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James—Stein State Filtering Algorithms

Jonathan H. Manton, Vikram Krishnamurthy, and H. Vincent P&etlow, IEEE

Abstract—In 1961, James and Stein discovered a remarkable the “James—Stein” estimator for
estimator that dominates the maximume-likelihood estimate of the

mean of ap-variate normal distribution, provided the dimension _9
p is greater than two. This paper extends the James—Stein ffs = < _b ) 1)
estimator and highlights benefits of applying these extensions IIX||2

to adaptive signal processing problems. The main contribution

of this paper is the derivation of the James—Stein state filter , ~ IS 9
(JSSF), which is a robust version of the Kalman filter. The has a smaller risk (mean square et} (p) = E[||i”° —pl*]

JSSF is designed for situations where the parameters of the than the MLEfor all valuesof p [i.e.,V u, J75(pu) < JMU(p)].
state-space evolution model are not known with any certainty. It is important to note that the James—Stein estimator is a
In deriving the JSSF, we derive several other results. We first higsed estimator, i.eE[p’%] # n.

derive a James—Stein estimator for estimating the regression The James—Stein result has been considered by some to be

parameter in a linear regression. A recursive implementation, doxical 61 f | icl hi d
which we call the James—Stein recursive least squares (JS-RLS)para oxical (see [6] for a popular article on this paradox).

algorithm, is derived. The resulting estimate, although biased, has After all, for p = 1, 2, the MLE j is admissible (that is, it
a smaller mean-square error than the traditional RLS algorithm.  cannot be beaten everywhere in the parameter space), and until

Finally, several heuristic algorithms are presented, including the publication of [11], it was thought that the ML was
a James—Stel_n version of the Yule-Walker equations for AR admissible forp > 3.
parameter estimation. During the last 20 years, numerous papers have appeared
Index Terms— James—-Stein  estimation, Kalman filter, jn the statistical and econometrics literature that study appli-
maximume-likelihood estimation, minimax estimation, recursive . «one and extensions of the James—Stein estimator 121, [5],
least squares, robust filtering, Yule—Walker equations. [71, 191, [13], [24], [28]. Indeed, the James—Stein estimator is
merely a special case of a “shrinkage estimator” [14]. Roughly
[. INTRODUCTION speaking, this means that the factgr — 2)/||X||* shrinks
ONSIDER the problem of estimating the mean of (t;he_ MLE X to some cer_ltral_ized mean._S_everaI shrinkage
p-dimensional random vectdX having a multivariate estlrnqtors_ have been s_tudled in great detail in the mathematical
normal distribution with mean: € IR” and identityp x p Stalistics literature during the past 15 years.
covariance matrix, i.e.X ~ N(u, I). Given the single Rather surprisingly, we have not come across any papers
realizationX, it is easily shown that the maximum likelihoodn Statistical signal processing that consider the James—Stein
estimate (MLE) of the mean ig = X, and indeed, this is _estlmator. In this paper, we _extend the James—Ste_ln e_sﬂmqtor
identical to the least squares estimate. Furthermore, it is readflySeveral ways and consider some of its applications in

shown that the risk of this MLE, i.e., the expected square ergj@tistical signal processing. o
JM() = E[|| — pl|?], is p. Here, || - || denotes Euclidean As detailed in [14, Sec. 4.6], the James—Stein estimator has

length. a strong Bayesian motivation. A natural question that can be

In 1961, James and Stein [11] proved the following remarP—O_Sed in the statisti_cal sigr_1al processing context is: Doe_s there
able resultt If the dimensionp of X is greater than two, then €XiSt @ James-Stein version of the Kalman filt&f® main
contribution of this paper is to derive the James—Stein state
filter. The James—Stein state filter, unlike the Kalman filter,
provides sensible state estimates, regardless of how inaccurate
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can be further decreased if anpriori estimate of the
true regression parameter exists.

James-Stein Recursive Least Squares AlgoritWhile
James—Stein estimation has been widely applied to linear
regression in several fields (e.g., economics [7]), its
absence from statistical signal processing may explain
why recursive versions of the James—Stein estimator
have not been developed before. In Section Ill, we
develop a recursive implementation of the James—Stein
estimator applied to least squares, which we call the

James—Stein recursive least squares algorithm (JS-RLS).

The JS-RLS algorithm yields parameter estimates of

The JSKFK; has potential applications wherever the
system dynamics are accurately known most of the time
but, due to unexpected events, are inaccurate at certain
instants in time. For example, the system dynamics of a
target can be assumed to be those of straight-line motion.
Although the target continues to move in a straight line,
the KF state estimate is used. If the target suddenly
maneuvers, the hypothesis test will detect this and use
the JSSF state estimate instead.

Both the JSSF and JSKFhave a computational
complexity of the same order of magnitude as the
Kalman filter.

autoregressive with exogenous input (ARX) models. In Applications: The algorithms derived in this paper can
particular, for an exogenous input model, the JS-RLS pBe applied to a wide range of problems. For example, the
rameter estimates are guaranteed to have a mean-squares—Stein versions of the Kalman filter (Section IV) can
error not exceeding that of the RLS. One applicatiope applied to multidimensional imaging problems and mul-
is the identification of the (finite) impulse response ofidimensional tracking problems [27] (see Section VI-A). In
a linear time-invariant system given both the input angeneral, the JSSF and the JSKREan be applied directly
the output signals. to any system with more sensors than statdhe JSSF
James-Stein State FiltéFhe main result of this paper iscan also be used to filter observations (e.g., meteorological,
the James—Stein state filter (JSSF), which is developggonometrical) where the underlying model generating the data
in Section IV. The signal model considered is a linedg not known with certainty. The James—Stein recursive least
Gaussian state-space model—just as for the standatfliares algorithm (Section Ill) can be used instead of the
Kalman filter. (The JSSF is readily extended to nonlinearaditional RLS algorithm (see e.g., [10], [15], and [20] for
and non-Gaussian dynamics.) It is important to notgpical applications of RLS). In problems such as estimating
that unlike the JS-RLS, which follows straightforwardiythe (finite) impulse response of a linear time-invariant channel
by shrinkage of the standard RLS, the JSSF cannot §igen both the input and the output signals (Section VI-B),
derived as a straightforward application of shrinkage the James—Stein RLS will give parameter estimates having a
the Kalman filter. (In fact, the differences between themaller mean-square error than the RLS algorithm’s estimates.
Kalman filter and the JSSF make it misleading to caffhe James—Stein Yule—Walker algorithm (Section V-A) esti-
the JSSF the “James-Stein Kalman filter.”) mates the parameters of an autoregressive process and can

The JSSF derived in Section IV-C makes no assumtherefore be used in such applications as linear predictive
tions concerning the accuracy of the state-space modadding for speech processing [12].
It is extremely robust in the sense that the mean-squareReview of Other Robust Kalman FilterSeveral  robust
error of the state estimate is guaranteed to be no largéiiman filtering algorithms have been proposed in the
than that of the MLE based on the observation modabaptive signal processing and control literature. To put our
alone, regardless of how incorrect the state-space modsISF in perspective, we give a brief overview of other robust
is. (By comparison, even small perturbation errors iKalman filters. Many recent works (see [26] and references
the state-space model can lead to the standard Kalnmhsrein) assume the model parameters are subject to norm-
filter's mean-square error being much larger than thebunded additive perturbations. Several discrete-time robust
obtained if the observation model alone was used.) Aiters have been derived for such models. In particular, the
the same time, the more accurate the state-space madghite-horizon, time-invariant case is dealt with in [30],
is, the smaller the mean-square error will be. whereas the finite-horizon, time-varying case is considered

The JSSF has numerous potential applications. For [26].
example, in analysis of real-world data (economic, me- Other “robust Kalman filters” are robust against non-
teorological, etc.), the true system dynamics are often n@aussian noise (see [29] and references therein). Early
known. Any approximation may be used for the systempproaches [21], [22] relied on the approximation of density
dynamics in the JSSF without fear of introducing a largéunctions. The early approaches were not without problems.
error than if no system dynamics were specified. In othér [18], an attractive approach was developed, based on score
words, the data are allowed to “speak for themselvesfunctions. Recently, a method for efficiently evaluating the

In Section IV-D, the James-Stein Kalman Filter witmecessary score functions has been given [29]. An alternative
Hypothesis test (JSKP is derived. This filter has the approach is to use a change of probability measure to transform
effect of implementing both the Kalman filter (KF) andthe original noise into Gaussian noise [16], [17]. Final§/°
the JSSF in parallel. At each time instant, a hypothesisd risk-sensitive Kalman filters have been proposed in [8]
test is used to determine if the system dynamics agrard [23].
with the observations. If the system dynamics are in, , . .

More precisely, they can be applied directly to systems where the

?greement with _the observations, the KF Sta_te e5t|m%§ﬁ1ension of the observation vector is greater than or equal to the dimension
is used. Otherwise, the JSSF state estimate is used. of the state vector.



MANTON et al: JAMES-STEIN STATE FILTERING ALGORITHMS 2433

JSSF versus Other Robust Kalman Filtedst this paper, 5) As discussed above, the JSE (1) dominates the MLE.
we use the term robustness in a “global” sense, stating that Is there an estimator that dominates the JSE? The
the JSSF is a globally robust state filter. More precisely, answer is yes. In fact, an admissible estimator has
there is a lower bound on the JSSF’s worst-case performance. been explicitly given in [25] (see [13] for an intuitive
Regardless of how inaccurate the state-space model is, the derivation). However, the correct amount of shrinkage
JSSF will always give sensible parameter estimates. This is requires numerical integration. It appears (see [19]) that
very different from other robust Kalman filters in the literature, the extra improvement in risk is small. Therefore, we
which are robust in a “local” sense, i.e., their performance is  Will be content to use (1).
comparable with that of the Kalman filter even though there Some Definitions:To facilitate discussion of James—Stein
is some (small) error introduced into the model. On the omstimators developed in this paper, the following definitions
hand, the JSSF is expected to perform worse than a locaMill be used in the sequel. These definitions are standard and
robust Kalman filter if the modeling errors are small. On thean be found in [14].
other hand, for sufficiently large modeling errors, the JSSFTherisk of an estimator is the mean-square error (MSE) of
is expected to outperform any locally robust Kalman filtelhe estimator given the true parameter value, i.e., the risk of
simply because the JSSF has a global upper bound ontite estimatof of the parametep is J(u) = E[||ir — pl?].3
mean-square error. In the sequel, we usBsk and MSE interchangeably.

