis defined on &np-dimensional
. _ _ B vector space({™*?-space ha8np dimensions when considered
20 —pp 21+t p= 1) +p=p2n-p). (18) as a vector space ovR), the local cost functiog is defined on
The second-order approximation of the projection from the, (2, — p)-dimensional vector space [cf. (18)]. This reduction
tangent space to the Stiefel manifold is required in the next s@gdimension is especially significant wheris large.

tion. N The general framework for optimization on manifolds is as
Proposition 12: If X € St(n, p) andZ € Tx(n, p), then follows. Given a pointX € Si#(n, p), chooseZ € Tx(n, p)
(X +t2) =X +tZ— (1/2)2XZH Z + O(t?). so thatf(h(Z)) = g(Z) < g(0) = f(X). Move to the new

Proof: Lemma 8 proves that the first-order termii8. point X := h(Z), and repeat until convergence. Sections V-A
Define X () = n(X +tZ), and letH be such thatX(t) = and B propose two ways of choositigat each step, leading to
X +tZ +t*H + O(t%). SinceX ()" X (t) = I, direct ex- two algorithms for solving orthogonally constrained optimiza-
pansion shows thaf must satisfyH” X + X" H = —Z" 7. tjon problems.

Subject to this constraine must also minimizg X +¢2Z — X —
tZ—t*H||? = t*||H||? for sufficiently smalkt. Applying the La- A. Modified Steepest Descent on the Complex Stiefel Manifold

grange multiplier technique proves thfit= —(1/2)X 2% 2.0 This section derives an algorithm for minimizirfgX ) sub-

ject to X X = I. It requires the evaluation gf(X) and its
V. OPTIMIZATION ON THE COMPLEX STIEFEL MANIFOLD first derivativeDx at each step.

This section derives two algorithms (one is a modified ForagivenX € St(n, p), letg: Tx(n, p) — R be the local
steepest descent method, and the other is a modified New€@st functiony(Z) = f(7(X +7%)). SinceTx (n, p) is a vector
method) for minimizingf(X) subject toX?X = I, where space, the well-known steepest descent algorithm (see, for in-
X € C™P, and f(X) is real valued. Note that if the coststance, [22]) can be used to findZg which locally minimizes
function f(X) is such thatf(XQ) = f(X) for any unitary 9(Z). However, since the range of.X + Z) covers only part of
matrix Q € CP*?, then the algorithms in Section VII shouldthe Stiefel manifold, it is more sensible to perform just a single
be used instead. descent step using the local cost functigtt ).

The main principle behind optimization on manifolds is to Performing a descent step requires the computation of the
rewrite the optimization problem in terms of a local paraméadient ofg(Z). The gradient is only defined on@ (n, p)
terization at each iteration. A local parameterization about tifegiven an inner product. Ideally, the inner product should be
point X € St(n, p) is a mappingh:Q — St(n, p) from chosen to make the level setsgilZ) approximately spherical
an open subse® of the vector spacé@’x (n, p) to the Stiefel [22]. However, sincg(7) is not known in advance, it is neces-
manifold with the property that any poilit € St(n, p) suffi- sary to make an arbitrary choice for the inner product. Just as the
ciently close taX can be uniquely written a8 = h(Z) with  Euclidean inner product is customarily used for optimization on
Z € Q. There are an infinite number of local parameterizd®”™, the inner product
_tions to ch_oose from. For i_nstance,_the gxponential map (Whigbb Zy) = Rir {Zf (I _ %XXH) Zl}
is only defined after the Stiefel manifold is endowed with a Rie- 2z eT X e St 20
mannian structure) is used in [8] as a local parameterization. 1 2 € Ix(n. p), € St(n,p) (20)
The present paper proposes to use the local parameterizatlooommonly used off’x (n, p) [see [8] for the derivation of
h:Tx(n, p) — St(n, p) defined byh(Z) = n(X + Z), where (20) in the real-valued case].

w is the projection operator (see Definition 5). Later, lemma 13 The reason why (20) is a natural choice for an inner product
will prove that/ is well defined. This local parameterizationis because it has the following geometrically pleasing interpre-
is not only simpler than the one in [8], but simulations in [18{ation. Expres¥ € Tx(n, p) asZ = XA+ X B, and letE;;
demonstrate that it leads to faster convergence in certain appk-the matrix whose elements are all zero except foijtecle-
cations. ment, which is one. Then, under (20), the “elementary” tangent

Lemma 13: For arbitraryX € St(n, p) andZ € Tx(n, p), directionsX  F;; andX(E;; — E;;) for appropriate values of
the matrixX + Z has full rank. In particular, the local parame+ and; are mutually orthogonal and have unit norm [the norm
terizationh(Z) = n(X + Z) is well defined. of a tangent directiot¥ € Tx(n, p) is \/{Z, Z}]. This is a
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desirable property because the perturbatiQ¥ + X | £;;) is longer holds and then halving until it satisfies (28). [From
obtained by rotating thgth column of X in the direction of the (21), it is readily seen that suchyacan always be found.]
ith column ofX ; by an angle ot +O(¢?), whereas the pertur-  Consolidating the above ideas yields the following algorithm.
bationw(X + ¢X(E;; — E;;)) is obtained by rotating both the The algorithm almost always converges to a local minimum, the
ith andjth columns ofX by an angle of + O(e?). exception being if it lands directly on a saddle pointfirst. Indeed,
The gradient? € T'x (n, p) of the local cost functiog(Z) at it is proved in [22] that the Armijo step size rule ensures that
the origin is, by definition, the uniqué& in Tx (n, p) such that f(X) decreases to a critical point, providgds differentiable
and that the level sets ¢f X ) are bounded. The latter criteria is
9(Z) = [(X) +(G, Z) + O(| Z|1*) (21)  always true here because the Stiefel maniféith, p) is com-

