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ABSTRACT

Numerical minimisation of a cost function on Euclidean
space is a well studied problem. Sometimes though, the
most appropriate formulation of an optimisation problem is
not in Euclidean space, but rather, it is required to minimise
a cost function defined on a (not necessarily Riemannian)
manifold. A natural question is how best to generalise ex-
isting optimisation algorithms to the manifold setting. This
paper reviews and draws connections between existing tech-
niques. It also proposes several new ideas. These ideas are
in their infancy; they are intended to motivate further re-
search in this area.

1. INTRODUCTION

Practical problems requiring the numerical optimisation of
a cost function defined on a manifold can be found in [3,
4, 14, 17, 21, 23, 26, 27], to name just a few. Numerical
optimisation on manifolds though is a relatively recent re-
search area; while two early papers are [8, 13], its appear-
ance in the signal processing literature, for instance, is only
recent [7, 18].

Since the “optimisation on manifold” problem is a gen-
eralisation of the “optimisation on Euclidean space” prob-
lem, the natural question is how to generalise the wealth of
algorithms for the latter problem to the former. The moti-
vation for this paper is the fact that there is more than just
a single sensible way of generalising standard optimisation
algorithms, such as the Newton method [25], to the mani-
fold setting.

The modest aims of this paper are to

• summarise and draw connections between numerical
optimisation on manifold algorithms;

• state new ways of generalising Euclidean based algo-
rithms to the manifold setting;
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• give a qualitative assessment of when one generalisa-
tion should be preferred over another.

For brevity, the focus will be on Newton methods.
The remainder of this section states the requisite back-

ground ideas and notation. Section 2 explains why there
is more than one way to generalise the Newton algorithm
to the manifold setting. The ideas appearing there are also
useful to keep in mind when comparing various algorithms.
Section 3 outlines what is called here the Riemannian ap-
proach, and is the approach appearing in [7], for instance.
A more general approach is presented in Section 4, which
helps place the Riemannian approach in perspective. Sec-
tion 5 propounds a novel generalisation which is in its in-
fancy. Section 6 briefly discusses the case when the mani-
fold has extra “symmetrical” structure while, for complete-
ness, Section 7 indicates the challenges that lie ahead for
extending quasi-Newton methods to manifolds.

Originally, a manifoldM was defined to be a subset of
Rn which was well behaved (smooth) in some sense, such
as a sphere. Such a setM ⊂ Rn is now called aconcrete
manifold, to distinguish it from the apparently more general
concept of anabstract manifold. While the Whitney em-
bedding theorem implies that every abstract manifold can
be realised as a concrete manifoldM ⊂ Rn for sufficiently
largen, it is often more appropriate (such as in this paper)
to think of an abstract manifold as just that, rather than think
of it as being embedded inRn.

The formal definition of a manifold is beyond the scope
of this paper. (Standard references include [2, 10, 30].) The
key property we require of a manifold1 M though is that
about any pointp ∈ M , there exists a diffeomorphism be-
tween a neighbourhood ofp in M and a neighbourhood of
the origin inRn, wheren is the dimension of the manifold.
This is typically expressed by saying that locally a manifold
looks likeRn.

The specific problem this paper investigates is: Given a
manifoldM and a class of cost functionsΩ, where every
elementf ∈ Ω is a smooth function fromM to R, develop

1Throughout, we implicitly assume all manifolds are connected.



a numerical algorithm which takes as input an elementf of
Ω and returns a pointp ∈ M which is a local minimum of
the functionf : M → R.

Optimisation on manifold problems arise in two ways.
One way is that the constrained optimisation problem of
minimisingf(x) subject tog(x) = 0, wheref : Rn → R
andg : Rn → Rm, can naturally be thought of as an op-
timisation on manifold problem provided the constraint set
M = {x ∈ Rn : g(x) = 0} forms a manifold. The second
way is that a practical problem may already be of the cor-
rect form. For instance, the Grassmann manifoldGr(m,n)
is the collection of allm dimensional subspaces ofRn. In
signal processing, a number of problems require finding a
particular subspace (say, the signal subspace or the noise
subspace), and can be posed as minimising a cost function
defined on the Grassmann manifold. Note that the Grass-
mann manifold is an abstract manifold; although it can be
embedded inRp for sufficiently largep (as can all mani-
folds), such an embedding is not required in its definition.