Limitations of James—Stein Estimator€bviously, the  An estimator is said t@lominate another estimator if for
James-Stein estimator is not a panacea to every estimagygry parameter value, the risk of the former is less than or
problem. To put our algorithms in perspective, it is importar@qual to that of the latter, provided there exists at least one
to stress their limitations: parameter value for which strict inequality holds.

1) The JSE (1) improves the overall risk amot the A minimax esti_mat_or is an estimator with the property

individual risk of each element 6X. This is important that its largest risk is no greater than that of any other

to note for two reasons. First, in certain applications m%stimator. Since the MLE of the mean of a multivariate normal
may not be willing to tr'ade a’ higher individual risk for istribution is minimax, any estimator that dominates the MLE

a smaller overall risk. [Accurate location of an object irﬁnUSt also be minimax. Conversely, since the risk of the MLE

three dimensions is an example where a biased estim'éf’ténde.p?ndent qf the true mean, the MLE cannot dominate
any minimax estimator.

that improves the overall risk (i.e., JSE) is preferable to o ! . . .
N An admissible estimatoris an estimator for which no other
the MLE.] Second, the fact that an individual element of . . . . .
. estimator exists that dominates it. James and Stein showed that
X may have a larger risk than the MLE shows that th L S
. . - the MLE of the mean of a multivariate normal distribution is
JSE, while being an extremely surprising result, stops o . . . .
. not an admissible estimator if the dimension exceeds two.
short of being a paradox. . . . :
2) The JSE is a biased estimator essentially. it trad A James-Stein estimator (JSE)s an estimator that pro-
) : : ! ’ atly, | s%es an estimate of the mean of a multivariate normal

b|a§ for ”Sk.' Depending on the subsequent use of tlaﬁastribution and dominates the classical maximum-likelihood
estimate, this may or may not be a disadvantage. Qtimate

note that in the derivation of the James—Stein state f'lter’Notation: Throughout, we use the notatiofr)™ =

the bias is used to our advantage. _max(0, z), ||z]|2 = «'z (i.e., Euclidean norm) antito denote

3) The Kalman fllFer for Sf[a_te estimation of linear Gau_ss'a\/rlector transpose. A (multivariate) normal distribution will
systems is optimal (minimum mean-square error) if thg, genoted by the standami(y, ), with the covariance
model is accurately known. Therefore, in this casgnatrix 5; assumed positive definite. The trace of a magtiis
the JSSF cannot have a smaller mean—squa}re erQfitten as {2} and the maximum eigenvalue as,..{Q}.
However, when one or more of the assumptions ff x is a vectorx; [or (x;); since the vectox,, itself has a
the optimality of the KF do not hold (e.g., parametergpscript] will be used to denote théh element ofx, unless
accurately specified, linear dynamics), the JSSF CaPecifically stated to the contrary.
yield better state estimates (in terms of mean-squarewe will use./ with an appropriate superscript to denote the
error) than the KF. The JSSF will be derived angsk of an estimator. For convenience, we may choose to omit
discussed in detail in Section IV. the parameter [i.e., writg rather than/(z)], and furthermore,

4) A key requirement in deriving the JSSF is that the statgye inequalityJ'S < JML is an abbreviation of/ p € R?,
space observation matrix has either the same numbe () < JML(y).
or more rows than columns. This precludes directly
using JSSF for some applications. However, if the
observation matrix has fewer rows than columns, the
JSSF can be applied to an appropriately reduced stateThis section introduces in more detail the James-Stein
space model (see Section IV-C). Note that models wigstimator and how it can be applied to linear regression
observation matrices having more rows than colummsoblems. Although most of the results are known (e.g.,

occur frequently in multidimensional imaging systems , ) ) ) o ) o
Note that in a Bayesian setting, which is not considered in this paper, MSE

[27]' In Section VI-A, we present an appllcat|on of thqefers to the weighted average of the risk, nam@&y/(u)], the weighting
JSSF to one such system. function being thea priori probability density of the parameter.

Il. JAMES—STEIN ESTIMATION FOR LINEAR REGRESSION
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see [7]), this section provides the basic results and notatiestimator for the regression parameter, which we will use in
required for our James—Stein versions of the RLS algorithtihe following sections.
and the Kalman filter. In particular, Theorem 1 below extends Consider the problem of estimating the vectog IR? given
the results in [7] to more general regression models. the observation vecter € R" (n > p) generated by the model
L = Cx + Dw, ~ N(0, 021 3
A. Preliminaries z x+Dw v 0,71 ®)
We first review the result in [7, Sec. 7.2], which show®ith ' € IR™* and D € IR™" known matrices of full
that the JSE defined by (1) is readily extended to deal witgolumn) rank andw € R™ an i.i.d. Gaussian noise vector
a nonidentity covariance matrix. Unfortunately, depending ofith varlarlceUQ € R.If n>p, o? need not be known since
the covariance matrix, there may not exist a JSE. We expldins possible to estimate it from the data If n = p, we
intuitively why such a limitation exists. This leads to twoaSsume tha_th IS known: _
important concepts we will subsequently use, namely, theFor notational convenience, define
“effective dimension” and “shifting the origin.” R=(DD')! ()
Let X € IR denote a normally distributed random vector - ’
v}\éith mj\ef?nug?nd positive definite covariance matik, i.e., The MLE of x is well known [15] to be
~ N(p, ).
Define P = Q~(1/2 (since( is positive-definite P exists). ML = (C'RCYIC'R2 (5)
BecausePX ~ N(Ppu, I), (1) can be applied t&’X to give ) o
and furthermore, the MLE is normally distributed about the
-2 true parameter, i.e.,
= (1 g )X @ " F
M-~ N(x, 0?(C'RC)™H). (6)

This estimator is said to belong to the class syheri-
cally symmetric estimators [2] since it is of the formp =
R(X'Q71X)X, whereh: R — IR is any (Borel-measurable)

function. . *MEnamely,(C’RC)™1, as simplythe covariance matrix.

Bock [.2] has shown_ that .'f {'Q}/)“?“X{Q} S 2’_ then We now state the spherically symmetric JSE for the regres-
no spherically symmetric estimator exists that dominates tlg&\)n parameter. It is based on the JSE presented in [7, Ch.
MLE. For convenience, we will call {€2}/Amax{S2} the 7]. The differences are that we have included the mdiriin

effective dimension Note that the effective dimension is 3he regression model (3) and included the términ{(p — 2),
real-valued quantity. A justification for the name effectivt%(p* — N in (7).
dimension is given below. . i Theorem 1:If o2 in (3) is known andn > p, the

To understand why such a restriction éhexists and to James—Stein estimator farin the regression (3) is
justify naming t{Q2}/\n.: {2} the effective dimension, it is
necessary to view the problem from a different angle. Consider _ < » (min{(p — 2), 20" — 2N\ "
a diagonal covariance matrix) = diag{\;, ---, A, }. The = <1 - XML (C7RCYXMT- ) x 7)
squared error may be written B8 —p|* = >-7_, )\j((PAu)j -
(Pp);)?, whereP = Q~(/2), Since the JSE oPp in general
does not have a smaller risk for every individual eleme
it is clear that if one of the\; is relatively large, it is no
longer possible to compensate for the possibility of introducing . tr{(C'RC)™1}
a larger MSE into this particular element. In a sense, the p= Amaxl (C'RC) 1} (8)
“effective dimension” has been reduced since we are no longer
able to safely shrink certain elements. Bock’s theorem [2, Th.If 7 > p ando? is unknown,o? is replaced in (7) by
2] then essentially states that the MLE is inadmissible if the 1D~ (z — CZM)| 2
effective dimension is greater than two. Z=

Another important technique we will use subsequently is n—p+2
shifting the origin. It is well known [3] that the risk of the  Furthermore, for the regression (3), the James—Stein estima-
JSE (1) decreases #g||> — 0. If it is known thatg is near tor %’ [which is defined by (7)] and the MLEM [which is
B (e, |jp—gl? <|ul?), the risk of the JSE (1) is decreasediefined by (5)] have the following properties:
by shifting the origin tag, i.e., by replacing: by (i1 + ) and 1) For all x € R?, J%S(x) < JMI(x), where /ML =

This shows that linear regression is equivalent to estimating
the mearx of the multivariate normal distribution (6) based on
the single realizatiost™". We refer to the covariance matrix of

where R is defined in (4),p is the dimension ofk, n the
ngimension ofz, *xM is defined in (5), and the effective
imension (which is defined in Section II-A) is

9)

estimatingj: instead. E[H)A(ML—XHQ] and.J’s = E[H)A(JS—XHQ] are the MSE’s
(risks) of M (5) and%x’> (7), respectively.

B. Spherically Symmetric James—Stein Estimators 2) If p* > 2, J'S < JMT with an upper bound o ’5(x)

for Linear Regression Models decreasing ax approaches the origin (more precisely,

as ||Q~/2x|]2 — 0).

Both the RLS algorithm and the Kalman filter involve
@ If p* S 2’ )/‘(JS — "]\'TL.

a linear regression. This subsection states the James—Ste
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Observed ML parameter Improved
Input/Output Recursive estimate, James-Stein
Least covariance matrix James-Stein estimate

Squares Estimator

Fig. 1. James—Stein RLS algorithm.

Proof: Definep = x, Q = o?(C’RC)~*, andX = &ML, ll. JAMES—STEIN RECURSIVE LEAST SQUARES (JS-RLS)
It is clear thatX ~ N(u, ) with Q positive-definite.

