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Abstract—In 1961, James and Stein discovered a remarkable
estimator that dominates the maximum-likelihood estimate of the
mean of appp-variate normal distribution, provided the dimension
ppp is greater than two. This paper extends the James–Stein
estimator and highlights benefits of applying these extensions
to adaptive signal processing problems. The main contribution
of this paper is the derivation of the James–Stein state filter
(JSSF), which is a robust version of the Kalman filter. The
JSSF is designed for situations where the parameters of the
state-space evolution model are not known with any certainty.
In deriving the JSSF, we derive several other results. We first
derive a James–Stein estimator for estimating the regression
parameter in a linear regression. A recursive implementation,
which we call the James–Stein recursive least squares (JS-RLS)
algorithm, is derived. The resulting estimate, although biased, has
a smaller mean-square error than the traditional RLS algorithm.
Finally, several heuristic algorithms are presented, including
a James–Stein version of the Yule–Walker equations for AR
parameter estimation.

Index Terms— James–Stein estimation, Kalman filter,
maximum-likelihood estimation, minimax estimation, recursive
least squares, robust filtering, Yule–Walker equations.

I. INTRODUCTION

CONSIDER the problem of estimating the mean of a
-dimensional random vector having a multivariate

normal distribution with mean and identity
covariance matrix, i.e., . Given the single
realization , it is easily shown that the maximum likelihood
estimate (MLE) of the mean is , and indeed, this is
identical to the least squares estimate. Furthermore, it is readily
shown that the risk of this MLE, i.e., the expected square error

, is . Here, denotes Euclidean
length.

In 1961, James and Stein [11] proved the following remark-
able result:1 If the dimension of is greater than two, then
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1In a recent published foreword [3] to James and Stein’s paper, B. Efron
states this result to be “the most striking theorem of post-war mathematical
statistics.”

the “James–Stein” estimator for

(1)

has a smaller risk (mean square error)
than the MLEfor all valuesof [i.e., , ].
It is important to note that the James–Stein estimator is a
biased estimator, i.e., .

The James–Stein result has been considered by some to be
paradoxical (see [6] for a popular article on this paradox).
After all, for , the MLE is admissible (that is, it
cannot be beaten everywhere in the parameter space), and until
the publication of [11], it was thought that the MLE was
admissible for .

During the last 20 years, numerous papers have appeared
in the statistical and econometrics literature that study appli-
cations and extensions of the James–Stein estimator [2], [5],
[7], [9], [13], [24], [28]. Indeed, the James–Stein estimator is
merely a special case of a “shrinkage estimator” [14]. Roughly
speaking, this means that the factor shrinks
the MLE to some centralized mean. Several shrinkage
estimators have been studied in great detail in the mathematical
statistics literature during the past 15 years.

Rather surprisingly, we have not come across any papers
in statistical signal processing that consider the James–Stein
estimator. In this paper, we extend the James–Stein estimator
in several ways and consider some of its applications in
statistical signal processing.

As detailed in [14, Sec. 4.6], the James–Stein estimator has
a strong Bayesian motivation. A natural question that can be
posed in the statistical signal processing context is: Does there
exist a James–Stein version of the Kalman filter?The main
contribution of this paper is to derive the James–Stein state
filter. The James–Stein state filter, unlike the Kalman filter,
provides sensible state estimates, regardless of how inaccurate
the state-space evolution model is.

In deriving the James–Stein state filter, the contributions
of this paper are threefold. First, we extend the James–Stein
estimator to more general regression models. Then, we derive
a James–Stein version of recursive least squares. These results
lead onto our main result, which is the James–Stein state filter.

We now briefly describe these three contributions:

1) Spherically Symmetric James–Stein Estimator:The
(spherically symmetric) James–Stein estimator for linear
regression is introduced in Section II. The regression
parameter estimate is proved to have a mean-square
error no greater than that of the traditional (maximum-
likelihood) estimate. Furthermore, the mean-square error
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can be further decreased if ana priori estimate of the
true regression parameter exists.

2) James–Stein Recursive Least Squares Algorithm:While
James–Stein estimation has been widely applied to linear
regression in several fields (e.g., economics [7]), its
absence from statistical signal processing may explain
why recursive versions of the James–Stein estimator
have not been developed before. In Section III, we
develop a recursive implementation of the James–Stein
estimator applied to least squares, which we call the
James–Stein recursive least squares algorithm (JS-RLS).
The JS-RLS algorithm yields parameter estimates of
autoregressive with exogenous input (ARX) models. In
particular, for an exogenous input model, the JS-RLS pa-
rameter estimates are guaranteed to have a mean-square
error not exceeding that of the RLS. One application
is the identification of the (finite) impulse response of
a linear time-invariant system given both the input and
the output signals.

3) James–Stein State Filter:The main result of this paper is
the James–Stein state filter (JSSF), which is developed
in Section IV. The signal model considered is a linear
Gaussian state-space model—just as for the standard
Kalman filter. (The JSSF is readily extended to nonlinear
and non-Gaussian dynamics.) It is important to note
that unlike the JS-RLS, which follows straightforwardly
by shrinkage of the standard RLS, the JSSF cannot be
derived as a straightforward application of shrinkage to
the Kalman filter. (In fact, the differences between the
Kalman filter and the JSSF make it misleading to call
the JSSF the “James–Stein Kalman filter.”)

The JSSF derived in Section IV-C makes no assump-
tions concerning the accuracy of the state-space model.
It is extremely robust in the sense that the mean-square
error of the state estimate is guaranteed to be no larger
than that of the MLE based on the observation model
alone, regardless of how incorrect the state-space model
is. (By comparison, even small perturbation errors in
the state-space model can lead to the standard Kalman
filter’s mean-square error being much larger than that
obtained if the observation model alone was used.) At
the same time, the more accurate the state-space model
is, the smaller the mean-square error will be.

The JSSF has numerous potential applications. For
example, in analysis of real-world data (economic, me-
teorological, etc.), the true system dynamics are often not
known. Any approximation may be used for the system
dynamics in the JSSF without fear of introducing a larger
error than if no system dynamics were specified. In other
words, the data are allowed to “speak for themselves.”

In Section IV-D, the James–Stein Kalman Filter with
Hypothesis test (JSKF) is derived. This filter has the
effect of implementing both the Kalman filter (KF) and
the JSSF in parallel. At each time instant, a hypothesis
test is used to determine if the system dynamics agree
with the observations. If the system dynamics are in
agreement with the observations, the KF state estimate
is used. Otherwise, the JSSF state estimate is used.

The JSKF has potential applications wherever the
system dynamics are accurately known most of the time
but, due to unexpected events, are inaccurate at certain
instants in time. For example, the system dynamics of a
target can be assumed to be those of straight-line motion.
Although the target continues to move in a straight line,
the KF state estimate is used. If the target suddenly
maneuvers, the hypothesis test will detect this and use
the JSSF state estimate instead.

Both the JSSF and JSKFhave a computational
complexity of the same order of magnitude as the
Kalman filter.