. . .pact.
holds for all Z € Tx(n, p). The steepest descent direction o Algorithm 15 (Modified Steepest Descent on Stiefel Mani-

the negative of the gradient. Itis expressible in terms of the firfs(,)tld)_ Given a cost functionf: C**? — R, the following al-

derivative of {(X) as follows. gorithm almost always converges to a local minimumny K )
Theorem 14 (Steepest DescenGiven the cost function subject to the constraint that” X = 1. It requires that a

f:C? = R, letg(Z) = f(n(X + Z)) be the local cost func- ; BXD amticf
tion about a given poink € St(n, p). The steepest descent;atem;,z;( 5) ¢ satisfying (23) can be computed for any

direction ofg(Z) at the originZ = 0 under the canonical inner

product (20) is 1) ChooieX € C™*P such thatX 7 X = I. Set step size
v := 1.
zeY = XDIX — Dy (22) 2) ComputeDx, which is the derivative of at X [cf. (23)].
_ _ 3) Compute the descent directigh:= X D¥ X — Dx.
whereDx € C™*? is any matrix such that 4) Evaluate(Z, z) = t{Z" (I — (1/2)XX")Z}. If

VZeT V{Z, Z) is sufficiently small, then stop.
€Tx(n, p), 5) If f(X)— f(x(X+2v2)) > 1(Z, Z), then sety := 2,
J(X +2) = f(X) +Rt{Z" Dx} + O(|Z]?).  (23) and repeat Step 5. [The projectiafi) can be evaluated
using the SVD; see Proposition 7.]
6) If f(X)— f(x(X +~7)) < (1/2)v(Z, Z), then set

Z) = f(X)+Rtd{ZED Y + O Z]1?). 24 v = (1/2)’7, and repeat Step 6.
9(2) = f(X) { X} U217 (e4) 7) SetX = (X 4+ ~+Z). Go to Step 2.

Proof: It follows from Lemma 8 and (23) that

The following calculation shows that# = Dy — XDI¥X N _ )
makes (21) and (24) equivalent B. Modified Newton Method on the Complex Stiefel Manifold

i L i i This section derives an alternative algorithm for minimizing
(G, Z) =Rt{Z" (I - 3 XX") (Dx — XDYX)} (25) f(X) subject toX* X = I. It requires the evaluation gf( X)

=Rtr{Z" Dx} and its first two derivatives at each step. Unlike Algorithm 15,
— IR{ZUX(DEX + XM Dy)} (26) th glgolri.th'm in this sec_tion on'Iy' converges to a local minimum
—Rtr{Z" Dy} @27) if it is initialized to a point sufficiently close to the local min-

imum. However, when it does converge, it achiéweguadratic
where the last equality follows from Lemma 10 and the fact thEdte of convergence. By comparison, Algorithm 15 exhibits only
X(DEX+XHDy) € Nx(n, p). Finally, it can be shown that & linear rate of convergence.
XH@ is skew-Hermitian, verifying thaf is an element of the  AS in Section V-A, letg: T’x (n, p) — R be the local cost
tangent spac@’ (n, p) and completing the proof. O functiong(Z) = f(x(X + Z)) about the point{’ € St(n, p).
Remark: Although one choice ab in (23) is the derivative This section proposes to ta!<e a Newton step at _each i_teration
of f(X) (see Section Il), other choices are possible since (233sed onaquadratic approximationyo) at the origin. Unlike
only requiresD to be the derivative of (X) in the tangent in Section V-A, it is not necessary to gi€ (n, p) an inner

directionsZ € Tx (n, p). This fact sometimes can be exploitedProduct. N _
to simplify the computation oDy The following proposition derives the second-order Taylor se-

Once the steepest descent directiofi), which is defined €S approximation of the local cost functigZ) at the origin.
in (22), has been calculated, it is necessary to choose a positivEroposition 16: Given the cost functiorf: C"*? — R, let
step sizey € R so thatg(yZ©9) < ¢(0). The Armijo step size 9(%) = f(m(X + Z)) be the local cost function about a given
rule [22] states thag should be chosen to satisfy the inequalitieBOINt X € St(n, p). Then, for anyZ € Tx(n, p)

Z) = f(X ZHED L ZH
9(0)— g (,YZ(sd)) >1q <Z(sd)7 Z(sd)> (28) 9(Z) = f(X) + Rtr{ x}+ 3 vedZ}
[Hx - 3(X"Dx + D¥X)T ® I,,)] vec{Z}
9(0) — g (27Z(Sd)) <~ <Z(Sd), Z<S“>> : (29) + LR{ved[Z}TCx ved{ Z}} + O(| Z]*)  (30)
Rule (28) ensures that the stefzd will “significantly” WhereDx € C™*PandHx, Cx € C™*"” are the derivative

decrease the cost, whereas (29) ensures that theg@&p® and Hessian of at X, respectively (cf. Section II).

V_VOU_|d not b_e a bet_ter choice. A straightforwarc_i method for 2ajnough this fact is not proved here, the convergence proofs in [14] and
finding a suitabley is to keep on doublingy until (29) no [16] can be adapted to the algorithms in this paper.
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Proof: Using Proposition 12 and (1) gives 3) Compute the Newton stepZ = cpoint(X,
X1, Dx, Hx —(1/2)[(X" Dx + D¥X)T © L], Cx),
wherecpoint is defined in Table I. (See Remark 1 later.)

4) If f(X) < f(w(X+Z)),then abort. [The projectiom(-)
‘ H can be evaluated using the SVD; see Proposition 7.]
=f(X) +tRtr { <Z ~ 5 XZHZ> DX} 5) Use the SVD to comput€, 3 andV such thatX + Z =
UXVH SetX := UI, ,V#, andsef{, tothelasth—p

columns ofUU. Go to Step 2.

g(tZ) = f <X +t <Z - %XZHZ>> + O (31)

2 t oo " t
+Evec{Z— XZ Z} HXvec{Z—QXZ Z}

2 Remarks:
£2 " . T 1) If f(X©) = f(X) for any diagonal unitary matri®©,
to R vec{Z —5XZ Z} then the following modifications must be madetmint
in Table I. The dimensiod defined on line 2 should be
t " 3 changedta@ =p =« (2%xn —p— 1), and lines 5to 7 (the
Cx vec{Z - §XZ Z} } +0(t) (32) for loop labeled “Diagonal elements &f) should be
.2 omitted.
=f(X)+tRtr{Z¥Dx} + 5[vec{Z}HHX vecd{Z} 2) The quantity\/tr{D)ngX — XHDxXHDx}inStep 2
—Rtr{z1ZX" Dy} of Algorithm 17 is equal to,/(Z, Z} in Step 4 of Algo-
2 rithm 15, that is, it equals the norm of the gradienfait
+5 R{vec{ 21 Cx vec{Z}} + O(?) (33) X.
/2 3) Step 5 of Algorithm 17 results iX := 7(X + Z) and an
=f(X)+tRtr{Z" Dx} + 5 [vec{Z}" Hx vec{Z} X, suchthafX X, ]"[X X ] = 1.
1 H H H As is the case with all Newton-type algorithms, Algorithm
22tr{Z Z(X7Dx + DXX)}] 17 can fail to take a descent direction if the current pdinis
+ % R{vec{Z}T Cx vec[Z}} + O(£?). (34) not sufficiently close to a minimum to ensure that the Hessian

is positive definite. If Algorithm 17 fails to take a descent step,
several iterations of Algorithm 15 can be used to move closer to

