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Abstract

A real symmetric matrix is diagonalisable by a suitable orthonormal change of basis. The joint
approximate diagonalisation problem is to find an orthonormal change of basis which simultaneously
diagonalises, or approximately diagonalises, two or more real symmetric matrices. A number of
important signal processing problems require the computation of a joint approximate diagonaliser.
However, no algorithm to date is guaranteed to find the optimal diagonaliser. This paper reformulates
the diagonalisation problem as a convex optimisation problem on a Riemannian manifold and is thus
able to guarantee global convergence to the optimal diagonaliser.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Given symmetric matrices C1, . . . ,Cp ∈ R
n×n, the joint diagonalisation problem is to

find an orthonormal matrix X ∈ R
n×n such that the matrices XT CiX for i = 1, . . . , p, are

diagonal. Such an X exists if and only if the Ci share the same eigenvectors, in which case
X can be found relatively easily from the eigenvectors of the Ci . In practice though [1–5],
the Ci are observed in noise, and the joint diagonaliser X of the Ci given only the matri-
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ces Ai = Ci + Ei , where the Ei represent random error matrices, cannot be found by a
straightforward eigendecomposition.

If the error distributions are known, the maximum likelihood estimate of X is obtained
by solving the constrained optimisation problem: Given A1, . . . ,Ap , find the X,C1, . . . ,Cp ,
which maximise the joint likelihood of (E1, . . . ,Ep), where Ei = Ai − Ci , subject to the
equality constraints that the XT CiX are diagonal matrices and XT X = I . This is called
joint approximate diagonalisation, emphasising that X only approximately diagonalises
the observed matrices Ai . Different distributions for the Ei , and estimators other than the
maximum-likelihood estimator, lead to different definitions of an optimal joint approx-
imate diagonaliser. All algorithms for computing these various diagonalisers iteratively
minimise a cost function and may converge to a local minimum, hence their performance
cannot be guaranteed [3,6,7].

This paper proposes a new definition of joint approximate diagonalisation which is geo-
metrically meaningful, irrespective of any particular signal processing application. This
geometrical insight sheds light on the strengths and limitations of joint approximate diag-
onalisation techniques in general. For instance, just like antipodal points on a sphere do
not have a unique centroid, in certain cases the joint approximate diagonaliser cannot be
defined uniquely either. Moreover, the proposed definition is chosen to ensure the optimal
diagonaliser with respect to this definition can be computed reliably in practice.

Although the proposed algorithm computes a diagonaliser which is optimal according
to the geometric definition, the diagonaliser may not be optimal for a given signal process-
ing application. Nevertheless, in such situations, the intention is for the proposed algorithm
either to be used directly as a sub-optimal but reliable solution—reliable albeit sub-optimal
algorithms are often preferable—or as a means of computing a good initial guess for a sub-
sequent local optimisation routine, such as if the maximum-likelihood estimate is sought.

It is emphasised the ideas in this paper are in their infancy and, as noted throughout
the paper, there are numerous ways the results can be either generalised or tailored to spe-
cific applications. The first of such notes is that the complex-valued case will be studied
elsewhere; while the geometric definition of joint approximate diagonalisation easily gen-
eralises, different techniques are required for a mathematical analysis.

2. Geometric joint approximate diagonalisation

The joint approximate diagonalisation problem is to find an orthonormal matrix X ∈
R

n×n such that the XT AiX are approximately diagonal, where the Ai are symmetric ma-
trices. There are numerous ways of defining what approximately diagonal means. This
section introduces a geometric definition, the motivation being that under this definition,
the optimal diagonaliser can be found reliably in practice by minimising a convex function
on a manifold.

Intuitively, previous definitions of optimal joint diagonalisation led to difficult optimi-
sation problems because the joint diagonalisation problem is a generalisation of the matrix
eigenvalue problem, and to date, attempting to solve the matrix eigenvalue problem by
minimising a cost function (without any form of implicit or explicit deflation taking place)
is not competitive with current best algorithms. This suggests the inherent matrix eigen-
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Fig. 1. If the solid lines represent the eigen-
vectors of one 2 × 2 matrix and the dashed
lines the eigenvectors of another, then the
dotted lines represent the proposed estimate
of the joint eigenvectors.