Applications: The algorithms derived in this paper can
be applied to a wide range of problems. For example, the
James–Stein versions of the Kalman filter (Section IV) can
be applied to multidimensional imaging problems and mul-
tidimensional tracking problems [27] (see Section VI-A). In
general, the JSSF and the JSKFcan be applied directly
to any system with more sensors than states.2 The JSSF
can also be used to filter observations (e.g., meteorological,
econometrical) where the underlying model generating the data
is not known with certainty. The James–Stein recursive least
squares algorithm (Section III) can be used instead of the
traditional RLS algorithm (see e.g., [10], [15], and [20] for
typical applications of RLS). In problems such as estimating
the (finite) impulse response of a linear time-invariant channel
given both the input and the output signals (Section VI-B),
the James–Stein RLS will give parameter estimates having a
smaller mean-square error than the RLS algorithm’s estimates.
The James–Stein Yule–Walker algorithm (Section V-A) esti-
mates the parameters of an autoregressive process and can
therefore be used in such applications as linear predictive
coding for speech processing [12].

Review of Other Robust Kalman Filters:Several robust
Kalman filtering algorithms have been proposed in the
adaptive signal processing and control literature. To put our
JSSF in perspective, we give a brief overview of other robust
Kalman filters. Many recent works (see [26] and references
therein) assume the model parameters are subject to norm-
bounded additive perturbations. Several discrete-time robust
filters have been derived for such models. In particular, the
infinite-horizon, time-invariant case is dealt with in [30],
whereas the finite-horizon, time-varying case is considered
in [26].

Other “robust Kalman filters” are robust against non-
Gaussian noise (see [29] and references therein). Early
approaches [21], [22] relied on the approximation of density
functions. The early approaches were not without problems.
In [18], an attractive approach was developed, based on score
functions. Recently, a method for efficiently evaluating the
necessary score functions has been given [29]. An alternative
approach is to use a change of probability measure to transform
the original noise into Gaussian noise [16], [17]. Finally,
and risk-sensitive Kalman filters have been proposed in [8]
and [23].

2More precisely, they can be applied directly to systems where the
dimension of the observation vector is greater than or equal to the dimension
of the state vector.
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JSSF versus Other Robust Kalman Filters:In this paper,
we use the term robustness in a “global” sense, stating that
the JSSF is a globally robust state filter. More precisely,
there is a lower bound on the JSSF’s worst-case performance.
Regardless of how inaccurate the state-space model is, the
JSSF will always give sensible parameter estimates. This is
very different from other robust Kalman filters in the literature,
which are robust in a “local” sense, i.e., their performance is
comparable with that of the Kalman filter even though there
is some (small) error introduced into the model. On the one
hand, the JSSF is expected to perform worse than a locally
robust Kalman filter if the modeling errors are small. On the
other hand, for sufficiently large modeling errors, the JSSF
is expected to outperform any locally robust Kalman filter
simply because the JSSF has a global upper bound on its
mean-square error.

Limitations of James–Stein Estimators:Obviously, the
James–Stein estimator is not a panacea to every estimation
problem. To put our algorithms in perspective, it is important
to stress their limitations:

1) The JSE (1) improves the overall risk andnot the
individual risk of each element of . This is important
to note for two reasons. First, in certain applications, we
may not be willing to trade a higher individual risk for
a smaller overall risk. [Accurate location of an object in
three dimensions is an example where a biased estimate
that improves the overall risk (i.e., JSE) is preferable to
the MLE.] Second, the fact that an individual element of

may have a larger risk than the MLE shows that the
JSE, while being an extremely surprising result, stops
short of being a paradox.

2) The JSE is a biased estimator; essentially, it trades
bias for risk. Depending on the subsequent use of the
estimate, this may or may not be a disadvantage. We
note that in the derivation of the James–Stein state filter,
the bias is used to our advantage.

3) The Kalman filter for state estimation of linear Gaussian
systems is optimal (minimum mean-square error) if the
model is accurately known. Therefore, in this case,
the JSSF cannot have a smaller mean-square error.
However, when one or more of the assumptions for
the optimality of the KF do not hold (e.g., parameters
accurately specified, linear dynamics), the JSSF can
yield better state estimates (in terms of mean-square
error) than the KF. The JSSF will be derived and
discussed in detail in Section IV.

4) A key requirement in deriving the JSSF is that the state-
space observation matrix has either the same number
or more rows than columns. This precludes directly
using JSSF for some applications. However, if the
observation matrix has fewer rows than columns, the
JSSF can be applied to an appropriately reduced state-
space model (see Section IV-C). Note that models with
observation matrices having more rows than columns
occur frequently in multidimensional imaging systems
[27]. In Section VI-A, we present an application of the
JSSF to one such system.

5) As discussed above, the JSE (1) dominates the MLE.
Is there an estimator that dominates the JSE? The
answer is yes. In fact, an admissible estimator has
been explicitly given in [25] (see [13] for an intuitive
derivation). However, the correct amount of shrinkage
requires numerical integration. It appears (see [19]) that
the extra improvement in risk is small. Therefore, we
will be content to use (1).

Some Definitions:To facilitate discussion of James–Stein
estimators developed in this paper, the following definitions
will be used in the sequel. These definitions are standard and
can be found in [14].

The risk of an estimator is the mean-square error (MSE) of
the estimator given the true parameter value, i.e., the risk of
the estimator of the parameter is .3

In the sequel, we userisk andMSE interchangeably.
An estimator is said todominate another estimator if for

every parameter value, the risk of the former is less than or
equal to that of the latter, provided there exists at least one
parameter value for which strict inequality holds.

A minimax estimator is an estimator with the property
that its largest risk is no greater than that of any other
estimator. Since the MLE of the mean of a multivariate normal
distribution is minimax, any estimator that dominates the MLE
must also be minimax. Conversely, since the risk of the MLE
is independent of the true mean, the MLE cannot dominate
any minimax estimator.

An admissible estimatoris an estimator for which no other
estimator exists that dominates it. James and Stein showed that
the MLE of the mean of a multivariate normal distribution is
not an admissible estimator if the dimension exceeds two.

A James–Stein estimator (JSE)is an estimator that pro-
vides an estimate of the mean of a multivariate normal
distribution and dominates the classical maximum-likelihood
estimate.

Notation: Throughout, we use the notation
, (i.e., Euclidean norm) andto denote

vector transpose. A (multivariate) normal distribution will
be denoted by the standard , with the covariance
matrix assumed positive definite. The trace of a matrixis
written as tr and the maximum eigenvalue as .
If is a vector, [or since the vector itself has a
subscript] will be used to denote theth element of , unless
specifically stated to the contrary.

We will use with an appropriate superscript to denote the
risk of an estimator. For convenience, we may choose to omit
the parameter [i.e., write rather than ], and furthermore,
the inequality is an abbreviation of ,

.

II. JAMES–STEIN ESTIMATION FOR LINEAR REGRESSION

This section introduces in more detail the James–Stein
estimator and how it can be applied to linear regression
problems. Although most of the results are known (e.g.,

3Note that in a Bayesian setting, which is not considered in this paper, MSE
refers to the weighted average of the risk, namely,E[J(���)], the weighting
function being thea priori probability density of the parameter.



2434 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 9, SEPTEMBER 1998

see [7]), this section provides the basic results and notation
required for our James–Stein versions of the RLS algorithm
and the Kalman filter. In particular, Theorem 1 below extends
the results in [7] to more general regression models.

A. Preliminaries

We first review the result in [7, Sec. 7.2], which shows
that the JSE defined by (1) is readily extended to deal with
a nonidentity covariance matrix. Unfortunately, depending on
the covariance matrix, there may not exist a JSE. We explain
intuitively why such a limitation exists. This leads to two
important concepts we will subsequently use, namely, the
“effective dimension” and “shifting the origin.”