) In this section, we derive a James—Stein version of the
In [7, Sec. 7], it has been shown that the JSE

recursive least squares (RLS) algorithm. We call the recursive
+ algorithm “James—Stein recursive least squares” (JS-RLS). The
@’ = (1 N %) X (10) schematic structure of the JS-RLS is shown in Fig. 1.
XX Because the JS-RLS is merely a recursive algorithm for
implementing the JSE (7), the JS-RLS has identical properties
to the JSE (7) (see Theorem 1). Theorem 1 is valid, provided
(6) holds or, in other words provided in (3), the matrix
C is independent of the observation vectar Under this
assumption, the JS-RLS will yield smaller MSE regression
] . n parameter estimates compared with the RLS.
¢ = (min{(p - 2), 200" = 2)})7. (11) Several heuristic modifications are made to the JS-RLS later
in this paper (Section V).

dominates the MLE for any positive constant provided
0 < ¢ < 2(p* — 2), where the effective dimensiop* =
tr{Q}/ Amax{}.

Our estimator (7) is equivalent to (10) with

Clearly, ¢ satisfies the constraind < ¢ < 2(p* — 2).
Furthermore, the results remain valid whehis replaced by A The Model

9 [7].

Last if O — I. the risk of %°S is a concave function of 1he standard recursive least squares (RLS) algorithm (see
IIx||? (see [3]). For arbitrary (positive-definite), introduce [20]) is used to recursively estimate the parameter vector

— +r o
the transformP = Q~(1/2) and note that X = [ar, -+, ar, by, -+, bg]” € RT™ in the ARX model
r q
|PES —x)P =& —x)Q 1(&%®-x) (12 2(k) = az(k—t)+ > bu(k—t) +wk)  (14)
2 )\maX{Q}—IH)A(JS _ X||2' (13) t=1 t=1
where
Therefore A { QY E[[| P(%7> — x)||] is a concave function (k) e R (known) exogenous input;
of ||Px||*> and is an upper bound of the risk’S(x) = 2(k) € R observed output;
E[|l%" - x|*]. U w(k) ~ N(0, 02) additive white noise.
Remarks:

The subscriptc denotes that the estimate ®f, is based on
1) In [2] and [7], the JSE (10) has been derived in termfe observationg (1), z(2), - - -, z(k)}. The noise variance
of the constant. However, no specific equation feris ;2 js assumed to be unknown. We defifie= max(q, ) and
given. Our choice of (11), being somewhat tangential ienote the dimension of;, by p (p = ¢ + 7).
the rest of this paper, is justified in Appendix A. Remark: The application of James—Stein estimation to lin-
2) The properties of the JSE (7) given in Theorem 1 fadlar regression requires (6) to hold. If an AR model is present
to hold if, in (3), C and/orD depend onw (or z). The (je. + > 1) in (14), in general, (6) holds only asymptotically.
reason is because (6) will, in general, not holddf  \we write the estimation problem in matrix form to
and/orD are not (statistically) independent of. show its equivalence to the linear regression (3). At time
3) ltisimportant to note that there is no loss of generality ipstant k, we seek to estimate;, given the observations

assuming that for the regression model (@Y RC)~1 is {2(1), 2(2), ---, z(k)} and the regression relation
diagonal. This can be explained as follows: [Fetlenote

an invertible square matrix. Then, (3) is equivalent to z = Crxi + 0 P wy (15)

z = (CP~Y)(Px) + Dw. The conditional covariance

matrix of PxML given Px becomesP(C’RC) 1P’ where themth element otz is z(m + s), and themth row of

and can be made diagonal by choosifgto be a Cyis[z(m+s—1), ---, z(m—+s—r), u(m+s—1), ---, u(m+
suitable orthonormal #' P = I) square matrix. Most s—gq)]. 2 = diag{\*—>~1, Ak==2 ... "1} where\ denotes
importantly, the choice of amrthonormal P ensures the exponential forgetting factor (see [20]).

that the MSE of any estimatcr and ofx = P~!x are For convenience, we now state the standard RLS algorithm
identical. (e.g., see [15)):
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Algorithm 1—Standard RLS:he standard RLS algorithm is Computing Amax{ Pk}, the largest eigenvalue of a

, Toeplitz matrix also has a computational complexity
we =[z(k = 1), -, 2(k =), w(k = 1), - u(k — )] Op?). If computing Amax{F3} in (26) is undesirable,
k;, = Poug = D1k it may be avoided by

At g Lot replacing A\pnax{ P} by any upper bound. The
N - ~t M max k .
X = Ppdp = X1+ K (2(k) — %5 ) only effect is to reduce the difference in MSE
Py = (G Cr) ™" = A7 (Peoy — Ko Pey) (16) betweenx!S and ;. Note that%;® will stil
dominatexy.
replacingAmax{ P } by its asymptotic value. Care
must be taken since inaccurate (i.e., large MSE)
estimates may result ik, {F:} is larger than
its asymptotic value.

where) denotes the forgetting factor< A < 1. (Initialization
can be performed according to the initialization procedure
given in Algorithm 2 below.)

B. The James-Stein Recursive Least Squares Algorithm

i . 2) If » =0in (14), i.e.,, no AR component is present, and
We state the JS-RLS algorithm below and then devote the a unity forgetting factor is used (i.e) = 1), the JS-

remainder of this section to an explanation of its derivation. RLS is guaranteed to have an MSE not exceeding that

]Arllﬁ]ic;::tzgrgoi'_ése-til_i.p of the RLS, i.e., /SRS < JRLS  [Proof. With ini-
' tialization as given in Algorithm 2, the RLS (Algorithm

P, =(CiuCh) ™ % = Pudy di = Cizi (17) 1) estimates are the maximum likelihood estimates of

sk =z Mz Qn = (CLuCr) kT =k (18) the. linear regression (3), and .the JS—RLS (Algorithm 2)

estimates are the James—Stein estimates of Theorem 1.]
(19) 3) If p* < 2, % = %; (i.e., JS-RLS becomes ordinary
RLS). A necessary condition fgr* > 2 is p > 2 since
from (7), it follows thatp* < p.

4) A discussion of the JS-RLS applied to AR models (i.e.,

r > 0), along with several heuristic modifications, are
presented in Section V.

Derivation of JS-RLS:The JS-RLS algorithm is derived in
two steps. Initially, the case whekh = 1 is examined. The
extension toh < 1 is then given.

We assume that the da#g have been generated lay, =
w, =[z(k—=1), -, 2(k =), w(k = 1), ---, u(k — @)] (20) Cirxy + Wy.

_ [ apriori estimate ofx;, if available
=110, -, 0 otherwise.

C, € RF P is a matrix with mth row [z(m +
s—=1), -, zm+s—7r), ulm+ s — 1), -, ulm +
s —q) z € R¥*® is a vector with mth element
2(m + s). O € RF*F=2) s the diagonal matrix
diag{ \*—s—1 A\k—s=2 ... 1} with X denoting the forgetting
factor; 0 < A < 1.

Update Equations:

K, — Py, quy, 21) 1) Unity Forgetting Factor:If A = 1, the standard RLS
AT W), Py, algorithm recursively calculates), = (C;Ci) ™' Cizx,
Kp = Xi_1 + Ke(2(k) — X} ug) (22) whichr:s thfe MLI?1 of the linear regressian = Crxp +
Po=A"Y(Pe_1 — K, Pe_1) (23) ;vk Therefore, the JSE (7) may be used to improve on
y
dp = Adp-1 + 2(k)we s = Asp—1 + (2(k))? (24) In this case, for any: (andr = 0), Theorem 1 proves
Qr =2Qp—1 +weu), BT = 25T+ 1 (25) that JJS RIS < JRIS,
_ S 2) General Forgetting Factorif A < 1, the standard RLS
Moreover, the JS-RLS estimatg® is computed as recursively calculatesk, = (CLQCh)~LC! Nz,
o . tr{ P} which is the MLE of the linear regression
v = (% — Xp—1) Qu(Xp —Xp—1) pP' = A I P} (26) z;, = Cpxi + Q;(I/Q)wk. However, the data was
9% — %V generated by, = Cixj + wy.
x}° = <1— % (::[[ )ZJ:; Bl There are two effects of the mismatched model.
el _

First, the estimation of the variance ofv, is
(min{(p — 2), 2(p* —2)}H* * @27) no longer given by (9). Second, the covariance
' v X of %, is no longer o%(C,Q:Cr)~, but in
fact, aQ(O,QQkOk)_lCiQfOk(O,QQka)_l (ThIS
“mismatch” in variance prevents]® from dominating

Risk: Define JRS = E[||%, — xx|?] and JJ5 RIS =

E[||%}° — xi|*] as the risks of the MLEx;, (16) and the % if A < 1)
JSEX;® (27_)’ respectively. The first effect is easily remedied; the second is
Remarks: ignored* Rather than estimate? by (9), namely
1) Computational Complexity:Excluding the computa- y 1/2
tional cost of A\yax{P:} required in (26), the JS-RLS o” =€,/ (2 — Chx)/(k —p+2) (28)

and the RLS have the same order of computational we replacek in (28) by k¢, whereks® = Ak + 1.
costO(p?) and the same order of memory requirements
O(pQ). 4After all, the inclusion of) into RLS in the first place is heuristic.
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Fig. 2. Standard Kalman filter (feedback not shown).

The JS-RLS algorithm (Algorithm 2) can now be derived ipredicted state estimat&}® is the MLE of x; givenz in
the same way that the standard RLS algorithm (Algorithm 1) {80), i.e.,
derived; see, for example, [10]. In fact, (20)—(23) are identical , Nl N1t 1
to (16). Furthermore, (20)—(25) merely calculate (17) and (18) *+ = (Cr(DiDi) ™ Cr) ™ Cr( Dk D)™ 2. (31)
recursively (with the exception ofs). From the identities

; o : The Kalman filter equations are [1]
(17) and (18), it can then be verified that (27) is the JSE (7).

e = Xnjp—1 + Kp(zr — CrXpjr—1) (32)
IV. JAMES—STEIN VERSIONS OF THEKALMAN FILTER Ky = Puji—1 Ch[CrPrr—1Ch + 0° D Di 1 (33)
This section derives two James—Stein versions of the Xk+ilk = ArXik (34)

Kalman filter (KF). The first version is the James-Stein  Piiipn = Akl — KiCi]Pyjp—14% + BiQr41 By (35)
state filter (JSSF), which was derived in Section IV-C. The .