The result now follows from the fact that{t? ZA} = a minimum before restarting Algorithm 17.

vec{ Z} (AT @ I,,)vec{Z} for any matrixA € CP*?. O
The Newton step is defined to be the valuezbtonfined to
the tangent spacEx (n, p) at which the quadratic approxima- VI. CoMPLEX GRASSMANN MANIFOLD

tion in (30) has its critical point. The location of the critical point If the cost functionf(X) is such thatf(XQ) = f(X) for

can be found by applying the theory in Section Ill; observe that ; P L
V1 in Section Il is the vector spacB (n, p). any unitary matrix?, it should be minimized on the Grassmann

. - . . manifold rather than on the Stiefel manifold. This is because the
If the Hessian off is singular, then the critical point of the : . . .
. N ok .~ Grassmann manifold treats poimtsand X @) as being equiva-
guadratic approximation of the local cost function is not uniqu

It is therefore important to ensure that the cost funciicoes Fent, leading to a further reduction in the dimension of the opti-

. .~ _mization problem.
not possess symmetries. The two most common symmetries thag, . ; . .
his section derives a number of fundamental properties of

J may possess a X Q) = f(X)for @ unitary andf(X©) = the complex Grassmann manifold. The derivation of the results

— di 761 8,1 ; ;
f(X).’ where® = diag{e’™, ..., ¢ }. 'S a dllagonal unitary in this and the next section parallels that done in the last two
matrix. In the former case, the theory in Section VII-B must be . . . .
. . g . sections for the complex Stiefel manifold. However, unlike the

used. In the latter case, it suffices to restédb lie in V5, which . . .
. . . . . ) complex Stiefel manifold, the complex Grassmann manifold
is the vector space defined in Section Ill. This necessitates, a o o

. e ) L does not embed i€ *? space. Therefore, the derivations here
minor modification of the following algorithm; see Remark 1 . . L . . .
later are not identical to the derivations in previous sections.

Algorithm 17 (Modified Newton Method on Stiefel Mani- Definition 18 (Complex Grassmann - Manifoldf-he

fold): Given atwice-differentiable cost functighC™*? — R, complex Grassmann manifol@r(n, p) is the set of alp-di-
. mensional complex subspaces@if.

the following algorithm attempts to converge to a local min- . .
. . . fe There is a close connection between the Grassmann and
imum of f(X) subject to the constraint tha&t* X = I. It . . N : . ;

: o e . Stiefel manifolds. IfX € St(n, p) is a point on the Stiefel
requires that the derivativ®yx < C"*? and the Hessian . . .

A . manifold, then itgp columns form an orthonormal basis for a

Hyx, Cx € C™*»P of f at the pointX can be computed for . : s

; p-dimensional subspace. That is,|iK | denotes the subspace
any X € St(n, p). N

sy X () spanned by the columns of, thenX ¢ _St(@, D) |mpl|gs

1) ChooseﬁX € C?andX, ¢ C such that | x| e Gr(n, p). Conversely, every point itGr(n, p) is
XX XX ] =1 o obtainable in this way.

2) ComputeDx, which is the 'derlva'uveroff at X, and  por the purposes of this paper, the Grassmann manifold is
Hx, Cx, which is the Hessian of at X, as defined in gt thought of as a quotient space of the Stiefel manifold. This
Section II. If \/tr{D)f{DX — XHDxXHDx} is suffi-  is now explained. Define two pointX, Y € St(n, p) on the
ciently small, then stop. Stiefel manifold to be equivalent and denot&d= Y if there
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exists a unitary matrix) € CP*P such thaty = X@Q. Itis Proposition 22: Let X € St(n, p). If Z € T x)(n, p)isan
clearthatX =Y ifand only if | X| = |Y']. Therefore, there is element of the tangent space|&f | € Gr(n, p) of the Grass-
a one-to-one correspondence between points on the Grassmmaann manifold7r(n, p), thenr(X +t2) = | X +tZ+0(t%)].
manifold Gr(n, p) and equivalence classes$f(n, p). Proof: From Proposition 12

Since the Grassmann manifold does not embed if? N 3
space, the projection of an arbitrary matfixonto the Grass- (X +12) = LX T4 -3 X202+ Ot )J (38)

mann manifold is defined in terms of the projection onto the = |X(I-L2Z92) +tZ+ O] (39)
Stiefel manifold. There is no unique solution ¥ does not = |X +tZ (I - L1221 2) + 0(*)] (40)
have full column rank. Later, Proposition 20 will prove the — X +tZ 40 (41)
converse; there is a unigue solutioméifhas full column rank. - ’

Definition 19 (Projection): Let X € C™*? be a rankp ma- O
trix. The projection operator: C**? — Gr(n, p) onto the
Grassmann manifold’r(n, p) is defined to be VIl. OPTIMIZATION ON THE COMPLEX GRASSMANN MANIFOLD

m(X) = {arg min || X — QH?J . (35) Whereas Seption \ deri\_/ed algorithms for n"!inimizi_ng agen-
Qest(n,p) eral cost functionf(X) subject toX 7 X = I, this section de-

Whereasr was used in earlier sections to denote projectiatives specialized algorithms for the case whiX) satisfies
onto the Stiefel manifold, henceforth,refers to the projection either one or both of the following assumptions.
operator onto the Grassmann manifold, unless otherwise statech1) f(XQ) = f(X) forall X € St(n, p) and unitary

Proposition 20: Let X € C™*? be a rankp matrix. Then, Q € Crxp,
m(X) = |X]. Moreover, if the SVD ofX is X = USV#, A2) f(XS) = f(X)forall X € St(n, p) and invertible
thenn(X) = |UI, ,|, and if theQR decomposition ofX is S e Crxop,
X = QR, thenn(X) = QL p]. Such symmetries occur in subspace tracking [5], [23], [25] as