Let denote a normally distributed random vector
with mean and positive definite covariance matrix, i.e.,

.
Define (since is positive-definite, exists).

Because , (1) can be applied to to give

(2)

This estimator is said to belong to the class ofspheri-
cally symmetric estimators [2] since it is of the form

, where is any (Borel-measurable)
function.

Bock [2] has shown that if tr , then
no spherically symmetric estimator exists that dominates the
MLE. For convenience, we will call tr the
effective dimension. Note that the effective dimension is a
real-valued quantity. A justification for the name effective
dimension is given below.

To understand why such a restriction onexists and to
justify naming tr the effective dimension, it is
necessary to view the problem from a different angle. Consider
a diagonal covariance matrix, diag . The
squared error may be written as

, where . Since the JSE of in general
does not have a smaller risk for every individual element,
it is clear that if one of the is relatively large, it is no
longer possible to compensate for the possibility of introducing
a larger MSE into this particular element. In a sense, the
“effective dimension” has been reduced since we are no longer
able to safely shrink certain elements. Bock’s theorem [2, Th.
2] then essentially states that the MLE is inadmissible if the
effective dimension is greater than two.

Another important technique we will use subsequently is
shifting the origin . It is well known [3] that the risk of the
JSE (1) decreases as . If it is known that is near

(i.e., ), the risk of the JSE (1) is decreased
by shifting the origin to , i.e., by replacing by and
estimating instead.

B. Spherically Symmetric James–Stein Estimators
for Linear Regression Models

Both the RLS algorithm and the Kalman filter involve
a linear regression. This subsection states the James–Stein

estimator for the regression parameter, which we will use in
the following sections.

Consider the problem of estimating the vector given
the observation vector ( ) generated by the model

(3)

with and known matrices of full
(column) rank and an i.i.d. Gaussian noise vector
with variance . If , need not be known since
it is possible to estimate it from the data. If , we
assume that is known.

For notational convenience, define

(4)

The MLE of is well known [15] to be

(5)

and furthermore, the MLE is normally distributed about the
true parameter, i.e.,

(6)

This shows that linear regression is equivalent to estimating
the mean of the multivariate normal distribution (6) based on
the single realization . We refer to the covariance matrix of

, namely, , as simplythe covariance matrix.
We now state the spherically symmetric JSE for the regres-

sion parameter. It is based on the JSE presented in [7, Ch.
7]. The differences are that we have included the matrixin
the regression model (3) and included the term ,

in (7).
Theorem 1: If in (3) is known and , the

James–Stein estimator for in the regression (3) is

(7)

where is defined in (4), is the dimension of , the
dimension of , is defined in (5), and the effective
dimension (which is defined in Section II-A) is

tr
(8)

If and is unknown, is replaced in (7) by

(9)

Furthermore, for the regression (3), the James–Stein estima-
tor [which is defined by (7)] and the MLE [which is
defined by (5)] have the following properties:

1) For all , , where
and are the MSE’s

(risks) of (5) and (7), respectively.
2) If , , with an upper bound on

decreasing as approaches the origin (more precisely,
as ).

3) If , .
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Fig. 1. James–Stein RLS algorithm.

Proof: Define , , and .
It is clear that with positive-definite.

In [7, Sec. 7], it has been shown that the JSE

(10)

dominates the MLE for any positive constant, provided
, where the effective dimension

tr .
Our estimator (7) is equivalent to (10) with

(11)

Clearly, satisfies the constraint .
Furthermore, the results remain valid when is replaced by
(9) [7].

Last, if , the risk of is a concave function of
(see [3]). For arbitrary (positive-definite), introduce

the transform and note that

(12)

(13)

Therefore, is a concave function
of and is an upper bound of the risk

.
Remarks:

1) In [2] and [7], the JSE (10) has been derived in terms
of the constant . However, no specific equation foris
given. Our choice of (11), being somewhat tangential to
the rest of this paper, is justified in Appendix A.

2) The properties of the JSE (7) given in Theorem 1 fail
to hold if, in (3), and/or depend on (or ). The
reason is because (6) will, in general, not hold if
and/or are not (statistically) independent of.

3) It is important to note that there is no loss of generality in
assuming that for the regression model (3) is
diagonal. This can be explained as follows: Letdenote
an invertible square matrix. Then, (3) is equivalent to

. The conditional covariance
matrix of given becomes
and can be made diagonal by choosing to be a
suitable orthonormal ( ) square matrix. Most
importantly, the choice of anorthonormal ensures
that the MSE of any estimator and of are
identical.

III. JAMES–STEIN RECURSIVE LEAST SQUARES (JS-RLS)

In this section, we derive a James–Stein version of the
recursive least squares (RLS) algorithm. We call the recursive
algorithm “James–Stein recursive least squares” (JS-RLS). The
schematic structure of the JS-RLS is shown in Fig. 1.

Because the JS-RLS is merely a recursive algorithm for
implementing the JSE (7), the JS-RLS has identical properties
to the JSE (7) (see Theorem 1). Theorem 1 is valid, provided
(6) holds or, in other words provided in (3), the matrix

is independent of the observation vector. Under this
assumption, the JS-RLS will yield smaller MSE regression
parameter estimates compared with the RLS.

Several heuristic modifications are made to the JS-RLS later
in this paper (Section V).

A. The Model

The standard recursive least squares (RLS) algorithm (see
[20]) is used to recursively estimate the parameter vector

in the ARX model

(14)

where

(known) exogenous input;
observed output;
additive white noise.

The subscript denotes that the estimate of is based on
the observations . The noise variance

is assumed to be unknown. We define and
denote the dimension of by ( ).

Remark: The application of James–Stein estimation to lin-
ear regression requires (6) to hold. If an AR model is present
(i.e., ) in (14), in general, (6) holds only asymptotically.

We write the estimation problem in matrix form to
show its equivalence to the linear regression (3). At time
instant , we seek to estimate , given the observations

and the regression relation

(15)

where the th element of is , and the th row of
is ,

. diag , , where denotes
the exponential forgetting factor (see [20]).

For convenience, we now state the standard RLS algorithm
(e.g., see [15]):
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Algorithm 1—Standard RLS:The standard RLS algorithm is

(16)

where denotes the forgetting factor . (Initialization
can be performed according to the initialization procedure
given in Algorithm 2 below.)

B. The James–Stein Recursive Least Squares Algorithm

We state the JS-RLS algorithm below and then devote the
remainder of this section to an explanation of its derivation.

Algorithm 2—JS-RLS:
Initialization: Set

(17)

(18)

a priori estimate of if available
otherwise.

(19)

is a matrix with th row
,

. is a vector with th element
. is the diagonal matrix

diag with denoting the forgetting
factor; .

Update Equations:

(20)

(21)

(22)

(23)

(24)

(25)

Moreover, the JS-RLS estimate is computed as

tr
(26)

(27)

Risk: Define and -

as the risks of the MLE (16) and the
JSE (27), respectively.

Remarks:

1) Computational Complexity:Excluding the computa-
tional cost of required in (26), the JS-RLS
and the RLS have the same order of computational
cost and the same order of memory requirements

.

Computing , the largest eigenvalue of a
Toeplitz matrix also has a computational complexity

. If computing in (26) is undesirable,
it may be avoided by

• replacing by any upper bound. The
only effect is to reduce the difference in MSE
between and . Note that will still
dominate .