Fig. 2. As drawn, the angle between the solid and the dashed
eigenvectors is close to 90◦ . However, replacing the dashed
eigenvector on the left by its negative results in a very small angle
between the two pairs of eigenvectors.

value problem should be factored out of the joint diagonalisation problem. This can be
done either at the start, whereby the joint diagonaliser is expressed as some function of the
eigendecompositions of the Ai , or at the end, whereby the joint diagonaliser X is found by
computing the eigendecomposition of a matrix A, where A is some function of the Ai .

The former approach is taken. Given the symmetric matrices A1, . . . ,Ap ∈ R
n×n, let

Xi ∈ R
n×n be orthonormal matrices such that the XT

i AiXi are diagonal. The columns of
Xi are the eigenvectors of Ai , so Xi is unique up to permutation and sign change of its
columns unless Ai has a multiple eigenvalue; this latter situation is temporarily ignored. If
the Ai can be jointly diagonalised exactly then suitable permutations and sign changes of
the columns of the Xi exist such that X1 = · · · = Xp .

If a small amount of noise is present, after suitable permutations and sign changes, the
Xi can be expected to be close to each other in some metric, say d(· , ·). It is proposed to
define the joint approximate diagonaliser X as the centroid of the Xi , namely

X = arg min
X∈SOn

f (X), f (X) =
p∑

i=1

d2(X,Xi), Xi ∈ SOn, (1)

where SOn = {X ∈ R
n×n | XT X = I, detX = 1} denotes the set of orthonormal matrices

with unit determinant, called the special orthogonal group. This determinant condition is
explained presently. Figure 1 illustrates the idea when n = p = 2. Figure 2 shows the need
for permutations and sign changes.

It remains to define d(· , ·). Let the columns of the orthonormal matrices X and Y repre-
sent the eigenvectors of two matrices. As in Fig. 1, the distance d(X,Y ) should represent
how much X needs to be rotated for it to equal Y . Since rotations have unit determinant,
it is only possible to rotate X to equal Y if detX = detY . An orthonormal matrix has
determinant ±1 and the determinant can be changed by a sign change of one column.
This explains why, without loss of generality, (1) assumes Xi ∈ SOn. (Mathematically,
the orthogonal group, when considered as a topological space, consists of two connected
components, the special orthogonal group being the component containing the identity
matrix [8].) Now, since SOn is a Lie group, there is a natural distance function dSO (· , ·)
n
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on it, induced from the unique bi-invariant metric [9,10], which does indeed measure the
amount of rotation:

dSOn
(X,Y ) = 1√

2

∥∥log
(
XYT

)∥∥, X,Y ∈ SOn, (2)

where log is the principal matrix logarithm and ‖·‖ the Frobenius norm.
Let Gn be the sub-group of SOn such that X ∈ Gn if and only if there exists a permuta-

tion matrix P ∈ SOn and a diagonal matrix D ∈ SOn with X = PD. To take into account
the correct permutation and sign change, define

d(X,Y ) = min
P,Q∈Gn

dSOn
(XP,YQ) = min

Q∈Gn

dSOn
(X,YQ). (3)

Definition 1. Given symmetric Ai ∈ R
n×n for i = 1, . . . , p, let Xi ∈ SOn be such that

XT
i AiXi is diagonal. A geometric joint approximate diagonaliser of the Ai is any X min-

imising (1), with d defined in (3).

Section 3 uses the geometry of SOn to establish conditions for the geometric joint
approximate diagonaliser to be unique.

2.1. Ordered joint approximate diagonalisation

If an Ai has a multiple eigenvalue then Definition 1 is apparently unsatisfactory because
the non-uniqueness of Xi extends beyond permutations and sign changes of its columns.
The mathematical solution is straightforward; include this extra ambiguity when searching
for the minimum in (3). In practice, this extra level of difficulty is not warranted. First, if
the Ai are noise-corrupted versions of the matrices Ci , then typically the probability that an
Ai has a multiple eigenvalue is zero. More importantly, the joint diagonalisation problem
is ill-conditioned1 if an Ai has a multiple eigenvalue. For example, if A1 = I and A2 is
arbitrary, arbitrarily small perturbations of A1 can lead to its eigenvectors being far away
from the eigenvectors of A2.