JSSF places no constraints on the state-space model, f&,iS the Kalman gain, and

the state-space model may be incorrectly specified, it may Py = E[(
be nonlinear, it need not be Gaussian, etc. The observation

model is a linear regression with Gaussian noise. The JSBE covariance of; — Xy jx_1.

will always have a MSE less than the MSE obtainable from The Kalman filter is shown in block diagram form in
the maximum likelihood estimate of the state given onlfig. 2 (with feedback oky; and P, omitted for clarity).
the observation model. The JSSF is then combined with thibe Kalman predictor computes;—; (34) along with its
ordinary Kalman filter (KF) to give the James—Stein KalmagcovarianceF};—;. The linear regression parameter estimate
filter with hypothesis test (JSKP algorithm. The JSKEF computesx}'™, which is the MLE ofx; given z; in (30).
derived in Section IV-D incorporates a hypothesis test finally, x}'" andx;,;_, are combined in a Bayesian manner

Ty — fik|k—1)(xk - fik|k—1)/|Zk—1] (36)

determine if the state-space model is correct. [cf., (32)] to give Xy.

Risk: Define J*F = E[||Xgr — xi]|?] and JM =
A. Gaussian State Space Signal Model and E[||x}MY — x4 ]|?], which are the risks of the Kalman filter
Standard Kalman Filter (KF) (32) and of the MLEX}!E (31), respectively.

In this section, we describe our Gaussian state-space siggal i ¢ h
model and summarize the standard Kalman filter. - Outline of Approac
The Kalman filter [1] is the minimum MSE (i.e., optimal) Confusion can arise by comparing the JSSF with the KF

filter for the linear Gaussian state-space model too closely. Therefore, this section sketches an alternative
derivation of the JSSF given in the next section.
Xp+1 = ApXg + Bregt1 (29)  Consider a sequencgx, x;, --- } of (in general, depen-
zr = CiXy + Dpwy (30) dent) random variables. Each random variable in the sequence

is observed via the linear regression (30), namealy, =

where x;, € IR? is the state vector and; € R" the Cixj + Diwy, wherew;, ~ ii.d. N(0, o21).
observation vectore;, € R™ and w, € R™ are random If nothing is known about the probability space from which
noise vectorse, ~ i.i.d. N(0, Q), wi ~ i.i.d. N(0, 02I)). the sequence of random variables from whichy, x;, -- - }
Ap € RP*P, B, € RP*", G, € R™?, and Dy, € R™™™ are was generated, only the single measuremsgntan be used
(deterministic) matrices. to estimatex;,.

Let Z,, = {zo, -- -, zi} denote the observations up to time For this estimation problem (a linear regressiagy),can be
k. The objective is to compute the filtered state estimate basextimated by the MLE (31). It can also be estimated by the
on the observationgy, i.e., computek;,, = E[xx|Zi]. X441 IJSE (7) with the origin shifted (see Section II-A) to any point.
will similarly be used to denot&[x;+1|Z%], which is the Remember that regardless of which shifted JSE is used, the
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MSE of the estimate will be less than the MSE of the MLErom the JSSF. These state estimates still dominate the MLE.
(31). In other words, any shifted JSE can be used withoWe explain this procedure below:
affecting the “worst-case” MSE of the estimate. We assume rank’;, = n (cf., Assumption 2). Introduce the
Assume now that we believe that, is approximately p x p (real) orthonormal matrixS;, (i.e., S8}, = S, Sk = I)
equal to some function ok;_;, say, f(xx—1). How can such that its firsk. rows span the row space 6%. Therefore,
we incorporate this belief into an estimate ©f while still S, = [ék|0], where ¢, € R™" is invertible. Letx;
requiring the worst-case MSE of the estimator to be no wordenote the first» elements ofS;x;. SinceC = [ék|0]5k,
than the MLE (31)? The answer is to use the JSE (7) withe observation equation (30) can be written as
the origin shifted tof (x;,_,), wherex;j;,_, is the estimate i
of xp_1. z = CiXp + Dpwy. (37)
It is seen then that the main difference between the JSSF
and the KF is that the JSSF assumes that the state sequesigee C;, is square,X; can be estimated as in the JSSF.
{Xo, X1, ---} comes from a completely unknown probabilfFinally, we can equate; in the state-space model (29) to
ity space, whereas the KF assumes theg, x;, ---} was x; = S,jl[i’k|0]’ = S, [%}|0', where we have simply set the

generated by the linear state-space model (29). unobservable entries (more precisely, the unobservable linear
combinations) ofx; to zero.
C. James-Stein State Filter (JSSF) Derivation of JSSF:In the Kalman filter, the state-space

The JSSF is based on the linear Gaussian state-space mrgné;eqm (29) is used to computiy_,, which is the state

X . . . X diction based on past observations. The JSSF also uses the
(29) and (30) with the following differences in aSSLlmpt'ons'state-space model for prediction. #£5 is the current state

. . k|k
1) Requiren = p > 2 so that the JSE (7) can be appliedyqi ot 295 — 4,575 s the prediction ofxjs [cf.,
(For the same reason, i is unknown, we require (34)] + !

n > p, that is, we require the observation matd, Since we do not know how accurate the state-space model

to have equal or more rows than columns.) - ~IS .
: (29) IS, X}, May be very inaccurate. Therefore, our strategy
2) RequireC), and D, to be accurately known and haveg v o qimate the state vectar, in (29) with the JSE (7)

S ]
full (column) rank so that the appropriate inverses eX|s$s

3) Requirees,; to be independent ofy. Otherwise, it is ased on the regression (30), with the origin shn‘teﬁ@_l.

: . o We recall from Theorem 1 that regardless of how inaccurate
conceivable that a certain combinationegf,; andw; 5

can increase the MSE beyond that of the MLE based ofil*— 'S, the resulting estimate o, will always have a MSE
(30) alone no greater than that ot} (31).

Since the JSE will have significantly smaller MSE if the
true parametek; is near the origin, choosingils,HL to be
and Ay, By, need not be known. In facty.,1 can depend FheA g)sngm has.thfel\rﬁffect of co.mbmlng information contained

in x35,_; and inx;™~ together in a robust manner. The more

on x; in a nonlinear fashion. s ) )
Remark: Assumption 1 (i.e.n > p > 2) and Assumption accuratex;;, _, is, the more accurate the resulting estimate

2 ensure thatC, (Dy.D,)Cy)~" in (40) and (41) exists. of x; will be, yet at the same time, our estimate xf is

, : : Iy . teed to be no worse thaft.
Discussion of Assumption 1Requiring the observation guaran . . - .
matrix Cj to have equal or more rows than columns ma The block diagram of the JSSF is shown in Fig. 3 (with

/\JS - 0 _
appear restrictive. However, there are several multidimefzedPack ofk,p, omitted for clarity). Although the KF com

sional output systems such as multidimensional tracking aﬁ'@es@“ andxy,—; in a Bayesian manner (Fig. 2), the JSSF
imaging systems (see Section VI-A) that have> p > 2. co_mbmesfcﬁ“ and 3, by shrinking}'" toward x5,
Moreover, Assumption 1 igot restrictive in the sense that any(Fig- 3)- ) ] ) ) .

system withn < p contains a(p — n)-dimensional subspace The J_ames—Steln state filter algorithm is summarized below.
of the state-spacd®”, which is unobservableif the state-  Algorithm 3. JSSF:

space model is unknown, i.e., the observatigpgontain no  Initialization: %75, = E[x,]

information about these unobservable states, and therefore, nBecursive Filter:

sensible estimator exists for certain (linear combinations of)

4) Other than independence ef1, no further assump-
tions are necessary for (291 need not be Gaussian,

states. The JSSF can, however, be applied to the remainingss _ o5 (; _ 2 (min{(p — 2), 2(p* — 2)})* "
(observable).-dimensional subspace of the state space. Rlk k=1 || Dy O (30 — XDl

In particular, if 2 < n < p, then by appropriate use of (the ML ~JS
equivalent of) pseudo inverses, the estimates of certain linear C(R T = K1) (38)
combinations of states (i.e., observable states) can be obtairi@{ﬁuk = AkXi?k (39)

5As in the Kalman filter, knowledge of the state-space model (29) allow¥here
estimates of all the states to be possible. The consequence of assuming no
knowledge of the state-space model (Assumption 4) is that certain (linear N tr{(q{g (DkDi)—lc’k)—l}
combinations of) states become unobservable. =

r = ! /y—1 -1
8if p < 2, the JSSF can still be applied, but it reduces to the MR- ML )\m/aX{(Ck/(D’;Dk) lcf) } -

(40)
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Fig. 3. James-Stein state filter (feedback not shown).
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Fig. 4. James—Stein Kalman filter with hypothesis test (feedback not shown).

Remark: If &% is unknown, it can be replaced (providing 4) Equation (39) can be generalizedﬂgﬁ_llk = f(fcilsk),

n > p) in (38) by [see (9)] where f: R — R is any (e.g., nonlinear) prediction of
2 _ ||Dk_1(zk _ CkiﬁiL)HQ (42) Xi41 based onxy.
n—p+2 D. James—Stein Kalman Filter with Hypothesis Test (JOKF

Note that this isnot an estimate ob> as such. In [7], (9) is  The JSSF assumes complete ignorance about the accuracy
chosen such that the JSE “works,” i.e., the JSE continuesdpthe state-space model (29). This section assumes that at
dominate the MLE. Naively replacing® by an estimate of it each time instant, the state-space model parameters are either
will, in general, cause the JSE to no longer dominate the MLEgrect or incorrect. We propose a test statistic to decide at each

Risk: Define Ji%" = E[||%3f, — xx[|*], which is the risk time instant whether or not the state-space model is correct. If
of the JSSF state estima@lsk (38). the state-space model is believed to be correct, the KF is used

Computational ComplexityThe computational complexity to estimate the state at that time instant. Otherwise, the JSSF
of the JSSF algorithm above is of the same order as tikeused. The resulting algorithm, which is termed the JSKF

standard KF algorithm (32)—(35). is illustrated in Fig. 4 (feedback paths between the standard
Discussion: Let us explain why the above JSSF algorithnKF and JSSF have been omitted for clarity).
is robust. An example application is to track a target subject to