Proof: Proposition 7 implies that(.X') is well defined and \ye| asin blind identification [1], [30]. In the former case, it is
equals|U/L, ,V|. Moreover,| UL, ,V# | = |UL,,]. Since pecause a subspace is invariant to unitary transformations (that
X hasrankp, UL, ,| = [X]. Finally, [QL, ,] = [X]fol- s | xQ| = | X]), whereas in the latter case, it is caused by
lows immediately from [9, Th. 5.2.1]. D the inability of second-order statistics to discriminate between

Remark: The usefulness of expressing the projection ifinjtary transformations of certain parameters of interest.
terms of the SVD orQ R decomposition is that botti/,, , and  \whereas Section V considergdas a function on the Stiefel
Q1,,, are elements at(n, p). manifold St(n, p), this section considergas a function on the

Since the Grassmann manifold is a quotient space of i@assmann manifold. Specifically, sinfesatisfies Al), there
Stiefel manifold, its tangent space is a subspace of the Stigigists a functiory’: Gr(n, p) — R such that

manifold’s tangent space. This fact can also be seen from _

the nonstandard definition of a tangent space in terms of the VX € St(n, p), FX]) = f(X). (42)
projection operator given in Section 1V; certain elemefitm . .
the tangent space of the Stiefel manifold will no longer cau;&e local cost functiory: 7} x) (n, p) — R about the point

7(X 4 €Z) to move away fromX ase increases. Specifically, (| € Gr(n, p), whereX € St(n, p), is defined to be (cf.

for a givenX € St(n, p), let Z = X A+ X, B be an element Section V)
of the tangent space 6%(n, p). Applying Lemma 8 shows that o2) = Fn(X + 2)) @3
(X +HXA+X,B) =X +t(XA+ X, B)+ 0]
=|X +tX, B+ O(#)] (36) wherer is the projection onto the Grassmann manifold defined

in Definition 19. (It follows from Lemma 13 thag( %) is de-
where the last equality follows from the fact thafined for all Z.) One advantage of using the Grassmann mani-
| X (I +tA)] = [ X], provided] + tA is invertible. Thus, the fold rather than the Stiefel manifold is tHty (n, p) has only
subspace generated ByA is not part of the tangent space ofy(2n — 2p) dimensions, whered8x (n, p) in Section V has
Gr(n, p). Conversely| X + X, B] = |X] impliesB = 0, p(2n — p) dimensions.
proving that the tangent space Gir(n, p) is the subspace From a numerical point of view, it is not practical to work ex-
generated by matrices of the form, B. plicitly with the cost functionf. Instead, the local cost function
Definition 21 (Tangent Space).et X € St(n, p). Then, the (43) can be rewritten in the alternative form

tangent spacé| x| (n, p) at| X | € Gr(n, p) of the Grassmann
manifold Gr(n, p) is 9(Z) = faf {X +Z}) (44)

Tixj(n,p)={ZeC?.Z=X,B, B¢ c=pxp), where qf{-} is the “Q-Factor” operator defined as follows. If
(37) X = QR istheQR decomposition of the matriX € C"*?,
The dimension off x| (n, p), which is considered to be athen gf { X'} is defined to be the firgi columns ofQ). That (44)
vector space oveR, is 2(n — p)p [cf. (18)]. is equivalent to (43) follows immediately from Proposition 20.
The second-order approximation of the projection from the Using the same framework as in Section V, Section VII-A
tangent space to the Grassmann manifold is required in the néatives a modified steepest descent algorithm, whereas Sec-
section. tion VII-B derives a modified Newton algorithm.
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A. Modified Steepest Descent on the Complex Grassmann 1) ChooseX € C™*? such thatX” X = I. Set step size
Manifold v = 1.

This section derives an algorithm for minimizirfg.x) sub- ~ 2) ComputeDy, whichis the derivative of at.X [CE (471
ject to X X = I when f(X) satisfies either A1) or both A1) ~3) Compute the descent grectléhz —(I - XX")Dx.
and A2) in Section VII. It requires the evaluation pfX) and %) EvaluatelZ, 2) =tr{Z"Z}. If \/(Z, Z) is sufficiently
its derivativeDx at each iteration. small, then stop.

The steepest descent direction of the local cost function (43)9) If f(X) = f(Af{:X +2vZ}) > 7(Z, Z), then sety :=
is only defined oncé] x| (n, p) is given an inner product struc- 2y, and repeat Step 5. [The-Factor operator gf-} is
ture. Sincel|x(n, p) C Tx(n, p), the natural choice of an deflnerd in (44) ] i
inner product or} x| (n, p) is the one obtained by restricting 6) If f(X) — f(af {X +~2}) < (1/2)7(Z, Z), then set
the canonical inner product (20) @i (n, p) to T\ x(n, p). In 7 := (1/2)y, and repeat Step 6.
fact, when restricted t@ v (n, p), (20) simplifies to the Eu- 7) SetX := qf,{X +~Z}. Goto Step 2.

clidean inner product Ifthe cost functionf (X ) satisfies A2) in Section VII, then Al-
gorithm 24 simplifies slightly; under A2)/(qf ,{Y'}) = f(Y)
(Zy, Zoy =RU{Zy Z1}, Zi, Zs € T|x)(n, p) holds for any full rank matrixt’ € C"*?. Therefore, the
X € St(n, p). (45) Q-Factor operator can be omitted from Steps 5 and 6 of
Algorithm 24.

Theorem 23 (Steepest DescenBiven the cost function

f:CP - R, let g(Z) = f(x(X + Z)) be the local cost B. Modified Newton Method on the Complex Grassmann
function about a given poinlX’ € St(n, p), wheref is defined Manifold

in (42). The steepest descent directiong¥) at the origin - yig section derives another algorithm for minimizifig¥)

Z = 0 under the canonical inner product (45) is subject toX X = I when f(X) satisfies either A1) or both
Z(sd) (I - XX")Dy (46) Al) and A2) in Section VII. It requires the evaluation pfX)
and its first two derivatives at each iteration. Unlike Algorithm
whereDx € C™"*? is any matrix such that 24, the algorithm in this section only converges to a local
minimum if it is initialized to a point sufficiently close to the
VZ el x(n, p) local minimum. However, when it does converge, it achieves a

f(X 4+ 2)=f(X)+Rtr{Z"Dx}+ O(]|Z||?). (47) quadratic rate of convergence, as opposed to the linear rate of
convergence exhibited by Algorithm 24.