Thus, a joint diagonalisation algorithm detecting an Ai with two close eigenvalues
should signal that the problem is ill-conditioned. Furthermore, all joint diagonalisation
routines should be used cautiously in applications where the noise free matrices Ci may
contain closely spaced eigenvalues.

This line of thinking motivates several new geometric problems which should be of
interest to the signal processing community. The first is to find a joint diagonaliser X

where the order of the columns of X matters.

Definition 2. Given symmetric Ai ∈ R
n×n for i = 1, . . . , p, let Xi ∈ SOn be such that the

j th column of Xi is the eigenvector associated with the j th largest eigenvalue of Ai . An
ordered joint approximate diagonaliser of the Ai is any X minimising (1), with d defined
in (3) but where Gn is instead the sub-group of all diagonal matrices in SOn.

1 Prompted by a reviewer, we point out that ill-conditioned is different from ill-defined; our claim does not
contradict Theorem 3 of [2].
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If the Ci have well separated eigenvalues and Ai = Ci + Ei with the Ei sufficiently
small, then an ordered joint approximate diagonaliser (Definition 2) is also a joint ap-
proximate diagonaliser (Definition 1). Moreover, in certain cases, omitting the permutation
matrices in Gn simplifies the joint diagonalisation algorithm. This is discussed in Section 4.

Finally, in some applications, each Ci might have some eigenvalues well separated but
others closely spaced. For instance, the several smallest eigenvalues of Ci (the “noise sub-
space”) might be closely spaced. Then, it may be of interest to find a rectangular matrix X

which approximately diagonalises the principal parts of the Ci . Mathematically, let the
columns of Xi be the principal eigenvectors of Ai and let X be the centroid of the Xi after
appropriate permutation and sign change of the columns of the Xi . This differs from the
geometric joint diagonalisation problem only in that the X and Xi are rectangular, hence
belong to the Stiefel manifold rather than SOn. Similarly, if an approximately common
principal subspace is sought, the X and Xi can be considered elements of the Grassmann
manifold instead. Algorithms for solving these problems and applications thereof will be
reported elsewhere.

3. Theoretical results

Let J denote an arbitrary joint approximate diagonalisation algorithm. For the algo-
rithm to be sensible, it must satisfy the following requirements. In R1 and R4 below, Λ is
the set of diagonal matrices with distinct eigenvalues.

R1. If D1, . . . ,Dp ∈ Λ, then J (D1, . . . ,Dp) = I .
R2. For any permutation π , J (A1, . . . ,Ap) = J (Aπ(1), . . . ,Aπ(p)).
R3. For any orthonormal U , J (UA1U

T , . . . ,UApUT ) = UJ (A1, . . . ,Ap).
R4. If D1, . . . ,Dp ∈ Λ, then J (D1 + N1, . . . ,Dp + Np) is Lipschitz continuous for suf-

ficiently small Ni .

The geometric joint diagonaliser is shown below to exist and be unique. Presupposing this,
it follows that it satisfies R1–R4. Indeed, R1 and R2 are clear, while R3 follows from
the left-invariance property of the distance function (3), namely d(UX,UY) = d(X,Y ) if
U ∈ SOn. To prove R4, first note that if Ni is sufficiently small then the Xi , in Definition 1
will vary smoothly with Ni and be close to the identity matrix. If X and Xi are sufficiently
close to the identity then it is a standard result that d2(X,Xi) is smooth, hence a small
change in the Xi will induce only a small change in X, defined in (1), implying R4.

The remainder of this section is devoted to explaining the underlying geometry and
proving uniqueness of the geometric joint diagonaliser. Referring to (1) and (3), although
the functions f and d are defined on SOn, they should be thought of as being defined on
the quotient space SOn/Gn. Indeed, d is a true distance function on SOn/Gn. Specifically,
SOn/Gn is a manifold (in fact, a homogeneous space) and d is the distance function in-
duced from dSOn

by the natural projection π : SOn → SOn/Gn. (The situation is straight-
forward because Gn is a finite group. For complex-valued matrices, Gn would be an infinite
group. This can be handled by the standard theory of reductive homogeneous spaces.)
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Fig. 3. The dotted lines are a geodesic triangle connecting three points (projected onto a two-dimensional plane)
in SO3. The solid lines are geodesics joining the midpoint of each side of the triangle to the opposite corner. The
curvature of SO3 prevents the three solid lines meeting at a unique point.