1) The JSSF achieves something that, at first glance, deegneuvers. While not maneuvering, the target moves with
not seem possible. Regardless of how incorrect th&@own dynamics. When a maneuver occurs, the state-space
system dynamics are/{>" < JMI. That is, the model is inaccurate. The ordinary Kalman filter, if it is
JSSF always performs better (i.e., smaller MSE) thatesigned to track the target accurately during nonmaneuvering
ignoring the system dynamics (29) and using only theeriods, may be slow in responding to the new change of
observationg;, (30) to estimate the state, (30) by the coordinates induced by the maneuver.
traditional MLE, i.e., %} (41). Model: We assume the linear Gaussian state-space model

2) The more accurate the system dynamics (29) are, thieSection IV-A, with the following changes.
smaller /5% is. That is, the closek}}, ;| (39) isto 1) Requiren > p > 2.

xx (29), the smaller the MSE cfﬁilsk (38). 2) RequireC;, and Dy, to be accurately known and have

3) The filter is robust to perturbations Hy., By, and even full (column) rank. (We also assumdy,, By, ando? to
nonnormality of the noise;. (See point 1 above.) be accurately known.)
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3) Assumee;, consists of Gaussian noise plus occasional UnderH0, the optimal state estimate is given by the Kalman
outliers and is independent of,. Mathematically, at filter (32)
any time instantt, either the state-space model (29) is

accurate, and Kk = Kpjp—1 + Ki(zr — CrXpp—1)- (50)
.~ N(0, Qp 43 .
Ok (0. Q) (43) Under H1, we use the JSE (38) instead, namely
or the state-space model is sufficiently inaccurate, such
that f‘i?k :&i?k—l + s - )A(i|sk—1) (51)
ller]? > tr{Q}. (44) =%y + 5O (CL(DrDy) ™ Cr) T Cr(Dr D) ™!
(21— Ck&ilskfl) (52)

Remark: Equation (44) expresses the criterion tleat be
much larger than its average value under (43). This criterig)there
can be met either by, being large or by4, and/orB;, being
sufficiently inaccurate. : _ * _ +\ 7

Derivation of JSKfg: There are two steps in the derivation ~ s(-) = <1 — 2 (muj(p Aiiiz(pA 5 2)})2 ) - (83
below. A decision theoretic test is derived to decide whether 1D G = Xigho—o)
or not the KF is functioning correctly. The computation of the

i o H _ $H
James-Stein equivalent of the Kalman covariafg. ; is Both estlrﬁgtors now haye the formklk = Xp—1 T
then derived. p()(zk __kak|k—1)' Comparing (50) a_nd (52) shows that_ the
Consider the hypothesis test at each time instant JSSF simply replaces the Kalman gdif3 with the new gain

K5 = s(:)(CL(DyD;)~1Cy) 1 CL(Dy D). Furthermore,

HO: accurate state-space model, ie@,,~ N(0, Q). inverting (33) gives

H1: inaccurate state-space model, ijges||? > tr{Q:}.

_ 2 —1 / ! —1
The presence of a largge,||* can be detected by examining Pijp—r = o"(I = KC) K Di Dy Co(CrCr) - (54)

||z, — Ck&k|k_1||2, which is the (squared) distance betwee . IS . ctai -
the actual observation and the predicted observation. A Sm%ﬁplacmgKk by £;™ in (5_4) yields the James—Stein equiv
norm suggest&f0; a large norm suggesf$1. More precisely, /€Nt of the Kalman covariancky.—.

under HO, s(*)
. Pl =0 2 _(CL(DipD)"'C)™t. (55)
X5 — K1 ~ N(0, Pklkfl) (45) klk—1 1—s(-) (Ci( k) )
2
2z, — Cpxy ~ N(0, 0° Dy Dy,) (46) Collecting these ideas together leads to the following J8KF
2 = CrXpjmr ~ N (0, O Pyppo—1 O, + 02 DiDy). (47)  algorithm.
Define the test statistic Algorithm 4—James—Stein Kalman Filter with Hypothesis
. , , ) N Test:
T = (21 — OkXgp—1) (CrLrp—1C) + 0" Di Dy Initialization:

(zp — CrXpp_1)- 48
(@ CISY (48) * Choose an appropriate threshdlg [cf., (48) and (49)].
From (47), it follows that undet{0, T’ ~ x2 (the Chi-squared  « Initialize KF parameters
distribution withn degrees of freedom). Therefore, we propose

the following standard decision theoretic test [19] to choose &ﬁo =E[x] (56)
betweenH0 and H1 5 .
HO Pﬁ{o = E[(Xllo - X1)(X1|0 - Xl)/]~ (57)
TS T. 49
51 (49) Recursive Filter:

whereT, is the threshold, or cut-off, constant. The value of 1) At time instantk, compute the test statistic
T,. can be chosen to give a fixed probability of false alarm
based on (48). _ T = (2 — OkXy_1) (Ch Byl Ch + 0° Dy DY) ™
At each _tlr_ne instant, the KF computes_ _the covariance (2 _Ck&ﬁk—l)' (58)
of the prediction errorP,;,—; (36). The empirical Bayesian

viewpoint of a James—Stein estimator [14] suggests that in a If T < T. (HO holds), use the standard KF in Step 3.

sense, the James-Stein estimator implicitly estim&igs_;. . .
(It can be shown along similar lines that the estimat&g.; Otherwise {1 holds), use the JSSF by executing Steps

is typically much larger than the actuB};._, . More precisely, 2 and then 3. _ _
it is a biased estimate, erring on the side of “caution,” or larger 2) Calculate the James-Stein equivalentyf;._;
Pyjr—1-)

To compute the final form of our filter, let us compare the Pl = 02& (CL(DypDy) 104 (59)
KF and JSSF. 1—s()
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where whereq,, € R, m =1, ---, p are the AR parameters to be
i estimated. The variang#’ is an arbitrary positive constant.
s()=[1- 02 (min{(p — 2), 2(p* —2)HT (60) The MLE of th_e AR pa_tramet_ers (which i; equivalent to the
||D’:10k (ggﬂ — ﬁkfilk_l)||2 least squares estimator) is obtained by solving the Yule—Walker

AN _ _ _ equations forx
- = (CL(DR D) )T D D) e, (61)
. tr{(C,’C(DkDQC)_le)_l} Cx=z (69)
B )‘111ax{(OIQ(DkD;v)7ICk)71}.

where
3) For the standard Kalman filter ) )
x:[al’ T ap] , 4= h(l)v ) ’7(p)]
K& =Py _1CL[Ch Prp—1Cy + 0° DDy (63) | Ker
i =Kk + KL (21— Ok ) (64) =5 gngMyM~+T> (70)

X e = ArKy (65)

and C is a Toeplitz symmetrigp x p matrix with first row
PH = Al — KP G Pupe_1 Ay + BiQus1B,, (66) Pz sy P xp

{7(0), v(1), -+, v(p — 1)}, i.e.,
where (@i = ()i — ). (71)

pPH nder H0 _ _ . .
Pt = { K1 Y (67) It is straightforward to verify that asymptotically,= Cx+

Pli_, underH1. w, wherew ~ N(0, 02C), ando? = 1/(K — p). Applying
the JSE of Theorem 1 to the linear regressioe: Cx + w
4) Incrementk, and return to Step 1. yields the following algorithm.
Risk: Define /7> = E[|[x}}, —xx[*] as the risk of the ~ Algorithm 5—James-Stein Version of Yule-Walker Equa-
JSKR; state estimatécflk (32). tions: Given K observations{y(1), -- -, y(K)} assumed to

Remark: As T, in (49) approaches 0, the filter becomesome from thepth-order AR process (68), the James—Stein
the JSSF presented in Algorithm 3. A3 — oo, the filter estimate of the AR parameters can be calculated as follows.
becomes the ordinary Kalman filter. 1) Setx to thea priori estimate of the true AR parameter
x. (If an a priori estimate is unavailable, s&t to the
zero vector.)

i _ _ . 2) Compute C' from (70) and (71). Computez =
Up to this point, the results in this paper have been based (1, -+, 3] from (70).

on the JSE (7) applied to the linear regression (3), resultingS) Solve the standard Yule

in the JS-RLS and JSSF algorithms. The results thus far have

been rigorous. ML = 1z, (72)
The estimators presented in this section may have a larger

MSE than their corresponding traditional estimators. However,4) Apply the JSE ta™" as [cf., (7) and (8)]

we include these estimators not only for the sake of complete- 1

V. EXTENSIONS ASYMPTOTIC AND HEURISTIC ALGORITHMS

—Walker equation (69), i.e.,

ness but also because simulation results show that in a number o? = Ve (73)

of cases, the James—Stein type estimators in this section can —p .

significantly reduce the MSE. This illustrates the potential for pF = & (74)

further research into extending the JSE to general distributions Amax{C1}

that approach (6) asymptotically. IS _x 4 <1 o (min{(p — 2), 2(p" — 2)})+>+
X=X 7 TEML %y OFML —x)

A. James-Stein Version of the Yule—Walker Equations (JSYW) &M - ). (75)

Many statistical signal processing applications require es- ) W . ) -
timating the parameters of an autoregressive (AR) processR[Sk: Define J; = E[[x*" — x|°] and J;° =
The least squares estimate of the AR parameters is obtaifad* > — X|I°] as the risks of the Yule-Walker estimaté™
by solving the Yule—Walker equations [20]. We now use the/2) and of the James—Stein Yule-Walker estimaté (75),
JSE (7) of Theorem 1 to present a James—Stein version'@$Pectively.
the Yule-Walker equations. Unfortunately, Theorem 1 is not Rémarks:

strictly applicable since (6) holds only asymptotically. 1) Note thatx’® = %M if the effective dimensiop* <
Consider the real-valued observatiofig(1), - --, y(K)} 2. The effective dimension depends on the correlation
from the AR(p) process matrix C, which, in turn, depends on the actual AR

parameters. (A necessary condition for > 2 is p >
_ 3, i.e., a James-Stein estimator requires at least three
u(k) = Z amy(k —m) + w(k) dimensions before it can dominate the MLE.)

m=1

w(k) ~ i.i.d. N(0, $?) (68) "More precisely, the approximate (but asymptotically correct) MLE.
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2) For a reduction in MSE, the origir (which is defined MSE (dB) of State Estimates given True Model
in Step 1 of Algorithm 5) should be close to the true AR >° ' ' ' '
paramete. [This would be a consequence of Theorem
1 if (6) held. Although we do not attempt to prove it,
simulations suggest that far sufficiently close tax, the |
JSE (75) will have a smaller MSE than the MLE (72).]