Manifolds can be endowed with extra structure. If an
inner product is assigned to each tangent plane in a suffi-
ciently smooth way (called a metric structure), the mani-
fold becomes a Riemannian manifold [12, 24]. A mani-
fold which has a compatible group structure is called a Lie
group [9, 30]. As will be seen later, this extra structure
can suggest ways of generalising optimisation algorithms
to such manifolds. It should not be forgotten though that
unless the class of cost functions is somehow related to this
extra structure, there is no compelling reason to make use
of this structure.

2. GENERALISING THE NEWTON METHOD

Given a cost functionf : Rn → R, the Newton iteration is

xk+1 = xk − [f ′′(xk)]−1
f ′(xk) (1)

where prime denotes differentiation.
The Newton iteration enjoys the following properties,

the first of which is explained in greater detail below.

1. Invariance to affine transformations.

2. Convergence in a single iteration for quadratic func-
tions.

3. Locally quadratic rate of convergence to a local min-
imum in general.

4. Requires only knowledge up to second order of the
function at the current point.

5. Given by the iteration in (1).

Invariance to affine transformations means the follow-
ing. Letg : Rn → Rn be an arbitrary invertible affine trans-
formation (that is,g(x) = Ax+b for some non-singular ma-
trix A and vectorb). If (1) generates the sequence{xk}∞k=0

when applied tof , then when applied tof ◦ g, it generates
the sequence

{
g−1(xk)

}∞
k=0

.
Although the author has not seen this stated anywhere

else, it seems natural to define a generalisation of the New-
ton method to the manifold setting to be any algorithm on
a manifold which preserves some of the above properties.
Note that in general, it is not possible to preserve all the
properties at once. Moreover, since affine transformations
and quadratic functions are not defined on an arbitrary man-
ifold, these properties need to be generalised to a manifold
setting before an algorithm with these properties can be de-
veloped. Finally, note that quite clearly, Property 3 is an
essential property if the algorithm is to be useful.

3. THE RIEMANNIAN APPROACH

One fairly typical approach to the optimisation on manifold
problem, such as taken in [7], is first to endow the manifold
with a metric structure, thus making it into a Riemannian
manifold. Whereas the gradient and Hessian of a function
on a manifold is not defined, these concepts make sense on a
Riemannian manifold. Moreover, the idea of a straight line
in Euclidean space is generalised to that of a geodesic on a
Riemannian manifold.

The Newton iterate (1) can be thought of as computing
xk+1 by starting atxk and moving in a straight line in the
direction given by the vector− [f ′′(xk)]−1

f ′(xk).
Based on this line of reasoning, the Newton method on

a Riemannian manifold is to retain (1) as the iteration, but
with f ′(·) andf ′′(·) replaced by the Riemannian gradient
and Hessian of the cost function, and withxk+1 computed
by starting atxk and moving along a geodesic rather than a
straight line.

Referring to Section 2, this algorithm maintains Proper-
ties 3 and 4, and in the sense explained above, Property 5
too.

The author’s opinion is that, from a theoretical perspec-
tive, this approach makes the most sense only when the cost
function itself is somehow related to the Riemannian geom-
etry. An example of this is if the cost function is defined
in terms of the induced distance function on the Rieman-
nian manifold, such as if it was required to find the center
of mass [11] of a collection of points on a Riemannian man-
ifold [20, 19].

The best situation is if the cost function is convex with
respect to the Riemannian geometry [29], in which case this
Riemannian generalisation of the Newton algorithm can be
expected to be globally convergent.

In practice, if the cost function is not related to the Rie-



mannian geometry, other generalisations of the Newton al-
gorithm may well be better. Here, an algorithm is defined
to be better if it requires fewer (floating point) operations to
achieve the same accuracy. One potential disadvantage of
the Riemannian approach is that geodesics are often expen-
sive to compute.

4. THE VARYING PARAMETERISATION
APPROACH

On an arbitrary manifold, the only structure that is available
is that about any point, the manifold locally looks likeRn.
Therefore, the following general framework was proposed
in [18].

Given ann dimensional abstract manifoldM , define be-
forehand, for every pointp ∈ M , a distinguished parame-
terisationφp : Rn → M such thatφp(0) = p andφp is a
diffeomorphism onto its image. (In a more general setting,
it is possible to take the range ofφp to be an open subset of
Rn but this is not considered here for simplicity.)