Although the projection π : SOn → SOn/Gn is many-to-one, locally it is one-to-one.
That is, the geometry (curvature, geodesics, etc.) of SOn/Gn coincides locally with the
geometry of SOn, and the latter is well understood: SOn equipt with its bi-invariant metric
is a compact Riemannian manifold with non-negative curvature. Geodesics on SOn are
of the form γ (t) = XeAt , where X ∈ SOn and A ∈ son, where son is the set of skew-
symmetric matrices.

Since SOn, and hence SOn/Gn has positive curvature, if the Xi are too far apart the
centroid need not be unique. To visualise this, consider the north and south poles on a
sphere and note any point on the equator is equidistant from them. In practice, this means
that if too much noise is present, so the Ai are far from being jointly diagonalisable, then
the joint approximate diagonaliser is ill-defined. Since all joint diagonalisation algorithms
minimise a cost function on SOn (or a quotient space thereof), this is an inherent fea-
ture of the joint approximate diagonalisation problem and not of any specific definition or
implementation.

It is remarked that although there are several different definitions of centroid which turn
out to be equivalent in Euclidean space, on SOn this is no longer true. See, for example,
Fig. 3. The definition in (1) of a centroid is taken from [11] and has been studied in the
special case of SOn in [12]. The globally convergent algorithm in [13] for computing this
centroid forms part of the algorithm in Section 4. Further details of the geometry of SOn

can be found in these papers.
The largest domain on which π is injective is the fundamental domain

F = {
X ∈ SOn | ∀Q ∈ Gn − {I }, dSOn

(X, I) < dSOn
(X,Q)

}
. (4)

Denote the open ball in SOn by B(X;ρ) = {Y ∈ SOn | dSO (X,Y ) < ρ}.

n
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Lemma 3. Assume n � 2. The open ball B(I ;ρ) is contained in the fundamental domain
F if and only if ρ � π/4.

Proof. Define ρ̄ = 1
2 minQ∈Gn−{I } dSOn

(Q, I). Clearly B(I ;ρ) ⊂ F if and only if ρ � ρ̄.
Let Q ∈ Gn be the matrix with all elements zero except for Q12 = 1, Q21 = −1, Qii = 1
for i � 3. Then dSOn

(Q, I) = π/2, proving ρ̄ � π/4. The proof that ρ̄ � π/4 is tedious
and hence omitted. It is intuitive though that Q is the element in Gn − {I } closest to I

because it differs from I in only two columns. �
Theorem 4. Assume n � 2. Referring to (1), if there exists a Y ∈ SOn such that Xi ∈
B(Y ;π/8) then there is precisely one minimum of f (X) in the region B(Y ;π/8). More-
over, f restricted to B(Y ;π/8) is strictly convex, and π/8 is the largest radius for which
this is true.

Proof. Define f̃ (X) = ∑p

i=1 d2
SOn

(X,Xi). If Xi ∈ B(Y ;π/8) then it is proved in [11,12]

that f̃ restricted to B(Y ;π/8) is strictly convex and hence has a unique minimum X̃ ∈
B(Y ;π/8), which is precisely the Karcher mean of the points Xi on SOn. (In fact, f̃ (X)

is convex on a much larger ball.) Now, Lemma 3 implies that if dSOn
(X,Xi) < π/4 then

d(X,Xi) = dSOn
(X,Xi), so if X,Xi ∈ B(Y ;π/8) then d(X,Xi) < π/4, hence f̃ and f

agree on B(Y ;π/8), thus proving f restricted to B(Y ;π/8) is strictly convex with mini-
mum X̃.