Proof: Itis clear thaty(Z) = f(n(X + Z)), wherer is By definition, the Newton step moves to the critical point of
the projection operator onto the Stiefel manifold (Definition Skhe quadratic approximation of the local cost function (43). The
Thus, g(Z) is given by (24). The following calculation showsguadratic approximation is given in the following proposition.
thatG = (I — XX")Dx makes (21) and (24) equivalent for - proposition 25: Given a cost functiorf: C**? — R satis-
all Z € Tix(n, p) fying A1) of Section VII, letg(Z) = f(x(X + Z)) be the local
cost function about a given poitX € St(n, p), wheref is de-

(G, Z)y =Rtr{Z¥(1 - XX")Dy} (48) fredin (42). Then. f T
=Rtr{ZDx} - R {ZUXX"Dx} (49) inedin (42). Then, for any € Zix) (n. 7)
=Rtr{Z" Dy} G0y  9(Z) = [(X)+Rtr{Z" Dy} + 5 vec[Z}"

[Hx = (X"Dx + DY X)" © I,,)] vec(Z
where the last equality follows from the fact that if [lx 2 (( T x ) ’)]3 12}
Z € Tix)(n,p), thenZ = X B and soZ”X = 0. + 5 R{vec(Z} Ox vec{Z}} + O(lIZI]°)  (B1)

. L ; Mo s .
Finally, it is readily seen thak " G = 0, verifying thatG is an whereDx € C*? andHy, Ox € C™*"? are the derivative

element of the tangent spagx|(n, p) and completing the and Hessian of at X, respectively (see Section Il). ffsatisfies

proof. , i , ) D A2) of Section VII, then (51) simplifies to
Remark: Although one choice aDx in (47) is the derivative

of f(X) (see Section Il), other choices are possible since (47)y(7) = f(X) + Rtr{Z¥ Dx} + Lvec{Z} Hx vec(Z}
only requiresDx to be the derivative of (X)) in the tangent 1 T 7 7113 2
directionsZ € T\ x(n, p). g Jived 2} Ox ved Z}} + O(IZ]1). - (52)
Combining Theorem 23 with the Armijo step-size rule de-  proof: It is clear thatg(Z) = f(n(X + Z)), wherer is
scribed in Section V-A leads to the following analog of Algothe projection operator onto the Stiefel manifold (Definition 5).
rithm 15. Thus,g(Z) is given by (30) in general. If satisfies A2), then

Algorithm 24 (Modified Steepest Descent on Grassmanq| x |) = f(X)forall X € C"*P. Thus, Proposition 22 shows
Manifold): Given a differentiable cost functioft C**? — R that

that satisfies (Al) in Section VII, the following algorithm R R

almost always converges to a local minimumjgfX') subject g(tZ) = f(r(X +t2)) = f(|X +tZ + O(t*)))

to the constraint that¥’ X = I. It requires that a ma- =f(X +tZ) + O(®) (53)
trix Dx € C"*? satisfying (47) can be computed for any

X € St(n, p). from which (52) follows from (1). O
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The location of the critical point of (51) can be found by aption is that the Armijo step size rule is replaced by the optimal
plying Proposition 3; observe thig in Section Il is the vector step size rule.

spacel’ x(n, p). The reasons for deriving a novel algorithm for computing a
Algorithm 26 (Modified Newton Method on Grassmann Maminimal eigenvector are now listed.
ifold): Given a cost functiorf: C"*” — R, whichis twice dif- 1) |t serves as a worked example of how to apply the opti-
ferentiable and satisfies A1) of Section VI, the following algo- mization algorithms in this paper.
rithm attempts to converge to alocal minimum/fdiX) subject 5 |5 ysed to demonstrate that the algorithms in this paper
to the constraint thak ~ X = 1. It requires that the derivative can have significantly different properties compared with
Dx € €7 and the Hessiafl x, Cx € C™™" of f at the classical algorithms for solving the same problem.
point X' can be computed for any € St(n, p). 3) It can be used in a number of signal processing appli-
1) ChooseX € C™? andX, € C™*(~P) sych that cations [6], [36] that require the computation and subse-
(X X J[X X, ])=1. quent tracking of a minimal eigenvector.
2) ComputeDx, which is the derivative off at X, and 4) It has several advantages over existing algorithms for
Hx, Cx, which is the Hessian of at X, as defined in computing a minimal eigenvector.
Section II. If \/tr{D¥ X | X! D} is sufficiently small, Computing a minimal eigenvector appears to be intrinsically
then stop. more difficult than computing a maximal eigenvector [7], [9],

3) Compute the Newton stef € C™*? as follows. Set [11],[14], [15], [19], [29], [35]-[37]. The two standard methods
Gy = (I, ® X))"Hx(I, ® X1) — (1/2)(X" Dx + that almost always converge to a minimal eigenvector are the
D)ng)T ®I,_pandGy := (I, ® XJ_)TOX(Ip ®X1). inverse iteration method (described later) and steepest descent

Solve methods [7], [15]. Other methods, such as Newton methods
[14], Rayleigh quotient iterations [9], and so forth, converge to
R{G1 + G2} —{G1+ GQ}} [éRvec{B}} the “nearest” eigenvector rather than to a minimal eigenvector.
{GL — Go} R{G1 — G2} | | Sved B} One advantage of the novel algorithm derived here is that un-
B Rvec[ X Dx} (54) like the recently proposed steepest descent algorithms in [7] and
- Svec{ X¥ Dy} [15], it takes a step of optimal size at each iteration. This feature

is particularly attractive in tracking applications whetearies

for B € C(n—r)*r SetZ := X, B. over time. Furthermore, it suggests that in certain applications
4) If f(X) < f(af {X + Z}), then abort. [The)-Factor at least, the Eucli_dean_-pro_jection-b_::lsed parameterizati(_)n of the

operator gf{-} is defined in (44).] Grassmann manifold in this paper is a more useful choice than
5) Set[X X,]:=qf {X + Z}. Go to Step 2. the geodesic-based parameterization used in [7] and [15]; it does
) ] not appear to be possible to compute the optimal step size for