A Newton iterate onM can then be defined as follows:
At the current pointxk, consider the local cost functionf ◦
φxk

about the origin. (Recallφxk
(0) = xk.) Since the local

cost function maps fromRn to R, a single Newton iterate
(1) can be applied to it, thus moving from the origin to a
new point, call itz ∈ Rn. The next pointxk+1 is defined to
bexk+1 = φxk

(z).
To define a particular Newton method, it is necessary to

specify the choice of parameterisationsφp. Some possible
choices are given below. First though, it is noted that the
Riemannian approach of Section 3 is in fact a special case
of this more general framework. It corresponds to choosing
φp to be the inverse of normal coordinates about the point
p.

If the manifold is an abstract manifold then the very def-
inition of it may already be described in terms of parame-
terisations (or their inverses, coordinate charts), and hence
there is often at least one sensible (if not natural) choice of
parameterisations to use.

Alternatively, an abstract manifold (such as the Grass-
mann manifold) can be specified as the quotient of a con-
crete manifold with a group action. In such cases, if a sen-
sible set of parameterisations for the concrete manifold is
given, it is often possible to extract from each parameterisa-
tion a parameterisation for the abstract manifold. (Such an
approach was done in [18], where a parameterisation of the
Grassmann manifold was determined in a natural way from
the parameterisation of the Stiefel manifold.)

Given a concrete manifold, one way of choosing the pa-
rameterisationsφp is to make use of the Euclidean (or other)
projection operator in the ambient space. (This doesnot re-
sult in an algorithm similar to the well-known “projection
Newton methods” in the constrained optimisation literature,

such as found in [25].) This works as follows. At a pointp,
consider the tangent spaceTpM of the manifoldM . Since
M ⊂ Rn is a concrete manifold, its tangent spaceTpM
can be realised as ad-dimensional plane inRn, whered is
the dimension of the manifold. Chooseψp : Rd → Rn

to be a parameterisation ofTpM , with ψp(0) = p. Define
π : Rn → M ⊂ Rn to be some projection operator, such
as the Euclidean projection2 operator, ontoM . Then, define
the parameterisationsφp : Rd →M by φp(z) = π(ψp(z)).
This method was used in [18] to construct parameterisations
for the Stiefel manifold.

The question of which family of parameterisationsφp

is best is a fundamental question. While finding the best
parameterisation appears intractable for all but trivial exam-
ples, it is straightforward to explain intuitively which pa-
rameterisations are good. Indeed, the Euclidean Newton
algorithm converges in a single iteration when applied to
a quadratic cost function, and one can expect that it con-
tinues to converge quickly when applied to approximately
quadratic functions, that is, functions with negligible coeffi-
cients in the third and higher order terms of their Taylor se-
ries. (This can be made precise by using the results in [1].)
Therefore, given the cost functionf , the bestφp to use is
the one for which the local cost functionf ◦ φp is as close
to quadratic as possible.

Usually, trying to chooseφp to makef ◦ φp approx-
imately quadratic is harder than solving the original opti-
misation problem. Moreover, it cannot be done offline be-
cause, as stated in Section 1, the optimisation algorithm
doesn’t know the functionf beforehand, it only knows that
f comes from a classΩ. In general, there will not existφp

such thatf ◦ φp is approximately quadratic for allf ∈ Ω.
Therefore, given thatφp cannot be chosen simply on the

basis of hoping to achieve fast global convergence, a more
pragmatic approach is to chooseφp so as to minimise the
computational effort per iteration. This computational effort
includes evaluatingf ◦ φp and its first two derivatives, and
often, this computational burden is quite high.

To summarise, the choice ofφp depends on the mani-
fold itself as well as on the class of cost functionsΩ likely
to be encountered. UnlessΩ has special properties which
can be exploited, it is recommended to chooseφp to try to
minimise the computational burden per iteration.

Referring to Section 2, this general framework yields
algorithms satisfying Properties 3 and 4. (The author hopes
to publish in the near future a “universal convergence proof”
which shows that provided the parameterisationsφp vary
smoothly withp, the resulting Newton algorithm achieves
local quadratic convergence.)

Although the framework described in this section is gen-

2For the Euclidean projection to be well-defined everywhere, the mani-
fold M should be closed. Now, ifM is not closed, the original optimisation
problem may not have a solution!



eral enough to encompass all the published optimisation on
manifold algorithms the author is aware of, it does not nec-
essarily include the new approach suggested in the next sec-
tion.