: — KF
r o I Ty ~ - JSSF
) - Vg \
A NITRY /1’\.,[‘\|‘/\nl\, PV T ’ . MLE
AV AR RS Vi Mo
ISR TN Ly Lo %
o L B N 7} 1
1 \ »
i
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T Ty W,

B. Modified JS-RLS AN i [ u h

The JS-RLS algorithm (Algorithm 2) is given for the general >
ARX model (see Section IllI-A), although its guarantee of a ;|
smaller MSE compared with the RLS algorithm is only valid
for the special case of an exogenous input model. 250

Simulations suggest that provided oapriori estimatex
[which is defined in (19)] is sufficiently close to the true 2y
parameterxy, the JS-RLS will have a smaller MSE than the
RLS, even for the general ARX model (14). Since (6) holds 5, 20 20 0 20 100
asymptotically, we also expect the JS-RLS to have a Smallﬁé. 5. Simulated transient response of the Kalman filter, the James—Stein

MSE for sufficiently largek. state filter, and the maximum-likelihood estimator under the true model (see
Throughout this paper, we have shifted the origin (se%ction IV). Here, the horizontal axis represents timevhereas the vertical

Section II-A) to a suitable priori estimate of the true param-2Xis is the risk in decibels.
eter. Due to the convex risk function (see Theorem 1) of the

JSE, we claim that the reduction in MSE caused by using te James—Stein State Filters (JSSF and JOKF

JSE rather than the MLE is _S|gn|f|cant if tlax.epr.|0r| estlmgte _James—Stein State Filter (JSSFJhe model (29) and (30)
of the true parameter value is accurate. This is the key |deav\|lr£1S used to generate 500 data points with parameters
the modified JS-RLS algorithm below.
Motivation: %;°, (27) represents the “beatpriori guess” 10 —01 —0.1
of the parameter vectok; (14) at time instantk. Since Ay=102 09 —o01
significant reduction in MSE occursxf;, (19) is close taxy, it 0.1 0.2 0.7
is tempting to sek = %;° | . UnfortunatelyxJ° | is correlated
with %, (22), and it is feasible that;® , is correlated in such
a way as to make the MSE worse rather than better.
Therefore, in an attempt to reduce the correlation between
%35 | and %y, X, is updated byg; = axi> + (1 — &)Xx_1.
For smalla, X; will (hopefully) creep toward the true origin
and be sufficiently uncorrelated witk, to allow (6) to hold
approximately.
Algorithm: The modified JS-RLS algorithm is identical to

By :Ck:Dk:Qk: , 0'221. (77)

O O =
o = O
= O O

Three models were used to filter the data: the correct
model, which was a perturbed model whetg and B;. had
their elements corrupted by (0, 0.0625) noise, and a totally
incorrect model, where

Algorithm 2 with the following update performed at the end 1 2 3 9 8 7
of each iteration Ar=14 5 6|, Bu=16 5 4. (78)
X = oy + (1 — a)Xp—1 (76) rey 52
The risksJME, JRE "and JJSSF for k = 1, - -, 500 were

where0 < o < 1. computed for the three models by averaging 500 indepen-

Remark: Simulations verify the following intuitive ideas. dent runs of the KE (32)—(35) and the JSSF (Algorithm 3)
For A = 1, x; contains as much information as possible abog ’

the true parameter: hence,> 0 is attempting to “reuse the igs. 57 display these risks for the first 100 data points (i.e.,

data” and leads to a larger MSE of the parameter estimate.el%l%:oo 1,---, 100). Table | presents the average MSE (ie.,

A < 1, % “loses” (or “forgets”) past information about the true=—}=1 J&/500) of the M.LE’ KF, and.JSSF state estimates.
We make the following observations.
parameter, and hence, a nonzeraan (but not always) have , , ,
a significant improvement. ¢ The JSSF always gives state esumates with smaller MSE
than the MLE regardless of how incorrect the model is.
« Even small perturbations in the model parameters cause
VI. SIMULATION RESULTS the KF to have a larger MSE than the MLE.
This section presents computer simulation results of® Asthe model parameters become more accurate, the MSE
the James—Stein versions of the Kalman filter detailed Of the JSSF state estimates decrease.
in Section IV, the James—Stein Recursive Least SquarBsese results are in agreement with our theory, showing that
algorithm of Section Ill, and the James-Stein Yule—Walkeéhe JSSF, unlike the KF, can never perform worse than the
equations of Section V-A. MLE.
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MSE (dB) of State Estimates given Perturbed Model

T

T T

T T

TABLE 1l
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PERFORMANCE OFJSSFIN 2-D TRACKING. EACH ENTRY Is .
10 logyo (JMT/J,) EVALUATED AT k = 10, WHERE J;, Is JRF or JJSSF

a 0.1 0.2 0.5 0.8 09 098 1
KF (dB) | -2.483 { -2.160 | -0.5537 | 2.168 | 2.913 | 3.148 | 3.145
JSSF (dB) | 0.6651 | 0.7598 1.134 | 1.480 | 1.474 | 1.403 | 1.374
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current state, systems that use many sensors will satisfy the
JSSF requirement of > p.

In [27], an estimation procedure was derived to track multi-
ple targets with time-varying amplitudes based on 2-D optical
observations. We concern ourselves with the subproblem of
determining the (amplitude of the) intensities of the targets
assuming we know their locations. The observation model of
is an example of when > p [i.e., Ci in (30) has more rows
than columns]. In particular, the following simulation example
usesn = 16 sensors ang — 4 states. Each of the = 16

Fig. 6. Simulated transient response of the Kalman filter, the James-Sts@nsors measures the light intensity in one cell ¢t grid.

state filter, and the maximum-likelihood estimator under a perturbed mo
(see Section IV). Here, the horizontal axis represents #imehereas the

vertical axis is the risk in decibels.

MSE (dB) of State Estimates given Totally Incorrect Modet
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%Fhere arep = 4 stationary light sources (targets).

Number the cells in a x 4 observation grid (arbitrarily)
from 1 to 16. Theth element of;, € IR'¢ is the light intensity
observed in celt at time instant:. We assume there are four
stationary light sources (targets) with, € IR* denoting their
intensities. The observation model is (30), wh€ferepresents
the 2-D point spread function [we used a Gaussian point spread
function in our simulations with the resulting} given in
(79)]. The time-varying source intensities were generated from
(29) with A, = 0987 and By, = I. Aframe ¢ =1, ---, 10)
of observations was generated from (30) with
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Cr =

Fig. 7. Simulated transient response of the Kalman filter, the James—Stein
state filter, and the maximum-likelihood estimator under a totally incorrect
model (see Section V). Here, the horizontal axis represents kimehereas

the vertical axis is the risk in decibels. Note that the JSSF estimate and the
MLE are almost identical.

TABLE |
PERFORMANCE OFJSSF. WDER “ABSOLUTE MSE,” EACH ENTRY Is
10 logyo (520, 74/500), WHERE J 18 JMT, JKF, or JJSST

0.0862
0.0117
0.0000
0.0000
0.0002
0.0000
0.0000
L0.0000

0.0000
0.0000
0.0000
0.0000
0.0002
0.0000
0.0000
0.0117
0.0862
0.0117
0.0000
0.0862
0.6366
0.0862
0.0002

0.0862
0.6366
0.0862
0.0000
0.0117
0.0862
0.0117
0.0000
0.0000
0.0002
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0002
0.0000
0.0000
0.0117
0.0862
0.0000
0.0002
0.0862
0.6366
0.0000
0.0000
0.0117
0.0862

, Dy =1. (79)

Absolute MSE Improvement to MLE

Model | MLE (dB) | KF (dB) | JSSF (dB) || KF (dB) | JSSF (dB)
Correct 4.771 2.519 3.976 2.252 0.795
Perturbed 4.771 5.595 4.331 -0.824 0.440
Incorrect 4.771 7.336 4.759 -2.565 0.012

Both the KF and the JSSF (Algorithm 3) were then used to
filter the data but with4; = ol, where0 < o < 1 is the
autoregressive coefficient used to model the source intensities.

Table Il presents the MSE of the state estimate at the end
of the frame (i.e.,k = 10) relative to the MLE state esti-

Two-Dimensional (2-D) Target Tracking Example (JSSFinate based on (30) alone (i.'"/J*F and J™/ J55F).
A 2-D maneuvering target tracking example is given here. [fThe MSE was estimated by averaging the results of 1000
this case, the observation matii¥, (30) has equal or more independent runs.)
rows than columns (i.e > p), and hence, the JSSF can We make the following observations from Table 1.
be used to estimate the (amplitudes of the) intensities of thes Fora < 0.5, the KF state estimate is worse than the MLE.
targets from noisy measurements. Note, in general, that since However, the JSSF state estimate is always better than
n is related to the number of sensors used to observe the the MLE.
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TABLE 11l
PERFORMANCE OF THEJSKF1 ALGORITHM. EACH ENTRY IS 10 log o (3;2%0 J1./1000), WHERE J, Is JML, JKF og j)sst

ML (dB) | KF (dB) JSKFy (dB)

false alarm - -~ 0.01% [ 0.05% | 0.1% | 0.5% | 1% | 5% | 10% | 20%
P, =0.02 4.772 3.635 2.785 2.780 | 2.780 | 2.817 | 2.859 | 3.129 | 3.349 | 3.620
P =01 4776 3.451 | 3.048 | 3.016 | 3.005 | 3.008 | 3.032 | 3.239 | 3.425 | 3.672

Thus, in the ranger < 0.5, the JSSF yields superior estimates TABLE IV

of the target intensities compared with the standard Kalman  PERFORMANCE OFJS-RLSFOR FIR CHANNEL IDENTIFICATION.
filter algorithm TRUE PARAMETER x4 = [0.4, 0.1, 0.2, 0.3, 0.4].