Remark: The quantlty\/tr{DgXLXfDX} in Step 2 of the algorithms in [7] and [15].
Algorithm 26 equals,/(Z, Z) in Step 4 of Algorithm 24, that  The other advantages are that the algorithm is guaranteed to
is, it equals the norm of the gradient pfat X. converge to a minimal eigenvector, provided the initial vector

If the cost functionf(X) satisfies (A2) of Section VII, then is not orthogonal to the space spanned by the minimal eigen-
Proposition 25 shows that; in Step 3 of Algorithm 26 simpli- vectors, and unlike the classical inverse iteration method, the
fiestoGy = (I, ® X, ) Hx (I, ® X, ). Furthermore, as in algorithm is not sensitive to closely spaced eigenvalues. These
Section VII-A, theQ-Factor operator can be omitted in Step froperties are proved in the following section and corroborated
of Algorithm 26. by simulations in Section VIII-C.

As is the case with all Newton-type algorithms, Algorithm
26 can fail to take a descent direction if the current pdinis g Algorithm and Its Derivation
not sufficiently close to a minimum to ensure that the Hessian
is positive definite. If Algorithm 26 fails to take a descent step, The notation and results in Sections Il and VIl are used here
several iterations of Algorithm 24 can be used to move closer\dth the minor change that the matric&sand 2 are replaced
a minimum before restarting Algorithm 26. by the vectors: andz. The steepest descent directiodefined

in Step 3 of Algorithm 24 is readily calculated from Example 1
of Section Il under the assumption thefz = 1:

VIIl. COMPUTING AN EXTREME EIGENVECTOR

_ [@) =32 Az, Dy=Az
A. Introduction z=— (I —zz")Az = —Ax + (T Az)z.  (55)

It is well known [9], [10] that for a Hermitian matrid €
€, f(z) = (1/2)x" Az achieves its minimum, subject t0y¢ js convenient to interpret! Az as a weighted average of the
"z =1, whenz € C™ corresponds to a minimal EigenveCtoreigenvalues ofd. Let
that is, an eigenvector associated with the smallest eigenvalue of
A. This section specializes Algorithm 24, which is the modified "
steepest descent on the Grassmann manifold algorithm, to thjs _ Z vl wle, =63i—j), M <---< A, (56)
particular cost function. An attractive feature of this specializa- (=
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be the eigendecomposition df wheres is Dirac’s delta func-  Before proving global convergence, two properties of Algo-
tion, and letc; € R be such that = Z;;l c;v;. Then rithm 27 are stated. Algorithm 27 is invariant to shifts; replacing
. A with A — A for any A € R has no effect. This supports
Z 2\ the empirical evidence (see Section VIII-C) that closely spaced
_ — e eigenvalues, which are known to reduce severely the rate of con-
A= =" (57) vergence of power methods [9], do not affect the performance
c? of Algorithm 27. Algorithm 27 is also invariant to orthogonal
i=1 changes of coordinates. That is, if Algorithm 27 produces the
sequencdz(®, £(1 ...} then replacingd with QAQ¥ and
£ with Qz° will produce the sequendg®z (¥, Qz%), ---}.
A <A<, (58) Theorem 28_ (Global Convergenceb.‘et T _be the initial
vector chosen in Step 1 of Algorithm 27.)f is the smallest
The -Factor operator appearing in Algorithm 24 is readilgigenvalue of4 and there exists an eigenvectar satisfying

is a weighted sum of the eigenvalugsof A. In particular

evaluated when applied to a vector. Indeed both Av; = A\jw; andvilz # 0, then Algorithm 27 converges
to an eigenvectos satisfyingAv = Aw.
faf {y}) = 3(u"y) "ty Ay (59) Proof: Referring to Algorithm 27, since’z = 0 if and

) N . . only if = is an eigenvector ofi, it is clear that Algorithm 27
for arbitraryy € C™. It will be shown that th_e decrease in COSEonverges to an eigenvectorof A. Let A be the eigenvalue
f(x) — f(af{z + yz}) can be expressed in terms of the fol;g5qciated with. Assume to the contrary that> A,. Sincev
lowing variables. must then be orthogonal4g, this impliesjvXz| — 0. It will be

A=A-N, a=2"A% p=z"3%  (60) shown below that one iteration of Algorithm 27 increagsz|
if the step sizey > 0 satisfies
Note that and 3 are both real-valued sincd = A" and B ) .
" Az = 0 since it is assumed that’z = 1. Straightforward Yoo = (A= A)7] <200 = Ap). (65)

manipulation shows that _
Sincex — w, it follows thatA = z7Ax — A, anda =

f(x) — f(of {z +v2}) z" A%z — A\? — 0. This means there will come a time when-
=4 03l ke e o hnatence,(68) il aso o for al ubseqert
A — AN (A LY _~A : L= 5 -
(= 1%4"”) (A+AD(z —yAz)} (61) To show that (65) implies that! | will increase, note first
_7 (o= 57B) (62) that direct substitution proves that
1+ay2 B
Differentiating (62) with respect tg and setting the result to vl d +;Z = 1yl - )‘). (66)
zero shows that the greatest decrease in cost occurs wleen \/(5” +v2)"(x + v2) V1t+ay?
the unique positive root of the quadratic equation
unique posiiv au Ic equatl Since « > 0, |2t is readily verified that
o’V +py—a=0. (63) [1 —v(A1 = N/V1+ay?| > 1if and only if (65) holds.