5. THE FUNCTION MATCHING APPROACH

Whereas all useful Newton algorithms have an asymptoti-
cally quadratic rate of convergence, their global behaviour
is often hard to determine. In special cases though, such as
if the cost function is convex, the Newton method is known
to be globally convergent. This section introduces an idea
which is aimed at improving the global properties of a New-
ton algorithm for non-convex problems.

The Newton iterate (1) converges in a single iteration if
the cost functionf is quadratic (Property 2 in Section 2) by
design; (1) is derived by approximatingf about the point
xk by a quadratic function and then moving to the critical
point of that function.

Property 2 cannot carry over directly to arbitrary mani-
folds because it is not possible to define a quadratic function
in general. However, the following generalisation of Prop-
erty 2 can be carried over.

Let Θ denote a set of functions on the manifold. In the
Euclidean case,Θ could be the set of all quadratic func-
tions. The generalised Newton iterate is defined roughly as
follows: When at the pointxk, first find a functiong ∈ Θ
which “best” approximates the cost function and then set
xk+1 to be the minimum ofg. To recover the standard New-
ton iterate, “best” is defined as requiring the second order
Taylor series about the pointxk of the cost function and of
the approximantg to match.

On an arbitrary manifold, there are two choices to be
made; the choice of approximantsΘ and the method used
to find the best approximant about any given point. How to
do this is the subject of current research and will be reported
on elsewhere. The author currently believes though that it
is the generalisation of Property 2 in Section 2 which is the
key to designing Newton algorithms with desirable global
performance.

6. LIE GROUPS AND HOMOGENEOUS SPACES

In the Euclidean setting, the affine invariance property of the
Newton method (Property 1 in Section 2) is desirable be-
cause Euclidean space “looks the same” regardless of what
affine transformation has been applied to it. In other words,
changing the coordinate system in an affine way should not
affect the performance of the algorithm. (Here, of course, it
is assumed that the cost function is somehow related to the
Euclidean structure, such as if the cost function represents
some real life quantity. Otherwise, as stated at the end of

Section 1, there is no compelling reason to make use of the
Euclidean structure.)

Lie groups and homogeneous spaces [2] are two types of
manifolds with extra structure. This extra structure means
the space about any two points looks the same, at least lo-
cally. Therefore, it is sensible to consider generalised New-
ton algorithms which are invariant to the appropriate struc-
ture on these spaces. This has been done in [15, 16, 22].

It is remarked though that in all cases the author is aware
of, the resulting Newton algorithm can be written in the
form described in Section 4. Therefore, designing Newton
algorithms with certain invariance properties is equivalent
to choosing a set of parameterisationsφp which preserve
the symmetrical structure. (Roughly speaking,φp must map
the action of the affine group onRn onto the relevant group
action on the manifold, the relevant group action being the
one we want the Newton method to be invariant to.)

7. QUASI-NEWTON METHODS

Quasi-Newton methods [5, 6, 28] build up an approximation
to the Hessian over successive iterations. They are therefore
computationally less expensive than a Newton method, and
have super-linear convergence rather than quadratic conver-
gence locally.

Whereas the Newton iterate (1) only uses information
at the pointxk to calculatexk+1, a quasi-Newton method
implicitly uses information atxk−1, xk−2, · · · too. In the
Euclidean setting, if the Hessian of a function at a pointx is
H, a reasonable approximation to the Hessian of the func-
tion at a neighbouring point is againH. Because a mani-
fold twists and turns though, this is not true for a general
manifold. (Recall too that a Riemannian structure is needed
before the Hessian of a function can be defined.)

Quasi-Newton methods have been extended to Rieman-
nian manifolds in [8]. On Riemannian manifolds, there is
such a thing as parallel transport, and this is what is used
to adjust information obtained atxk−1, xk−2, · · · so that it
becomes relevant atxk.

However, as stated earlier, unless the cost function is re-
lated to the Riemmanian geometry, it is usually preferable
to develop an optimisation algorithm which uses only the
manifold structure and not the extra Riemannian structure.
While there are a number of ways this can be done, the au-
thor is not aware of any published papers in this area.

8. CONCLUSION

Comparisons between optimisation on manifold techniques
in the literature have been made and several new ideas pro-
pounded. It is hoped these new ideas will motivate further
research in this area.
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