• replacing by its asymptotic value. Care
must be taken since inaccurate (i.e., large MSE)
estimates may result if is larger than
its asymptotic value.

2) If in (14), i.e., no AR component is present, and
a unity forgetting factor is used (i.e., ), the JS-
RLS is guaranteed to have an MSE not exceeding that
of the RLS, i.e., - . [Proof: With ini-
tialization as given in Algorithm 2, the RLS (Algorithm
1) estimates are the maximum likelihood estimates of
the linear regression (3), and the JS-RLS (Algorithm 2)
estimates are the James–Stein estimates of Theorem 1.]

3) If , (i.e., JS-RLS becomes ordinary
RLS). A necessary condition for is since
from (7), it follows that .

4) A discussion of the JS-RLS applied to AR models (i.e.,
), along with several heuristic modifications, are

presented in Section V.

Derivation of JS-RLS:The JS-RLS algorithm is derived in
two steps. Initially, the case when is examined. The
extension to is then given.

We assume that the data have been generated by
.

1) Unity Forgetting Factor: If , the standard RLS
algorithm recursively calculates ,
which is the MLE of the linear regression

. Therefore, the JSE (7) may be used to improve on
.
In this case, for any (and ), Theorem 1 proves

that - .
2) General Forgetting Factor:If , the standard RLS

recursively calculates ,
which is the MLE of the linear regression

. However, the data was
generated by .

There are two effects of the mismatched model.
First, the estimation of the variance of is
no longer given by (9). Second, the covariance
of is no longer , but in
fact, . (This
“mismatch” in variance prevents from dominating

if .)
The first effect is easily remedied; the second is

ignored.4 Rather than estimate by (9), namely

(28)

we replace in (28) by , where .

4After all, the inclusion of� into RLS in the first place is heuristic.
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Fig. 2. Standard Kalman filter (feedback not shown).

The JS-RLS algorithm (Algorithm 2) can now be derived in
the same way that the standard RLS algorithm (Algorithm 1) is
derived; see, for example, [10]. In fact, (20)–(23) are identical
to (16). Furthermore, (20)–(25) merely calculate (17) and (18)
recursively (with the exception of ). From the identities
(17) and (18), it can then be verified that (27) is the JSE (7).

IV. JAMES–STEIN VERSIONS OF THEKALMAN FILTER

This section derives two James–Stein versions of the
Kalman filter (KF). The first version is the James–Stein
state filter (JSSF), which was derived in Section IV-C. The
JSSF places no constraints on the state-space model, i.e.,
the state-space model may be incorrectly specified, it may
be nonlinear, it need not be Gaussian, etc. The observation
model is a linear regression with Gaussian noise. The JSSF
will always have a MSE less than the MSE obtainable from
the maximum likelihood estimate of the state given only
the observation model. The JSSF is then combined with the
ordinary Kalman filter (KF) to give the James–Stein Kalman
filter with hypothesis test (JSKF) algorithm. The JSKF
derived in Section IV-D incorporates a hypothesis test to
determine if the state-space model is correct.

A. Gaussian State Space Signal Model and
Standard Kalman Filter (KF)

In this section, we describe our Gaussian state-space signal
model and summarize the standard Kalman filter.

The Kalman filter [1] is the minimum MSE (i.e., optimal)
filter for the linear Gaussian state-space model

(29)

(30)

where is the state vector and the
observation vector. and are random
noise vectors ( i.i.d. , i.i.d. ).

, , , and are
(deterministic) matrices.

Let denote the observations up to time
. The objective is to compute the filtered state estimate based

on the observations , i.e., compute .
will similarly be used to denote , which is the

predicted state estimate. is the MLE of given in
(30), i.e.,

(31)

The Kalman filter equations are [1]

(32)

(33)

(34)

(35)

is the Kalman gain, and

(36)

the covariance of .
The Kalman filter is shown in block diagram form in

Fig. 2 (with feedback of and omitted for clarity).
The Kalman predictor computes (34) along with its
covariance . The linear regression parameter estimate
computes , which is the MLE of given in (30).
Finally, and are combined in a Bayesian manner
[cf., (32)] to give .

Risk: Define and
, which are the risks of the Kalman filter

(32) and of the MLE (31), respectively.

B. Outline of Approach

Confusion can arise by comparing the JSSF with the KF
too closely. Therefore, this section sketches an alternative
derivation of the JSSF given in the next section.

Consider a sequence of (in general, depen-
dent) random variables. Each random variable in the sequence
is observed via the linear regression (30), namely,

, where i.i.d. .
If nothing is known about the probability space from which

the sequence of random variables from which
was generated, only the single measurementcan be used
to estimate .

For this estimation problem (a linear regression),can be
estimated by the MLE (31). It can also be estimated by the
JSE (7) with the origin shifted (see Section II-A) to any point.
Remember that regardless of which shifted JSE is used, the
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MSE of the estimate will be less than the MSE of the MLE
(31). In other words, any shifted JSE can be used without
affecting the “worst-case” MSE of the estimate.

Assume now that we believe that is approximately
equal to some function of , say, . How can
we incorporate this belief into an estimate of while still
requiring the worst-case MSE of the estimator to be no worse
than the MLE (31)? The answer is to use the JSE (7) with
the origin shifted to , where is the estimate
of .

It is seen then that the main difference between the JSSF
and the KF is that the JSSF assumes that the state sequence

comes from a completely unknown probabil-
ity space, whereas the KF assumes that was
generated by the linear state-space model (29).

C. James–Stein State Filter (JSSF)

The JSSF is based on the linear Gaussian state-space model
(29) and (30) with the following differences in assumptions.

1) Require so that the JSE (7) can be applied.
(For the same reason, if is unknown, we require

, that is, we require the observation matrix
to have equal or more rows than columns.)

2) Require and to be accurately known and have
full (column) rank so that the appropriate inverses exist.

3) Require to be independent of . Otherwise, it is
conceivable that a certain combination of and
can increase the MSE beyond that of the MLE based on
(30) alone.

4) Other than independence of , no further assump-
tions are necessary for (29). need not be Gaussian,
and , need not be known. In fact, can depend
on in a nonlinear fashion.

Remark: Assumption 1 (i.e., ) and Assumption
2 ensure that in (40) and (41) exists.

Discussion of Assumption 1:Requiring the observation
matrix to have equal or more rows than columns may
appear restrictive. However, there are several multidimen-
sional output systems such as multidimensional tracking and
imaging systems (see Section VI-A) that have .
Moreover, Assumption 1 isnot restrictive in the sense that any
system with contains a -dimensional subspace
of the state-space , which is unobservable5 if the state-
space model is unknown, i.e., the observationscontain no
information about these unobservable states, and therefore, no
sensible estimator exists for certain (linear combinations of)
states. The JSSF can, however, be applied to the remaining
(observable) -dimensional subspace of the state space.

In particular, if6 , then by appropriate use of (the
equivalent of) pseudo inverses, the estimates of certain linear
combinations of states (i.e., observable states) can be obtained

5As in the Kalman filter, knowledge of the state-space model (29) allows
estimates of all the states to be possible. The consequence of assuming no
knowledge of the state-space model (Assumption 4) is that certain (linear
combinations of) states become unobservable.