. o - "o
Let~(°») denote this optimal value. It is interesting to note (cf-.rhat Is, (65) implies tha;" | will increase unlesp; x| = 0.
Step 6 of Algorithm 24) that However, the latter cannot occur because, from (38)< A,
and therefore]l — v(A; — A) can never be zero. O
_ f 4 ~lopt) — 1 opt) iy 5. 64 Finally, it is remarked that Algorithm 26 may also be applied
f=) =1 (q ' {I 7 z}) 37 2) (64) to the cost functionf(z) = (1/2)z" Az. SinceD, = Ax,
Algorithm 24 specializes to the following. Note that the extz = A, andCy = 0 (see Example 1—)i Step 3 of Algorithm
pressions forv and3 in Step 3 of Algorithm 27 are equivalent26 becomesz := X, b, whereb € C"* satisfies the linear
to those in (60). In addition, note that 2 and X must be real €duation
valued.
Algorithm 27 (Computing a Minimal Eigenvector):et A € (& Az) L, — X[ AX (b= X[ Az (67)
C™*"™ pe an arbitrary Hermitian matrix. The following algo-
rithm converges to a minimal eigenvector4fvith probability

one (see Theorem 28 later). C. Simulations

1) Randomly choose an€ C™ with unit norm ez =1). This section studies the convergence rate of Algorithm 27 and

2) Compute the descent directian:= Az — Az, where compares it with traditional methods for calculating extremal
X =zt Az. If V2" z is sufficiently small, then stop.  eigenvectors. It is demonstrated that the performance of Algo-

3) Computer :i= z7 A2z X ands := £ A% —3a - X .  rithm 27 is relatively insensitive to the actual eigenvalue distri-
Sety to the positive root of*y2 + 3y — o = 0. bution.

4) Setx := x + vz. Renormalize by setting := z/Vzx. The inverse iteration method [9] for finding an eigenvector of
Go to Step 2. the matrixA associated with the eigenvalue having the smallest
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Error (log)
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Iteration lteration
Fig. 1. Graph comparing the convergence rates of the steep€#j. 3. Graph comparing the convergence rates of the steepest descent and

descent and inverse iteration algorithms when applied to the matiiverse iteration algorithms when applied to ten randomly generated 20-by-20
A = diag{1, 1.01, 1.02, 1.03, 1.04}. matrices with eigenvalues uniformly distributed between 10 and 11.

— Steepest Descent
- Inverse lteration

2 T T T T T T T oc
— Steepest Descent R
-+ _Inverse lteration

Error {log)
Error (log)

lteration lteration

Fig. 2. Graph comparing the convergence rates of the steep€#y. 4. Graph comparing the convergence rates of the steepest descent and
descent and inverse iteration algorithms when applied to the matiinverse iteration algorithms when applied to ten randomly generated 20-by-20
A = diag{1, 2, 3, 4, 5}. matrices with eigenvalues uniformly distributed between 0 and 1.

absolute valugis to generate a sequenge®)} of vectors ac- depends on the eigenvalue distributionfindeed, replacing
cording to the rule A with A + M\ for some constant € R (which is known as a
A1) shift in the literature) significantly alters the convergence rate of
FD = LT (68) (68). In comparison, Section VIl shows that such shifts do not
A1 alter Algorithm 27 at all. It is therefore expected that the inverse
Figs. 1-4 compare the inverse iteration method (68) with tliteration method will exhibit convergence rates ranging from
steepest descent method (Algorithm 27). Figs. 1 and 3 shewtremely poor to extremely good, depending on the eigenvalue
that Algorithm 27 outperforms (68) if the eigenvaluessbfire distribution of A, whereas Algorithm 27 is expected to achieve
closely spaced, whereas Figs. 2 and 4 demonstrate that the @osteady rate of convergence over a wide range of eigenvalue
verse holds as well. This is now explained in more detail.  distributions.
It is well-known that the convergence rate of the power and This hypothesis was tested by plotting the log of the
inverse iteration methods [9] applied to the matfixcritically  error, which is defined asog((x™)7 Az™ — M. {A}),
. ) here Anin{A} is the smallest eigenvalue afi, against
3it is important to note that steepest descent algorithms converge to It e . . bet: he f h h It h
smallest eigenvalue, whereas the inverse iteration method converges to.h'@ !terat'on numoer. (T e fact t at t e resulting graphs
eigenvalue having the smallest absolute value. Similarly, the power methisd Figs. 1-4 are essentially straight lines shows that both
(which will be mentioned later) converges to the eigenvalue having the largeghorithms achieve a linear rate of convergence [22].)
absolute value, whereas steepest ascent algorithms converge to the largest . :
1 was generated by applying the algorithms to the

eigenvalue. Therefore, when comparing algorithms, it is important to cho . ) )
A to be positive definite. matrix A = diag{l, 1.01, 1.02, 1.03, 1.04}. (In all
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simulations, the initial starting vector was chosen to be T — Steepest Ascent
z® = 1 1 1 1]7.) Since the eigenvalues are closely
spaced, Algorithm 27 significantly outperforms (68). Con- -
versely, Fig. 2 shows that (68) outperforms Algorithm 27 K
when applied to the matrid = diag{1, 2, 3, 4, 5}. Figs. 3 ]
and 4 suggest that this behavior is typical. Fig. 4 shows thi
performance of the two algorithms when applied to ten ran-g
domly generated 20-by-20 matrices with eigenvalues uniformlyz -3r
distributed between 0 and 1. The same ten matrices were th¢”
shifted so that their eigenvalues lay between 10 and 11 (thati: _|
eachA was replaced wittd 4 107) and the results plotted in
Fig. 3. Whereas the performance of Algorithm 27 is unaltered
(68) performs badly in Fig. 3 but exceptionally well in Fig. 4.  ®
The steepest ascent method, which is obtained by replacir
A with —A in Algorithm 27, was compared with the power n
method for converging to an eigenvector associated with th Iteration

largest eigenvalue ofd. The power method updates®)

. . . . Fig. 5. Graph comparing the convergence rates of the steepest ascent and
k+1) k k
according to the rule [cf. (68)‘}7( ) = Azl )/HA"”( )”) power method algorithms when applied to ten randomly generated 20-by-20

Figs. 5 and 6 were generated analogously to Figs. 3 and 4. Theytices with eigenvalues uniformly distributed between 10 and 11.
demonstrate that Algorithm 27 achieves a convergence rate thato_
is much less sensitive to the location of the eigenvalued of ~— Stespest Ascent
than the power method does. °
Finally, the rapid convergence of the Newton method (Algo-
rithm 26 applied to the cost functiofi(z) = (1/2)z" Az as
in Section VIII) for finding a minimal eigenvector is illustrated
in Fig. 7. (The Newton method converged to the exact answe
up to machine precision on the third iteration.) Note that twog™®[
iterations of Algorithm 27 were performed before running theE
Newton method since otherwise, the Newton method would fai" -
to converge to a minimal eigenvector.