To prove π/8 is the largest radius, define Q(θ) ∈ SOn to be the identity matrix except
for the top left 2 × 2 block which is [cos θ,− sin θ; sin θ, cos θ ], a rotation matrix. Note
Q(π/2) ∈ Gn. Let X1 = Q(π/8) and X2 = Q(−π/8). Since Q(−π/8) is equivalent to
Q(−π/8)Q(π/2) = Q(3π/8) in SOn/Gn,

f
(
Q(θ)

) =
{

(θ − π/8)2 + (θ + π/8)2, θ ∈ [−π/8,π/8],
(θ − π/8)2 + (θ − 3π/8)2, θ ∈ [π/8,3π/8] (5)

and clearly f (X) is not convex at X = Q(π/8). �
Admittedly, the radius π/8 is small; if a moderate amount of noise is present, it might

not be possible to choose Qi ∈ Gn and Y ∈ SOn such that XiQi ∈ B(Y ;π/8), even though
the geometric joint diagonaliser is well defined and correctly computed by the algorithm in
Section 4. The problem is primarily caused by the volume of B(I ;π/4) being considerably
smaller than the volume of F even though F contains no larger ball. The way to overcome
this is to use a different metric for defining open balls. This is currently under investigation.

4. The algorithm, a numerical example, and a discussion

An algorithm for computing the geometric joint diagonaliser (Definition 1) is now
described. Given symmetric Ai ∈ R

n×n for i = 1, . . . , p, find, by eigen-decomposition,
matrices Xi ∈ R

n×n such that the XT
i AiXi are diagonal. If any of the Ai have multi-

ple eigenvalues, warn about ill-conditioning. Multiply the first column of each Xi by
−1 if necessary, so det Xi = 1. Recalling the definition of Gn in (3), compute Q =
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arg minQ∈Gn
dSOn

(X1,X2Q) by exhaustive search. (The cardinality of Gn is n!2n−1, so
this is only practical for small n. Faster solutions not requiring an exhaustive search
are currently under investigation. See too the note below.) Set X := X1e

(1/2) log(XT
1 X2).

If p = 2 then return X as the joint diagonaliser. Otherwise, for each i, compute Q =
arg minQ∈Gn

dSOn
(X,XiQ) and set Xi := XiQ. (This ensures the Xi are clustered

around X.) If there exists an i such that dSOn
(Xi,X) � π/8, warn that reliability can-

not be guaranteed. Repeat the steps:

(1) Set S := 1
p

∑p

i=1 log(XT Xi). To reduce numerical roundoff errors, set S := (S −
ST )/2.

(2) If ‖S‖ < 10−6 then return X as the joint diagonaliser.
(3) Set X := XeS and go to step 1. (These three steps implement the steepest descent

algorithm proposed in [13].)

Note that the exhaustive search is not necessary if the Xi are sufficiently close together
on SOn/Gn, such as when the Ai are close to being exactly diagonalisable and have well
separated eigenvalues. In this case, if the j th column of Xi is the eigenvector of Ai associ-
ated with the j th largest eigenvalue, then minQ∈Gn

dSOn
(X1,X2Q) achieves its minimum

when Q is diagonal with Qjj = 1 if the inner product of the j th columns of X1 and X2 is
positive, otherwise Qjj = −1. Similarly, computing the ordered joint diagonaliser (Defin-
ition 2) eliminates the need to search through all n! permutation matrices.

The algorithm was implemented and compared with Cardoso’s well-known Jacobi
method for computing joint approximate diagonalisers [7]. Since Cardoso’s method min-
imises a different cost function (namely, the sum of the squares of the off diagonal ele-
ments), whether Cardoso’s method or the proposed method performs better should depend
on the noise model.

Two different noise models are used. The first is Ai = UDUT + Ni for i = 1, . . . ,4,
where U is an arbitrary orthonormal matrix, D = diag{1, . . . ,5} and Ni = (σ 2/2)(Ei +
ET

i ) where the elements of Ei have a Gaussian N(0,1) distribution. It is anticipated
Cardoso’s method will outperform the geometric joint diagonaliser because the latter es-
sentially assumes each eigenvector of Ai is perturbed by approximately the same amount
from the corresponding eigenvector of UDUT , whereas the additive noise Ni will perturb
some eigenvectors more than others because the eigenvalues range from 1 to 5. Figure 4
illustrates this when σ 2 = 0.5. Here, if V is the joint approximate diagonaliser, the error
is graphed as d(U,V ). Note that σ 2 = 0.5 is large enough for the π/8 distance rule to be
violated frequently, yet the algorithm still works well. Note too that results not presented
indicate that if σ 2 < 0.2 then the performance difference between the two methods is neg-
ligible. (When simulating this and the following model, 50 trials were performed, with the
matrix U generated at random for each trial. Each point in the figures represents one trial.)