6If p � 2, the JSSF can still be applied, but it reduces to the MLEx̂
ML

k

(31).

from the JSSF. These state estimates still dominate the MLE.
We explain this procedure below:

We assume rank (cf., Assumption 2). Introduce the
(real) orthonormal matrix (i.e., )

such that its first rows span the row space of . Therefore,
, where is invertible. Let

denote the first elements of . Since ,
the observation equation (30) can be written as

(37)

Since is square, can be estimated as in the JSSF.
Finally, we can equate in the state-space model (29) to

, where we have simply set the
unobservable entries (more precisely, the unobservable linear
combinations) of to zero.

Derivation of JSSF:In the Kalman filter, the state-space
model (29) is used to compute , which is the state
prediction based on past observations. The JSSF also uses the
state-space model for prediction. If is the current state
estimate, is the prediction of [cf.,
(34)].

Since we do not know how accurate the state-space model
(29) is, may be very inaccurate. Therefore, our strategy
is to estimate the state vector in (29) with the JSE (7)
based on the regression (30), with the origin shifted to .
We recall from Theorem 1 that regardless of how inaccurate

is, the resulting estimate of will always have a MSE
no greater than that of (31).

Since the JSE will have significantly smaller MSE if the
true parameter is near the origin, choosing to be
the origin has the effect of combining information contained
in and in together in a robust manner. The more
accurate is, the more accurate the resulting estimate
of will be, yet at the same time, our estimate of is
guaranteed to be no worse than .

The block diagram of the JSSF is shown in Fig. 3 (with
feedback of omitted for clarity). Although the KF com-
bines and in a Bayesian manner (Fig. 2), the JSSF
combines and by shrinking toward
(Fig. 3).

The James–Stein state filter algorithm is summarized below.
Algorithm 3. JSSF:
Initialization:
Recursive Filter:

(38)

(39)

where

tr
(40)

(41)
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Fig. 3. James–Stein state filter (feedback not shown).

Fig. 4. James–Stein Kalman filter with hypothesis test (feedback not shown).

Remark: If is unknown, it can be replaced (providing
) in (38) by [see (9)]

(42)

Note that this isnot an estimate of as such. In [7], (9) is
chosen such that the JSE “works,” i.e., the JSE continues to
dominate the MLE. Naively replacing by an estimate of it
will, in general, cause the JSE to no longer dominate the MLE.

Risk: Define , which is the risk
of the JSSF state estimate (38).

Computational Complexity:The computational complexity
of the JSSF algorithm above is of the same order as the
standard KF algorithm (32)–(35).

Discussion: Let us explain why the above JSSF algorithm
is robust.

1) The JSSF achieves something that, at first glance, does
not seem possible. Regardless of how incorrect the
system dynamics are, . That is, the
JSSF always performs better (i.e., smaller MSE) than
ignoring the system dynamics (29) and using only the
observations (30) to estimate the state (30) by the
traditional MLE, i.e., (41).

2) The more accurate the system dynamics (29) are, the
smaller is. That is, the closer (39) is to

(29), the smaller the MSE of (38).
3) The filter is robust to perturbations in , , and even

nonnormality of the noise . (See point 1 above.)

4) Equation (39) can be generalized to ,
where is any (e.g., nonlinear) prediction of

based on .

D. James–Stein Kalman Filter with Hypothesis Test (JSKF)

The JSSF assumes complete ignorance about the accuracy
of the state-space model (29). This section assumes that at
each time instant, the state-space model parameters are either
correct or incorrect. We propose a test statistic to decide at each
time instant whether or not the state-space model is correct. If
the state-space model is believed to be correct, the KF is used
to estimate the state at that time instant. Otherwise, the JSSF
is used. The resulting algorithm, which is termed the JSKF,
is illustrated in Fig. 4 (feedback paths between the standard
KF and JSSF have been omitted for clarity).

An example application is to track a target subject to
maneuvers. While not maneuvering, the target moves with
known dynamics. When a maneuver occurs, the state-space
model is inaccurate. The ordinary Kalman filter, if it is
designed to track the target accurately during nonmaneuvering
periods, may be slow in responding to the new change of
coordinates induced by the maneuver.

Model: We assume the linear Gaussian state-space model
of Section IV-A, with the following changes.

1) Require .
2) Require and to be accurately known and have

full (column) rank. (We also assume , , and to
be accurately known.)
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3) Assume consists of Gaussian noise plus occasional
outliers and is independent of . Mathematically, at
any time instant , either the state-space model (29) is
accurate, and

(43)

or the state-space model is sufficiently inaccurate, such
that

tr (44)

Remark: Equation (44) expresses the criterion that be
much larger than its average value under (43). This criterion
can be met either by being large or by and/or being
sufficiently inaccurate.

Derivation of JSKF : There are two steps in the derivation
below. A decision theoretic test is derived to decide whether
or not the KF is functioning correctly. The computation of the
James–Stein equivalent of the Kalman covariance is
then derived.

Consider the hypothesis test at each time instant

accurate state-space model, i.e.,

inaccurate state-space model, i.e., tr

The presence of a large can be detected by examining
, which is the (squared) distance between

the actual observation and the predicted observation. A small
norm suggests ; a large norm suggests . More precisely,
under ,

(45)

(46)

(47)

Define the test statistic

(48)

From (47), it follows that under , (the Chi-squared
distribution with degrees of freedom). Therefore, we propose
the following standard decision theoretic test [19] to choose
between and

(49)

where is the threshold, or cut-off, constant. The value of
can be chosen to give a fixed probability of false alarm

based on (48).
At each time instant, the KF computes the covariance

of the prediction error (36). The empirical Bayesian
viewpoint of a James–Stein estimator [14] suggests that in a
sense, the James–Stein estimator implicitly estimates .
(It can be shown along similar lines that the estimated
is typically much larger than the actual . More precisely,
it is a biased estimate, erring on the side of “caution,” or larger

.)
To compute the final form of our filter, let us compare the

KF and JSSF.

Under , the optimal state estimate is given by the Kalman

filter (32)

(50)

Under , we use the JSE (38) instead, namely

(51)

(52)

where

(53)

Both estimators now have the form
. Comparing (50) and (52) shows that the

JSSF simply replaces the Kalman gain with the new gain

. Furthermore,

inverting (33) gives

(54)

Replacing by in (54) yields the James–Stein equiv-

alent of the Kalman covariance

(55)

Collecting these ideas together leads to the following JSKF

algorithm.

Algorithm 4—James–Stein Kalman Filter with Hypothesis

Test:

Initialization:

• Choose an appropriate threshold [cf., (48) and (49)].

• Initialize KF parameters

(56)

(57)

Recursive Filter:

1) At time instant , compute the test statistic

(58)

If ( holds), use the standard KF in Step 3.

Otherwise ( holds), use the JSSF by executing Steps

2 and then 3.

2) Calculate the James–Stein equivalent of

(59)
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where

(60)

(61)
tr

(62)

3) For the standard Kalman filter

(63)

(64)

(65)

(66)

where

under

under .
(67)

4) Increment , and return to Step 1.

Risk: Define as the risk of the
JSKF state estimate (32).

Remark: As in (49) approaches 0, the filter becomes
the JSSF presented in Algorithm 3. As , the filter
becomes the ordinary Kalman filter.

V. EXTENSIONS: ASYMPTOTIC AND HEURISTIC ALGORITHMS

Up to this point, the results in this paper have been based
on the JSE (7) applied to the linear regression (3), resulting
in the JS-RLS and JSSF algorithms. The results thus far have
been rigorous.