-1 PR

-2}

IX. DISCUSSION

-8}

This section discusses the conceptual differences between t
optimization approach in this paper and the approach in [8]. | -7 ! L L L L . - L —
also gives a qualitative description of when the Newton algo Heration
rithms here are eXpECted to OUtperform the Newton algomhrﬁa. 6. Graph comparing the convergence rates of the steepest ascent and

in [8] power method algorithms when applied to ten randomly generated 20-by-20
It is first noted that the general framework in Section V fomatrices with eigenvalues uniformly distributed between 0 and 1.

minimizing a function on a manifold—namely, given a point

'
~

2

X on the manifold, apply a single iteration of the _steepest de
scent or Newton algorithm to the local cost functigf¥) = of |

F(h(Z)), whereh is a local parameterization aboi, then
move to the new poink := h(Z) and repeat—is more general -2t
than the framework in [8]. Choosirig Z) to be the exponential
map (which corresponds to using geodesics to locally param:  -*f
terise the manifold) results in the Newton algorithm in [8]. Theg
differences between the algorithms can therefore be understo§ -
by determining what effect the choice of the local parameteri
zationh(Z) has on the computational complexity and the rate
of convergence of the algorithms.

As mentioned earlier, the local parameterization used in thi 3
paper is computationally simpler to compute thanthe one in[8 - .
The asymptotic rate of convergence of the modified Newton al
gorithms here is the same as for the Newton methods in [8], thi -'4; ; P s : s . = : PE
is, they all asymptotically achieve a quadratic rate of conver- Heration

gence. quever*_ foragiven cost function, it can be expected ”rl%t 7. Graph showing the rapid convergence of the Newton method when
one algorithm will converge faster than the other one. (WhigRed to find the minimal eigenvector of the matrix= diag{1, 2, 3, 4, 5}.

>
T

~10F
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algorithm is the faster depends on the cost function.) The fa@-function on the manifold. Instead, at each iteration, they form

lowing example is used to explain this phenomenon. a local cost function whose domain is a vector space and not
Consider the ordinary Newton method applied to the twa manifold. Although the derivative and Hessian of this local
cost functionsf(z, y) = (z — 2)? + (y — 3)? andg(r, ) = cost function can only be calculated once the vector space is

(r cos @ — 2)? + (r sin § — 3)2. Note thatf andg represent given an inner product structure (which is tantamount to giving
the same function expressed in different coordinate systertiee Stiefel manifold a metric structure except that there is no
Specifically, f = g o p, wherep:R? — R? is the mapping smoothness requirementf)e Newton step is independent of the
from Cartesian to polar coordinates. The Newton method apner product structure choseherefore, the Newton algo-
proximates the cost function by a quadratic cost at each iteratioithms in this paper can claim (for better or for worse) to be un-
Sincef(x — zo, ¥ — yo) is quadratic about any poifito, yo), related to any Riemannian structure put on the manifold. (They
the Newton method applied thconverges in a single iteration.do, however, depend on the choice of norm used to define the
However, sincey(r — 7o, 6 — 6p) is not quadratic about any projection operator.)
point(rq, 65), the Newton method will not converge in a single  While the approach in [8] depends on the Riemannian struc-
iteration when applied tg. Conversely, a “Newton algorithm ture given to the Stiefel manifold, the approach in this paper
in polar coordinates” would converge in one iteration when agepends on the projection operator used to define the local pa-
plied tog but take longer to converge when appliedfto rameterization. The Euclidean norm in Definition 5 was chosen
In the above example, the change of coordinatesanalo- somewhat arbitrarily; a number of interesting cost functions can
gousto the local parameterizatibmuised to define Newton algo- be written in terms of a Euclidean norm so that it seemed sen-
rithms on a manifold. In a qualitative sense, it implies that thable to use the Euclidean norm to define the projection operator
algorithm that achieves the faster convergence for a particuter well. A positive consequence of this choice is that it allows
cost functionf(X) is the algorithm that uses the local paramthe optimal step size to be computed in Section VIII for a par-
eterizationh(Z) (either the exponential map in [8] or the Eu-icular cost function.
clidean projection operator in this paper), resulting in the local
cost functionf(~(Z)) more closely approximating a quadratic X. CONCLUSION

function. Simulations in [18] show that for one particular class This paper derived novel algorithms for the minimization of a

of cost functions, the algorithms here converge faster than tggst functionf: C™<» — R subject to the constraiat # X — 1.

algorithms in [8]. However, the preceding argument Sque.Sltﬁe key feature of the algorithms is that they reduce the dimen-

that there may exist another class of cost functions for which " . Lo ; )
: Sionality of the optimization problem by reformulating the opti-
the converse is true.

. : ization problem as an unconstrained one on either the Stiefel
Since the performance of the algorithms depends on the ) L
. o . or Grassmann manifolds. A consequence of this is that the con-
choice of local parameterization(Z) relative to the cost

. N ; . .. vergence properties of the algorithms may be different from
funqtlon FX), .'t is worthwhile under_star_1d|ng the mo_ﬂvaﬂonthose of traditional methods. To verify this assertion, the algo-
behind the choice of local parameterization here and in [8].

In [8], the Stiefel manifold was made into a Riemannian marﬁ'—thms. were gpplled o the prqblem of finding an §|genvect9r

. o : : : associated with the smallest eigenvalue of a Hermitian matrix.

ifold by endowing it with its canonical metric A connection _. . .
Simulations showed that the performance of the resulting al-

fmugﬁflfglrz ([t)r;?nl'?l]'i_scxgzecgnr:)esztilglre]) t(\;vizlgﬁgtgt\aeen trc;(;?e%%)rithms exhibited quite different behavior from the traditional
’ 9 P 9 ower and inverse iteration methods for computing an extremal

and Hessian of a function on the manifold. Roughly speaking.,

) : igenvector.
the classical formula for computing the Newton step was gener=
alized in [8] by replacing the first- and second-order derivatives
in Newton’s formula by the gradient and Hessian of the cost
function on the manifold. Newton’s formula results in a vector The author wishes to thank R. Mahony for many fruitful
pointing in the direction to move, and since following a geodesitiscussions centered around the problem of minimizing a cost
corresponds to walking in a straight line, it is natural for [8] téunction on a manifold. The author also wishes to thank the
interpret Newton’s formula as requiring the Newton step to onymous reviewers for their insightful comments, which led
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