: . ) ) INITIAL, FINAL, AND ToTAL ARE DEFINED BY (82)—(84)
James-Stein Kalman Filter with Hypothesis Test (JSKF

A =095 =1
The JSKIg (Algorithm 4) was used to filter 1000 data points @ 0] 001] 002]005] 01] 02] 05 i 0
Initial (dB) | 0.709 | 0792 | 0.890 | L.08 | 1.02 | 0.555 | -0.280 | -0.966 || 0.562
generated by the model [cf., (29) and (30)] Final (dB) | 0.0120 | 873 | 946|839 |7.20| 6.33| 522| 4.09| 00114
. . Total (dB) | 0.104 | 410 | 5.14 | 546 | 5.07 | 448 | 3.71| 293 | 0.299
N { Xx +ery1  With probability 1 — P, (80)
k+l = 3 ; .
0eR with probability P, TABLE V
Zi =X + Wp (81) PERFORMANCE OFJS-RLSFORFIR CHANNEL IDENTIFICATION. TRUE PARAMETER
xi = [1, 2, 3, 4, 5]". INITIAL, FINAL, AND TOTAL ARE DEFINED BY (82)—(84)
wherex;, € IR®. In addition,w;, € IR®> andz; € IR® are SR T
N(0, I) uncorrelated white noise processes, énd P, < 1 a 0] 001 002[005[ O] 02 05T 1 0

Initial (dB 0.0037 | -0.0532 } -0.780 | -6.58 | -9.04 | -9.13 [ -7.44 | -4.17 || 0.0045
is the probablllty that the state; will be reset to zero. The ::r::] EdB; -0.0043 | 129 -11.9 | -10.6 | -9.60 | -8.44 | -6.49 | -5.02 o_ooog
dB)

average MSE (|e21000 Jx/1000) of the MLE, the KF, and Total ( 00004 | -129| -12.6 |-11.8]-11.0 | -10.0 | -8.08 | -6.21 || 0.0025
the JSKK; are presented in Table Ill. (The MSE was estimated
by averaging together the results of 500 independent runs.) « As guaranteed by Theorem 1, the JS-RLS estimates have

The following observation can be made based on Table Ill:  smaller MSE than the RLS estimates.

e For the threshold’, [cf., (49)] set for<10% false alarm < As indicated by Theorem 1, the improvement in MSE is

rate, the JSKf state estimate had a smaller MSE than more significant ifx;, is close toxy.
that of the KF state estimate. e The savings in MSE are greatest for small This is

We conclude that the JSKFsignificantly outperforms the KF because for smalk, the RLS estimate is (relatively)
for the model under consideration. It is pleasing to note that inaccurate; therefore, shrinking the estimate toward the
in this example, the correct choice f in the JSKF; is not origin leads to a noticeable reduction in MSE.
critical. We make the following observations about the results in
Table IV for A = 0.95.
. . e For smallk, the optimal« (i.e., the one that gives the
B. James-Stein Recursive Least Squares (JS-RLS) greatest savings) is slightly higher than the optimdbr

The JS-RLS algorithm (Algorithm 2) is used to estimate large k.
the parameters of an finite impulse response (FIR) channels The asymptotic MSE (i.e., final) savings can exceed 9 dB.
The model (14) withr = 0, ¢ = 5 is used to generate 1000  Therefore,« can be used to compensate for 1. (As
data points, with the exogenous input) a white noise ) is decreased, the asymptotic MSE increases.)
process [i.e.u(k) ~ iid.N(0,1)]. Two different sets of \ve make the following observations about the results in
parameters were used, namety, = [0.4, 0.1, 0.2, 0.3, 0.4]'  Taple V for A = 0.95.
andx; = [1, 2, 3, 4, 5]'. In both cases, na priori estimate
of the true parametex; was used, i.eXx; = 0 initially. The
results of 750 independent runs of the JS-RLS algorithm were
averaged to estimate the initial (82), final (83), and total (84)
improvement in the MSE of the parameter estimates. Thesg,
estimates are presented in Tables IV and V. The entries in the
tables are defined by

e For A < 1, the negative entry in final forx = 0 shows
that the MSE of the JS-RLS estimate need not be smaller
than that of the RLS estimate due to the mismatch in
variance (see Derivation of JS-RLS in Section 11I-B).

We cannot find any > 0 to give a smaller MSE than
for o = 0.

The vast difference between Tables IV and V is attributed
to the true parameter in Table V being relatively far away

45
RLS JS-RLS
Initial = 10 log, <Z / Z Ji ) (82)  from the initial X, = 0. It shows that the heuristic idea of
k=15 k=15 updatingx;. by (76) only works well ifx;, is originally close

Final — 10 loe 1000 JRLS = JJS-RLS 83 to x;. However, fora = 0 and A = 1, the JS-RLS parameter
inal= 19 0810 5 970 Z k (83) estimates always have smaller MSE'’s than the RLS parameter

k= .
970 estimates.

1000

1000
Total = 10 log, <Z JRLs / >R RLS) (84)

k=15 k=15 C. AR Parameter Estimation (JS-RLS and JSYW)

We make the following observations about the results in James—Stein Recursive Least Squares (JS-RLBg: aver-
Tables IV and V forA = 1 anda = 0. aged results of 500 independent runs of the JS-RLS algorithm



MANTON et al: JAMES-STEIN STATE FILTERING ALGORITHMS

TABLE VI

2445

PERFORMANCE S‘)FJS‘-RLSFOR AR(3) MoDEL. TRUE PARAMETER xj, = [0.1, —0.1, 70.2]’. k 1s THE NUMBER OF DATA PoinTs, MSE (N DECIBELS) Is
10 log,o(J7SFTS), AND IMPROVEMENT (IN DECIBELS) IS 10 logyo (IR™/ JT5RTS) 1HE IMPROVEMENT IN DECIBELS OF JS-RLS RLATIVE TO RLS

k 10 20 50 100 200 500 1000
Xz, = (0,0,0] MSE (dB) | 27.8 196 147 119 891 472 177
Improvement (dB) | 0.1128 0.4448 0.3746 0.0649 -0.0306 -0.0285 0.0076
X = 0.95% MSE (dB) 27.8 19.3 13.8 10.4 7.11 268 -0.177
Iinprovement (dB) | 0.1349 0.7549 1327  1.545 1.764 2006 1957

TABLE VII

PERFORMANCE OFJS-RLSFOR AR(3) MODEL. TRUE PARAMETER X, = [0.2, 0.2, j0.5]’. k 1s THE NUMBER OF DATA PoINTs, MSE (N DECIBELS) Is
10 log o (J5™HL5), aND IMPROVEMENT (IN DECIBELS) Is 10 log, o (IR"/ JJ5™RLS), THE IMPROVEMENT IN DECIBELS OF JS-RLS ReLATIVE TO RLS

k 10 20 50 100 200 500 1000
% = [0,0,0] MSE (aB) | 283 203 150 115 802 373  0.750
Improvement (dB) | 0.0446 -0.0615 -0.2216 -0.1170 -0.0654 -0.0439 -0.0190
X = 0.95x; MSE (dB) 28.2 19.5 13.6 9.71 5.87 1.32 -1.31
Improvement (dB) | 0.1323  0.7064 1.268 1.661 2.087 2.367 2.039

TABLE VIII

PERFORMANCE OFJS-RLSFOR AR(3) MODEL. TRUE PARAMETER X, = [0, 0, 0.9])". k Is THE NUMBER OF DATA PoiNTS, MSE (N DECIBELS) IS
10 log o (5 FLS), AND IMPROVEMENT (IN DECIBELS) IS 10 log, o (IR"/ JIS"RLS), THE IMPROVEMENT IN DECIBELS OF JS-RLS ReLATIVE TO RLS

k 10 20 50 100 200 500 1000
X = [0,0,0}’ MSE (dB) 28.0 19.8 12.1 7.82 3.72 -1.02 -4.65
Improvement {dB) | -0.0246 -0.1488 -0.0911 -0.0729 -0.0448 -0.0260 -0.0171
X = 0.95x; MSE (dB) 27.8 18.9 10.4 6.05 2.18 -1.21 -3.48
Improvement (dB) | 0.1369 0.7072 1.551 1.693 1.499 0.1642  -1.185

TABLE X

PERFORMANCE OFJSYW EQUATIONS. TRUE PARAMETER X, = [0.1, —0.1, —0.2]'. k Is THE NUMBER OF DATA POINTS, MSE (N DECIBELS) IS 10 log ;o (J33Y™),
AND |IMPROVEMENT (IN DECIBELS) Is 10 log (.Iﬁ" \""/JﬁSYW), THE IMPROVEMENT IN MSE oF THE JSYW ESTIMATE OVER THE YW ESTIMATE

k 10 20 50 100 200 500 1000
% =[0,0,0] MSE (dB) | 416 192 144 116 891 485 193
Improvement (dB) | 0.0071 0.5502 0.3203 0.0720 0.0162 -0.0008 0.0096
X = 0.95x MSE (dB) | 416 188 132 101 728 302 0.122
Improvement (dB) | 0.0088 0.8960 1.439 1.593 1.643 1.828  1.822
(Algorithm 2 with A = 1 and« = 0) applied to data generated < If X = 0 (i.e.,, no a priori estimate available), the

by an AR(3) [see (14) with- = 3, ¢ = 0] for three different
parameters are presented in Tables VI-VIII.
We make the following observations (by “improvement”
below, we mean the difference between the MSE of the RLS
estimate and the MSE of the JS-RLS estimate).
o If X = 0 (i.e., Xi not close toxyg), the improvement
in MSE is never less thar0.25 dB and asymptotically

approaches 0 dB.

e If X = 0.95x; (i.e., X; close toxyg), two different
behaviors were observed. For Tables VI and VII, the

improvement in MSE rose sharply to an asymptotic
value of around 2 dB. For Table VIIl, however, the

improvement rose sharply to around 2 dB and then fell

to below —1 dB.

We conclude that the JS-RLS algorithm should be used with
caution if an AR model is present. However, given a gaod
priori estimate, the JS-RLS can outperform the RLS algorithm.

James-Stein Yule—Walker Equations (JSYW)e

aver-

JSYW estimate in general has a larger MSE than the
YW estimate. (Table IX is an exception, but observe that
in this casex is close to 0 as well.) More specifically,
the improvement in Tables X and Xl initially decreases
and then increases toward O dB. Table IX shows the
improvement to be initially positive and increasing, but
after k = 20, it decreases and perhaps oscillates after
k 500.