The estimators presented in this section may have a larger
MSE than their corresponding traditional estimators. However,
we include these estimators not only for the sake of complete-
ness but also because simulation results show that in a number
of cases, the James–Stein type estimators in this section can
significantly reduce the MSE. This illustrates the potential for
further research into extending the JSE to general distributions
that approach (6) asymptotically.

A. James–Stein Version of the Yule–Walker Equations (JSYW)

Many statistical signal processing applications require es-
timating the parameters of an autoregressive (AR) process.
The least squares estimate of the AR parameters is obtained
by solving the Yule–Walker equations [20]. We now use the
JSE (7) of Theorem 1 to present a James–Stein version of
the Yule–Walker equations. Unfortunately, Theorem 1 is not
strictly applicable since (6) holds only asymptotically.

Consider the real-valued observations
from the AR(p) process

i.i.d. (68)

where , are the AR parameters to be
estimated. The variance is an arbitrary positive constant.

The MLE7 of the AR parameters (which is equivalent to the
least squares estimator) is obtained by solving the Yule–Walker
equations for

(69)

where

(70)

and is a Toeplitz symmetric matrix with first row
, i.e.,

(71)

It is straightforward to verify that asymptotically,
, where , and . Applying

the JSE of Theorem 1 to the linear regression
yields the following algorithm.

Algorithm 5—James–Stein Version of Yule–Walker Equa-
tions: Given observations assumed to
come from the th-order AR process (68), the James–Stein
estimate of the AR parameters can be calculated as follows.

1) Set to thea priori estimate of the true AR parameter
. (If an a priori estimate is unavailable, set to the
zero vector.)

2) Compute from (70) and (71). Compute
from (70).

3) Solve the standard Yule–Walker equation (69), i.e.,

(72)

4) Apply the JSE to as [cf., (7) and (8)]

(73)

tr
(74)

(75)

Risk: Define and
as the risks of the Yule–Walker estimate

(72) and of the James–Stein Yule–Walker estimate (75),
respectively.

Remarks:

1) Note that if the effective dimension
. The effective dimension depends on the correlation

matrix , which, in turn, depends on the actual AR
parameters. (A necessary condition for is
, i.e., a James–Stein estimator requires at least three

dimensions before it can dominate the MLE.)

7More precisely, the approximate (but asymptotically correct) MLE.
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2) For a reduction in MSE, the origin (which is defined
in Step 1 of Algorithm 5) should be close to the true AR
parameter . [This would be a consequence of Theorem
1 if (6) held. Although we do not attempt to prove it,
simulations suggest that forsufficiently close to , the
JSE (75) will have a smaller MSE than the MLE (72).]

B. Modified JS-RLS

The JS-RLS algorithm (Algorithm 2) is given for the general
ARX model (see Section III-A), although its guarantee of a
smaller MSE compared with the RLS algorithm is only valid
for the special case of an exogenous input model.

Simulations suggest that provided oura priori estimate
[which is defined in (19)] is sufficiently close to the true
parameter , the JS-RLS will have a smaller MSE than the
RLS, even for the general ARX model (14). Since (6) holds
asymptotically, we also expect the JS-RLS to have a smaller
MSE for sufficiently large .

Throughout this paper, we have shifted the origin (see
Section II-A) to a suitablea priori estimate of the true param-
eter. Due to the convex risk function (see Theorem 1) of the
JSE, we claim that the reduction in MSE caused by using the
JSE rather than the MLE is significant if thea priori estimate
of the true parameter value is accurate. This is the key idea in
the modified JS-RLS algorithm below.

Motivation: (27) represents the “besta priori guess”
of the parameter vector (14) at time instant . Since
significant reduction in MSE occurs if (19) is close to , it
is tempting to set . Unfortunately, is correlated
with (22), and it is feasible that is correlated in such
a way as to make the MSE worse rather than better.

Therefore, in an attempt to reduce the correlation between
and , is updated by .

For small , will (hopefully) creep toward the true origin
and be sufficiently uncorrelated with to allow (6) to hold
approximately.

Algorithm: The modified JS-RLS algorithm is identical to
Algorithm 2 with the following update performed at the end
of each iteration

(76)

where .
Remark: Simulations verify the following intuitive ideas.

For , contains as much information as possible about
the true parameter; hence, is attempting to “reuse the
data” and leads to a larger MSE of the parameter estimate. For

, “loses” (or “forgets”) past information about the true
parameter, and hence, a nonzerocan (but not always) have
a significant improvement.

VI. SIMULATION RESULTS

This section presents computer simulation results of
the James–Stein versions of the Kalman filter detailed
in Section IV, the James–Stein Recursive Least Squares
algorithm of Section III, and the James–Stein Yule–Walker
equations of Section V-A.

Fig. 5. Simulated transient response of the Kalman filter, the James–Stein
state filter, and the maximum-likelihood estimator under the true model (see
Section IV). Here, the horizontal axis represents timek, whereas the vertical
axis is the risk in decibels.

A. James–Stein State Filters (JSSF and JSKF)

James–Stein State Filter (JSSF):The model (29) and (30)
was used to generate 500 data points with parameters

(77)

Three models were used to filter the data: the correct
model, which was a perturbed model where and had
their elements corrupted by noise, and a totally
incorrect model, where

(78)

The risks , , and for were
computed for the three models by averaging 500 indepen-
dent runs of the KF (32)–(35) and the JSSF (Algorithm 3).
Figs. 5–7 display these risks for the first 100 data points (i.e.,

). Table I presents the average MSE (i.e.,
) of the MLE, KF, and JSSF state estimates.

We make the following observations.

• The JSSF always gives state estimates with smaller MSE
than the MLE regardless of how incorrect the model is.

• Even small perturbations in the model parameters cause
the KF to have a larger MSE than the MLE.

• As the model parameters become more accurate, the MSE
of the JSSF state estimates decrease.

These results are in agreement with our theory, showing that
the JSSF, unlike the KF, can never perform worse than the
MLE.
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Fig. 6. Simulated transient response of the Kalman filter, the James–Stein
state filter, and the maximum-likelihood estimator under a perturbed model
(see Section IV). Here, the horizontal axis represents timek, whereas the
vertical axis is the risk in decibels.

Fig. 7. Simulated transient response of the Kalman filter, the James–Stein
state filter, and the maximum-likelihood estimator under a totally incorrect
model (see Section IV). Here, the horizontal axis represents timek, whereas
the vertical axis is the risk in decibels. Note that the JSSF estimate and the
MLE are almost identical.

TABLE I
PERFORMANCE OFJSSF. UNDER “A BSOLUTE MSE,” EACH ENTRY IS

10 log
10(

500

k=1
Jk=500), WHERE Jk IS JML

k
, JKF

k
, OR JJSSF

k

Two-Dimensional (2-D) Target Tracking Example (JSSF):
A 2-D maneuvering target tracking example is given here. In
this case, the observation matrix (30) has equal or more
rows than columns (i.e., ), and hence, the JSSF can
be used to estimate the (amplitudes of the) intensities of the
targets from noisy measurements. Note, in general, that since

is related to the number of sensors used to observe the

TABLE II
PERFORMANCE OFJSSFIN 2-D TRACKING. EACH ENTRY IS

10 log10 (J
ML

k
=Jk) EVALUATED AT k = 10, WHERE Jk IS JKF

k
OR JJSSF

k

current state, systems that use many sensors will satisfy the
JSSF requirement of .