The second model is Ai = UeSi D(eSi )T UT for i = 1, . . . ,4, where U is an arbitrary
orthonormal matrix, D = diag{1, . . . ,5} and Si = (σ 2/2)(Ei −ET

i ) where the elements of
Ei have a Gaussian N(0,1) distribution. Since eSi represents a uniform random perturba-
tion of the columns of U , it is anticipated the geometric joint diagonaliser will outperform
Cardoso’s method. Figure 5 shows that when σ 2 = 0.5, this is indeed the case; the geo-
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Fig. 4. For noise model one, Cardoso’s method has a mean error of 0.71 and a standard deviation of 0.25 while
the geometric joint diagonaliser has a mean error of 0.86 and a standard deviation of 0.32.

Fig. 5. For noise model two, Cardoso’s method has a mean error of 1.58 and a standard deviation of 0.30 while
the geometric joint diagonaliser has a mean error of 1.43 and a standard deviation of 0.26.

metric joint diagonaliser has not only a smaller mean but also a smaller standard deviation,
implying it is more robust to outliers.

To make the geometric joint diagonaliser perform better for noise model one, the dis-
tance function (3) needs to be modified. Intuitively, changing an eigenvector associated



J.H. Manton / Digital Signal Processing 16 (2006) 468–478 477
with a larger eigenvalue should incur a larger penalty since additive noise is less likely to
affect these eigenvectors. However, an ad-hoc change to (3) can easily destroy the convex-
ity of the cost function f (X) in (1). In its full generality, the key idea in this paper is to
choose d(· , ·) to be a distance function on a Riemannian manifold, since this will ensure
f (X) is convex provided the Xi are sufficiently close together. The only other restriction
is d be left-invariant, that is d(X,Y ) = d(UX,UY) for all U ∈ SOn, since this ensures
the geometric joint diagonaliser is equivariant to orthonormal changes of basis of the Ai

(requirement R3 in Section 3).
Let son denote the tangent space at the identity of SOn. (It is the Lie algebra associated

with SOn and consists of skew-symmetric matrices.) A left-invariant distance function on
SOn is found by assigning an inner product to son and then extending it to the whole
tangent bundle of SOn by left translation. For noise model one, a suitable choice of inner
product is found as follows. If A ∈ son (so that AT = −A) then eA ∈ SOn and

(
eA

)T
DeA = D + [D,A] + O

(‖A‖2), (6)

where [D,A] = DA − AD and D is diagonal. Provided D has distinct eigenvalues, given
a symmetric N there exists an A such that [D,A] = N . Thus, (6) says to first order that
a diagonal matrix D perturbed by N has its eigenvectors perturbed from I to eA, where
[D,A] = N . A least-squares estimator seeks to minimise tr{NT N} = tr{[D,A]2}. This
suggests defining the norm of A ∈ son to be ‖A‖2 = tr{[D,A]2}, and in fact, this norm
comes from the inner product

〈A,B〉 = tr
{[D,A][D,B]}, A,B ∈ son. (7)

As already mentioned, (7) induces a left-invariant distance function, and geometric joint
diagonalisation with respect to this distance function is expected to perform well for noise
model one. Before this can be verified though, the geometry induced by (7) must be de-
rived, and this is beyond the scope of the present paper.

5. Conclusion

A joint approximate diagonalisation algorithm should fulfill requirements R1–R4 in
Section 3 and give reliable results. To achieve this, this paper proposed to factor out the
difficult matrix eigenvalue problem from the joint diagonalisation problem and then use
geometry to construct a convex cost function on a Riemannian manifold whose minimum
defines the joint approximate diagonaliser. As such, this is the first joint diagonalisation
algorithm to use a convex cost function and hence not suffer from convergence to a local
minimum.
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