If X = 0.95x (i.e., accuratea priori estimate avail-

able), the JSYW estimate has a smaller MSE than the

YW estimate. More specifically, the improvement in
Tables IX—XI increases and then decreases as the data
length & is increased.

The JSYW estimate reduces to the YW estimate if the
effective dimension (74) is less than or equal to two.
We observed that for an arbitrary parameter vector

it is quite likely that the effective dimension drops below
two. Therefore, the simulation results we present have
parameters chosen such that the effective dimension is

aged results of 500 independent runs of the JSYW equations above two.

applied to 1000 data points generated by an AR(3) process (68Yhe characteristic of the improvement is that it is either
for three different parameters are presented in Tables IX—Xreatest (i.e., most positive) or worst (i.e., most negative)
We make the following observations (by “improvementfor medium data lengthsk}, depending on whether or not
below, we mean the difference between the MSE of theis close tox. In other words, for medium data lengths, the
Yule—Walker estimate and the MSE of the James-Stei$YW equations rely heavily on (the accuracy ®f)A likely
explanation is that by using the approximation (6), too much

Yule-Walker estimate):



2446 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 9, SEPTEMBER 1998

TABLE X
PERFORMANCE OFJSYW EQUATIONS. TRUE PARAMETER x, = [0.2, 0.2, —0.5]'. k Is THE NUMBER OF DATA PoINTS, MSE (N DECIBELS) Is 10 log,o(J35Y™),
AND |IMPROVEMENT (IN DECIBELS) Is 10 log (.Iﬁ" \""/JﬁSYW), THE IMPROVEMENT IN MSE oF THE JSYW ESTIMATE OVER THE YW ESTIMATE

k 10 20 50 100 200 500 1000

x = [0,0,0f MSE (dB) 39.9 20.0 14.4 11.2 8.09 3.82  0.853
Improvement (dB) | 0.0053 -0.1678 -0.267 -0.1317 -0.0659 -0.0327 -0.0154

X = 0.95x MSE (dB) 39.9 19.0 12.9 9.63 6.42 1.89 -0.772
Improvement (dB) | 0.0171 0.8185  1.272 1.409 1.611 1.893 1.609

TABLE Xl
PERFORMANCE OFJSYW EQUATIONS. TRUE PARAMETER X = [0, 0, 0.9]'. k IS THE NUMBER OF DATA POINTS, MSE (N DECIBELS) IS 10 log 4 (J75YW), AND
IMPROVEMENT (IN DECIBELS) IS 10 logqo (JY W/ JISYW), THE IMPROVEMENT IN MSE OF THE JSYW ESTIMATE OVER THE YW ESTIMATE

E 10 20 50 100 200 500 1000

X =[0,0,0] MSE (dB) 500 305 123 792 359  -156  -4.71
Improvement (dB) | -0.0006 -0.0225 -0.1202 -0.0881 -0.0546 -0.0274 -0.0183

X = 0.95x MSE (dB) 500 305 113 684 268 -1.94 -4.65
Improvement (dB) | 0.0010 0.0443 0.8427 0.9919 0.8496 0.3497 -0.0701

shrinkage occurs. This is most noticable for medikmince of x; [which is determined by the state-space model (29)].
we have the following. Consider forming the covariance matdXt) = tPy,—1 +
« For smallk, the YW estimate has such a large MSE thdtl —)1%;);_, - Using P(1) in the Kalman filter equation corre-
shrinking toward the origin does little harm (i.e., the MSBponds to the ordinary Kalman filter; usidg(0) corresponds
of the JSYW estimate is comparable to the MSE of th® the James—Stein state filter. The former expresses 100%
YW estimate). confidence in the accuracy of the state-space model, and the
 For largek, the YW estimate will on average be closetatter expresses 0%.
thanx is to x. Therefore, the JSYW estimate will rely Heuristically, in situations where the state-space model
more on the YW estimate rather than may vary over time, sometimes being very accurate while
We conclude that the JSYW can, but not always does, gi@é other times inaccurate, the modified Kalman filter with
AR parameter estimates that are better than the standard @yariance matrix”(t) may be used. The determination of

estimates. t is expected to be based &} — x,,_1//* (equivalently,
on ||zx — CrXppr—1||*) as well as any external information
VII. CONCLUSION AND FUTURE RESEARCH that may be available. Clearly, the JSKKBf Section IV-D is

This paper contains three main contributions. The first is tifeSPecial case of this filter, whetds restricted to take values
James—Stein estimator (7) for the linear regression (3), whig@ro or one only.
has a MSE (risk) that never exceeds the MSE (risk) of the
traditional MLE (5) (see Theorem 1). The second contribution
is the James—Stein recursive least squares estimator (Algorithm
2), which recursively estimates the parameters of the ARX This section justifies our choice of (11) ferin the JSE
model (14) and, in certain (quite general) circumstanced0), whereX ~ N(pu, ).
provides a smaller MSE parameter estimate compared with théVithout loss of generality (Remark 3 following Theorem 1),
traditional RLS algorithm. The third and main contribution idet = diag{\, ---, A,} and P = Q~(1/2, We showed in
the James—Stein state filter. The JSSF (Algorithm 3) is a rob&stction II-A that the risk of the estimafgeof the mear given
filter. It gives state estimates with MSE less than the MSE & [where X ~ N(u, )] can be written a{||i — pl|?] =
the traditional MLE applied to the observation equation (30)}_, A, E;, where E; = E[{(Pj); — (Pu);}?] is the risk
alone, regardless of how inaccurate the state-space model @9the jth element ofPj. Since Pii ~ N(Pp, I), E; is the
is. The JSKIg (Algorithm 4) implements the KF and the JSSFisk of the jth element of the mean of a multivariate normal
in parallel using a hypothesis test to determine which stadéstribution with identity covariance matrix
estimate to use. We note that the computational complexityUsing the James—Stein estimate [of which (1) is a special
of the James—Stein algorithms are of the same order as thogise withe = p — 2]
traditional counterparts. - ¢

Future Research:The JSKR (Algorithm 4) essentially Pp= (1 B X’P’PX) X (85)
switches between the KF (32)—(35) and the JSSF (Algorithior Pg, it is not possible to obtain an analytic expression for
3). A natural extension is to replace this “hard decision®;. However, expressions fozle E; are easily computed
switching with a “soft decision” (i.e., continuous) approach7], [24]. In particular, for anyx on the circle of radius
The key idea is in the calculation of the covariance matrix of (i.e., [|pl| = 7), >-%_, E; is a quadratic inc, with its
x; (29). The Kalman filter calculates the covariance matriminimum atc = p — 2. Therefore, the choice (11) corresponds
Py1—1 (66). The James-Stein state filter estimates the covan- minimizing Ele E; subject to the constraint that <
ance matrix byP,fﬁi_]L (59), which we would expect to be2(p*—2). This constraint is a necessary and sufficient condition
typically much larger tharP,;,—,. The larger the covariancefor the JSE (10) to dominate the MLE (see the proof of
matrix, the less emphasis is placed on gheriori distribution Theorem 1).

APPENDIX
JUSTIFICATION OF (11)
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To see the relation betweeEf:1 E; and the true risk [19] H. V. PoorAn Introduction to Signal Detection and Estimati@md ed.
E[lli — pl*] = Y5_, A E;, we define the “normalized” risk . NeW vork: Springer veriag, 1994.

[20] T. Soderstrom and P. Stoic8ystem Identification. Englewood CIiffs,

of the JSE (10) as NJ: Prentice-Hall, 1989.

[21] H. W. Sorenson and D. L. Alspach, “Recursive Bayesian estimation
B using Gaussian sumsAutomatica,vol. 7, pp. 465-479, 1971.
= [22] H. W. Sorenson and A. R. Stubberud, “Non-linear filtering by approx-
(86) imation of thea posterioridensity,” Int. J. Contr.,vol. 18, pp. 33-51,
1968.
A [23] J. L. Speyer, C. Fan, and R. N. Banavar, “Optimal stochastic estimation
J with exponential cost criteria,” iRroc. 31st IEEE Conf. Decision Contr.,
1 Dec. 1992, pp. 2293-2298.

'M@‘ﬂM*

<

J

where the denominatoE? 1)\], is the risk of the MLE [24] C. M. Stein, “Estimation of the mean of a multivariate normal distribu-

~

tion,” Ann. Stat.vol. 9, no. 6, pp. 1135-1151, 1981.

i = X. Note that the normalized risk (86) is a conveXps) w. E. Strawderman, “Proper Bayes minimax estimators of the multi-

combination of theE;’s. Around the eIIips% || Pu|| = » for variate normal mean,Ann. Math. Stat.yol. 42, pp. 385-388, 1971.

some constant, we already mentioned thgC’_, E; is a

26] Y. Theodor and U. Shaked, “Robust discrete-time minimum-variance
filtering,” IEEE Trans. Signal Processingpl. 44, pp. 181-189, Feb.

quadratic inc. On the ellipse, the minimum and maximum 1996.
of (86) lie below and above1/p) r L E; respectively. [27] S. M. Tonissen and A. Logothetis, “Estimation of multiple target
J= ! :

Our choice ofc can therefore be viewed as minimizing some

trajectories with time varying amplitudes,” iRroc. 8th IEEE Signal
Process. Workshop Statist. Signal Array Procedsne 1996, pp. 32-35.

“central” risk (1/p) le E; subject to the constraint that the[2g] A. ullah, “On the sampling distribution of improved estimators for

maximum risk never exceeds that of the MLE. (j:-g(;Tcients in linear regressionJ. Econometr.yol. 2, pp. 143-150,
.V\_/e .remark that_ while _'t may be preferable t(? choes® [29] W. R Wu and A. Kundu, “Recursive filtering with non-Gaussian
minimize the maximum risk (86) around any ellips€p|| = noises,”IEEE Trans. Signal Processingpl. 44, pp. 14541468, June
. i i R 1996.
r, the !aCk. of analytlc expresspns fo.r _thgf s makes the [30] L. Xie, Y. C. Soe, and C. E. de Souza, “Robust Kalman filtering for
determination of such a exceedingly difficult. uncertain discrete-time system$£EE Trans. Automat. Contryol. 39,
pp. 1310-1314, 1994.
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