In [27], an estimation procedure was derived to track multi-
ple targets with time-varying amplitudes based on 2-D optical
observations. We concern ourselves with the subproblem of
determining the (amplitude of the) intensities of the targets
assuming we know their locations. The observation model of
is an example of when [i.e., in (30) has more rows
than columns]. In particular, the following simulation example
uses sensors and states. Each of the
sensors measures the light intensity in one cell of a grid.
There are stationary light sources (targets).

Number the cells in a observation grid (arbitrarily)
from 1 to 16. Theth element of is the light intensity
observed in cell at time instant . We assume there are four
stationary light sources (targets) with denoting their
intensities. The observation model is (30), whererepresents
the 2-D point spread function [we used a Gaussian point spread
function in our simulations with the resulting given in
(79)]. The time-varying source intensities were generated from
(29) with and . A frame ( )
of observations was generated from (30) with

(79)

Both the KF and the JSSF (Algorithm 3) were then used to
filter the data but with , where is the
autoregressive coefficient used to model the source intensities.

Table II presents the MSE of the state estimate at the end
of the frame (i.e., ) relative to the MLE state esti-
mate based on (30) alone (i.e., and ).
(The MSE was estimated by averaging the results of 1000
independent runs.)

We make the following observations from Table II.

• For , the KF state estimate is worse than the MLE.
• However, the JSSF state estimate is always better than

the MLE.
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TABLE III
PERFORMANCE OF THEJSKFH ALGORITHM. EACH ENTRY IS 10 log10 (

1000

k=1
Jk=1000), WHERE Jk IS JML

k
, JKF

k
, OR JJSSF

k

Thus, in the range , the JSSF yields superior estimates
of the target intensities compared with the standard Kalman
filter algorithm.

James–Stein Kalman Filter with Hypothesis Test (JSKF):
The JSKF (Algorithm 4) was used to filter 1000 data points
generated by the model [cf., (29) and (30)]

with probability
with probability

(80)

(81)

where . In addition, and are
uncorrelated white noise processes, and

is the probability that the state will be reset to zero. The
average MSE (i.e., ) of the MLE, the KF, and
the JSKF are presented in Table III. (The MSE was estimated
by averaging together the results of 500 independent runs.)

The following observation can be made based on Table III:

• For the threshold [cf., (49)] set for % false alarm
rate, the JSKF state estimate had a smaller MSE than
that of the KF state estimate.

We conclude that the JSKFsignificantly outperforms the KF
for the model under consideration. It is pleasing to note that
in this example, the correct choice of in the JSKF is not
critical.

B. James–Stein Recursive Least Squares (JS-RLS)

The JS-RLS algorithm (Algorithm 2) is used to estimate
the parameters of an finite impulse response (FIR) channel.
The model (14) with , is used to generate 1000
data points, with the exogenous input a white noise
process [i.e., i.i.d. ]. Two different sets of
parameters were used, namely,
and . In both cases, noa priori estimate
of the true parameter was used, i.e., initially. The
results of 750 independent runs of the JS-RLS algorithm were
averaged to estimate the initial (82), final (83), and total (84)
improvement in the MSE of the parameter estimates. These
estimates are presented in Tables IV and V. The entries in the
tables are defined by

Initial - (82)

Final - (83)

Total - (84)

We make the following observations about the results in
Tables IV and V for and .

TABLE IV
PERFORMANCE OFJS-RLSFOR FIR CHANNEL IDENTIFICATION.

TRUE PARAMETER xk = [0:4; 0:1; 0:2; 0:3; 0:4]0.
INITIAL , FINAL , AND TOTAL ARE DEFINED BY (82)–(84)

TABLE V
PERFORMANCE OFJS-RLSFOR FIR CHANNEL IDENTIFICATION. TRUE PARAMETER

xk = [1; 2; 3; 4; 5]0. INITIAL , FINAL , AND TOTAL ARE DEFINED BY (82)–(84)

• As guaranteed by Theorem 1, the JS-RLS estimates have
smaller MSE than the RLS estimates.

• As indicated by Theorem 1, the improvement in MSE is
more significant if is close to .

• The savings in MSE are greatest for small. This is
because for small , the RLS estimate is (relatively)
inaccurate; therefore, shrinking the estimate toward the
origin leads to a noticeable reduction in MSE.

We make the following observations about the results in
Table IV for .

• For small , the optimal (i.e., the one that gives the
greatest savings) is slightly higher than the optimalfor
large .

• The asymptotic MSE (i.e., final) savings can exceed 9 dB.
Therefore, can be used to compensate for . (As

is decreased, the asymptotic MSE increases.)

We make the following observations about the results in
Table V for .

• For , the negative entry in final for shows
that the MSE of the JS-RLS estimate need not be smaller
than that of the RLS estimate due to the mismatch in
variance (see Derivation of JS-RLS in Section III-B).

• We cannot find an to give a smaller MSE than
for .

The vast difference between Tables IV and V is attributed
to the true parameter in Table V being relatively far away
from the initial . It shows that the heuristic idea of
updating by (76) only works well if is originally close
to . However, for and , the JS-RLS parameter
estimates always have smaller MSE’s than the RLS parameter
estimates.

C. AR Parameter Estimation (JS-RLS and JSYW)

James–Stein Recursive Least Squares (JS-RLS):The aver-
aged results of 500 independent runs of the JS-RLS algorithm
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TABLE VI
PERFORMANCE OFJS-RLSFOR AR(3) MODEL. TRUE PARAMETER xk = [0:1; �0:1; �0:2]0. k IS THE NUMBER OF DATA POINTS, MSE (IN DECIBELS) IS

10 log
10(J

JS-RLS), AND IMPROVEMENT (IN DECIBELS) IS 10 log10 (IR
r=JJS-RLS), THE IMPROVEMENT IN DECIBELS OF JS-RLS RELATIVE TO RLS

TABLE VII
PERFORMANCE OFJS-RLSFOR AR(3) MODEL. TRUE PARAMETER xk = [0:2; 0:2; �0:5]0. k IS THE NUMBER OF DATA POINTS, MSE (IN DECIBELS) IS

10 log10(J
JS-RLS
k

), AND IMPROVEMENT (IN DECIBELS) IS 10 log10 (IR
r=JJS-RLS

k
), THE IMPROVEMENT IN DECIBELS OF JS-RLS RELATIVE TO RLS

TABLE VIII
PERFORMANCE OFJS-RLSFOR AR(3) MODEL. TRUE PARAMETER xk = [0; 0; 0:9]0. k IS THE NUMBER OF DATA POINTS, MSE (IN DECIBELS) IS

10 log10(J
JS-RLS
k

), AND IMPROVEMENT (IN DECIBELS) IS 10 log10 (IR
r=JJS-RLS

k
), THE IMPROVEMENT IN DECIBELS OF JS-RLS RELATIVE TO RLS

TABLE IX
PERFORMANCE OFJSYW EQUATIONS. TRUE PARAMETER xk = [0:1; �0:1; �0:2]0. k IS THE NUMBER OF DATA POINTS, MSE (IN DECIBELS) IS 10 log10(J

JSYW

k
),

AND IMPROVEMENT (IN DECIBELS) IS 10 log10 (J
YW

k
=JJSYW

k
), THE IMPROVEMENT IN MSE OF THE JSYW ESTIMATE OVER THE YW ESTIMATE

(Algorithm 2 with and ) applied to data generated
by an AR(3) [see (14) with , ] for three different
parameters are presented in Tables VI–VIII.

We make the following observations (by “improvement”
below, we mean the difference between the MSE of the RLS
estimate and the MSE of the JS-RLS estimate).

• If (i.e., not close to ), the improvement
in MSE is never less than 0.25 dB and asymptotically
approaches 0 dB.

• If (i.e., close to ), two different
behaviors were observed. For Tables VI and VII, the
improvement in MSE rose sharply to an asymptotic
value of around 2 dB. For Table VIII, however, the
improvement rose sharply to around 2 dB and then fell
to below 1 dB.

We conclude that the JS-RLS algorithm should be used with
caution if an AR model is present. However, given a gooda
priori estimate, the JS-RLS can outperform the RLS algorithm.

James–Stein Yule–Walker Equations (JSYW):The aver-
aged results of 500 independent runs of the JSYW equations
applied to 1000 data points generated by an AR(3) process (68)
for three different parameters are presented in Tables IX–XI.
We make the following observations (by “improvement”
below, we mean the difference between the MSE of the
Yule–Walker estimate and the MSE of the James–Stein
Yule-Walker estimate):

• If (i.e., no a priori estimate available), the
JSYW estimate in general has a larger MSE than the
YW estimate. (Table IX is an exception, but observe that
in this case, is close to 0 as well.) More specifically,
the improvement in Tables X and XI initially decreases
and then increases toward 0 dB. Table IX shows the
improvement to be initially positive and increasing, but
after , it decreases and perhaps oscillates after

.
• If (i.e., accuratea priori estimate avail-

able), the JSYW estimate has a smaller MSE than the
YW estimate. More specifically, the improvement in
Tables IX–XI increases and then decreases as the data
length is increased.

• The JSYW estimate reduces to the YW estimate if the
effective dimension (74) is less than or equal to two.
We observed that for an arbitrary parameter vector,
it is quite likely that the effective dimension drops below
two. Therefore, the simulation results we present have
parameters chosen such that the effective dimension is
above two.

The characteristic of the improvement is that it is either
greatest (i.e., most positive) or worst (i.e., most negative)
for medium data lengths (), depending on whether or not

is close to . In other words, for medium data lengths, the
JSYW equations rely heavily on (the accuracy of). A likely
explanation is that by using the approximation (6), too much
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TABLE X
PERFORMANCE OFJSYW EQUATIONS. TRUE PARAMETER xk = [0:2; 0:2; �0:5]0. k IS THE NUMBER OF DATA POINTS, MSE (IN DECIBELS) IS 10 log

10(J
JSYW

k
),

AND IMPROVEMENT (IN DECIBELS) IS 10 log10 (J
YW

k
=JJSYW

k
), THE IMPROVEMENT IN MSE OF THE JSYW ESTIMATE OVER THE YW ESTIMATE

TABLE XI
PERFORMANCE OFJSYW EQUATIONS. TRUE PARAMETER xk = [0; 0; 0:9]0. k IS THE NUMBER OF DATA POINTS, MSE (IN DECIBELS) IS 10 log10(J

JSYW

k
), AND

IMPROVEMENT (IN DECIBELS) IS 10 log10 (J
YW

k
=JJSYW

k
), THE IMPROVEMENT IN MSE OF THE JSYW ESTIMATE OVER THE YW ESTIMATE

shrinkage occurs. This is most noticable for mediumsince
we have the following.

• For small , the YW estimate has such a large MSE that
shrinking toward the origin does little harm (i.e., the MSE
of the JSYW estimate is comparable to the MSE of the
YW estimate).

• For large , the YW estimate will on average be closer
than is to . Therefore, the JSYW estimate will rely
more on the YW estimate rather than.

We conclude that the JSYW can, but not always does, give
AR parameter estimates that are better than the standard YW
estimates.

VII. CONCLUSION AND FUTURE RESEARCH

This paper contains three main contributions. The first is the
James–Stein estimator (7) for the linear regression (3), which
has a MSE (risk) that never exceeds the MSE (risk) of the
traditional MLE (5) (see Theorem 1). The second contribution
is the James–Stein recursive least squares estimator (Algorithm
2), which recursively estimates the parameters of the ARX
model (14) and, in certain (quite general) circumstances,
provides a smaller MSE parameter estimate compared with the
traditional RLS algorithm. The third and main contribution is
the James–Stein state filter. The JSSF (Algorithm 3) is a robust
filter. It gives state estimates with MSE less than the MSE of
the traditional MLE applied to the observation equation (30)
alone, regardless of how inaccurate the state-space model (29)
is. The JSKF (Algorithm 4) implements the KF and the JSSF
in parallel using a hypothesis test to determine which state
estimate to use. We note that the computational complexity
of the James–Stein algorithms are of the same order as their
traditional counterparts.

Future Research:The JSKF (Algorithm 4) essentially
switches between the KF (32)–(35) and the JSSF (Algorithm
3). A natural extension is to replace this “hard decision”
switching with a “soft decision” (i.e., continuous) approach.
The key idea is in the calculation of the covariance matrix of

(29). The Kalman filter calculates the covariance matrix
(66). The James–Stein state filter estimates the covari-

ance matrix by (59), which we would expect to be
typically much larger than . The larger the covariance
matrix, the less emphasis is placed on thea priori distribution

of [which is determined by the state-space model (29)].
Consider forming the covariance matrix

. Using in the Kalman filter equation corre-
sponds to the ordinary Kalman filter; using corresponds
to the James–Stein state filter. The former expresses 100%
confidence in the accuracy of the state-space model, and the
latter expresses 0%.

Heuristically, in situations where the state-space model
may vary over time, sometimes being very accurate while
at other times inaccurate, the modified Kalman filter with
covariance matrix may be used. The determination of

is expected to be based on (equivalently,
on ) as well as any external information
that may be available. Clearly, the JSKFof Section IV-D is
a special case of this filter, whereis restricted to take values
zero or one only.

APPENDIX

JUSTIFICATION OF (11)

This section justifies our choice of (11) for in the JSE
(10), where .

Without loss of generality (Remark 3 following Theorem 1),
let diag and . We showed in
Section II-A that the risk of the estimateof the mean given

[where ] can be written as
, where is the risk

of the th element of . Since , is the
risk of the th element of the mean of a multivariate normal
distribution with identity covariance matrix.

Using the James–Stein estimate [of which (1) is a special
case with ]

(85)

for , it is not possible to obtain an analytic expression for
. However, expressions for are easily computed

[7], [24]. In particular, for any on the circle of radius
(i.e., ), is a quadratic in , with its

minimum at . Therefore, the choice (11) corresponds
to minimizing subject to the constraint that

. This constraint is a necessary and sufficient condition
for the JSE (10) to dominate the MLE (see the proof of
Theorem 1).
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To see the relation between and the true risk
, we define the “normalized” risk

of the JSE (10) as

(86)

where the denominator is the risk of the MLE
. Note that the normalized risk (86) is a convex

combination of the ’s. Around the ellipse8 for
some constant , we already mentioned that is a
quadratic in . On the ellipse, the minimum and maximum
of (86) lie below and above , respectively.
Our choice of can therefore be viewed as minimizing some
“central” risk subject to the constraint that the
maximum risk never exceeds that of the MLE.

We remark that while it may be preferable to chooseto
minimize the maximum risk (86) around any ellipse
, the lack of analytic expressions for the ’s makes the

determination of such a exceedingly difficult.
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