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ABSTRACT e give a qualitative assessment of when one generalisa-

Numerical minimisation of a cost function on Euclidean tion should be preferred over another.

space is a well studied problem. Sometimes though, t.heFor brevity, the focus will be on Newton methods,

most appropriate formulation of an optimisation problem is The remainder of this section states the requisite back-

not in Euclidean space, but rather, it is required to minimise . ; : )
: . . ) .~ ground ideas and notation. Section 2 explains why there
a cost function defined on a (not necessarily Riemannian): . .
is more than one way to generalise the Newton algorithm

manifold. A natural question is how best to generalise ex- : . : .
isting optimisation algorithms to the manifold setting. This to the manifold setting. The ideas appearing there are also
g op 9 9. useful to keep in mind when comparing various algorithms.

aper reviews and draws connections between existing tech< . . . . .
bap . ng Section 3 outlines what is called here the Riemannian ap-
nigues. It also proposes several new ideas. These ideas ar

in their infancy; they are intended to motivate further re- Eroach, and is the approaqh appearing in [71, for mstanpe.
search in this area A more general approach is presented in Section 4, which
) helps place the Riemannian approach in perspective. Sec-
tion 5 propounds a novel generalisation which is in its in-
1. INTRODUCTION fancy. Section 6 briefly discusses the case when the mani-
_ . i o fold has extra “symmetrical” structure while, for complete-
Practical problems requiring the numerical optimisation of ness, Section 7 indicates the challenges that lie ahead for
a cost function defined on a manifold can be found in [3, extending quasi-Newton methods to manifolds.
4, 14,17, 21, 23, 26, 27], to name just a few. Numerical  yiginally, a manifoldd was defined to be a subset of
optimisation on manifolds though is a relatively recent re- pn \vhich was well behaved (smooth) in some sense, such
searc_h area;_while two ea_rly papers are [8,_ 13], its appear-,g 4 sphere. Such a set ¢ R” is now called aconcrete
ance in the signal processing literature, for instance, is Onlymanifold to distinguish it from the apparently more general
recent [7, 18]. concept of ambstract manifold While the Whitney em-

Since the “optipisgtign on manifold” problem is ag€N- hedding theorem implies that every abstract manifold can
eralisation of the “optimisation on Euclidean space” prob- pq ealised as a concrete manifdld c R™ for sufficiently

lem, the natural question is how to generalise the wealth Oflargen, it is often more appropriate (such as in this paper)

algorithms for the latter problem to the former. The moti- 4 think of an abstract manifold as just that, rather than think
vation for this paper is the fact that there is more than just ¢ i o being embedded R".

a single sensible way of generalising standard optimisation  the formal definition of a manifold is beyond the scope

algorithms, such as the Newton method [25], to the mani- ot thig paper. (Standard references include [2, 10, 30].) The
fold setting. , _ key property we require of a manifdid/ though is that
The modest aims of this paper are to about any poinp € M, there exists a diffeomorphism be-
e summarise and draw connections between numericaltween a neighbourhood efin A/ and a neighbourhood of
optimisation on manifold algorithms; the origin inR™, wheren is the dimension of the manifold.
This is typically expressed by saying that locally a manifold
e state new ways of generalising Euclidean based algo-|goks like R".
rithms to the manifold setting; The specific problem this paper investigates is: Given a
Invited paper presented at MTNS 2004 in KU Leuven, Belgium. This manifold M and a class of cost function, where every

work was supported by the Australian Research Council and the ARC elementf € 2 is a smooth function frond/ to R, develop
Special Research Centre for Ultra-Broadband Information Networks (CU-
BIN). 1Throughout, we implicitly assume all manifolds are connected.




a numerical algorithm which takes as input an elemfeot Invariance to affine transformations means the follow-
Q and returns a point € M which is a local minimum of  ing. Letg : R™ — R™ be an arbitrary invertible affine trans-
the functionf : M — R. formation (thatisg(z) = Az+b for some non-singular ma-
Optimisation on manifold problems arise in two ways. trix A and vectow). If (1) generates the sequenge; } .-,
One way is that the constrained optimisation problem of when applied tof, then when applied t¢ o g, it generates
minimising f(z) subject tog(x) = 0, wheref : R* — R the sequencég (zx)},_,-
andg : R” — R™, can naturally be thought of as an op- Although the author has not seen this stated anywhere
timisation on manifold problem provided the constraint set else, it seems natural to define a generalisation of the New-
M = {z e R": g(z) = 0} forms a manifold. The second ton method to the manifold setting to be any algorithm on
way is that a practical problem may already be of the cor- a manifold which preserves some of the above properties.
rect form. For instance, the Grassmann manifétdm, n) Note that in general, it is not possible to preserve all the
is the collection of alln dimensional subspaces Bf*. In properties at once. Moreover, since affine transformations
signal processing, a number of problems require finding aand quadratic functions are not defined on an arbitrary man-
particular subspace (say, the signal subspace or the noisdold, these properties need to be generalised to a manifold
subspace), and can be posed as minimising a cost functiorsetting before an algorithm with these properties can be de-
defined on the Grassmann manifold. Note that the Grass-veloped. Finally, note that quite clearly, Property 3 is an
mann manifold is an abstract manifold; although it can be essential property if the algorithm is to be useful.
embedded ifR? for sufficiently largep (as can all mani-
folds), such an embedding is not required in its definition.
Manifolds can be endowed with extra structure. If an

|r_mer| producthls a55|gn(|a|d Jo each tangent plane in a suffi-g g tairly typical approach to the optimisation on manifold
?'Ie;tby smooth way (called a metr_:cclztructure), the mani- o oniem, such as taken in [7], is first to endow the manifold
olc becomes a R|eman_n|an manifold [12, 2_4]' A mani- \ith a metric structure, thus making it into a Riemannian
fold which has a compatible group structure is called a Lie ,5hitolq. Whereas the gradient and Hessian of a function
group [9, 30]. As will be seen later, this extra structure ., 5 manifold is not defined, these concepts make sense on a
can suggest ways of generalising optimisation algorithms piemannian manifold. Moreover, the idea of a straight line
to such manifolds. It should not be forgotten though that j, g\ \cjigean space is generalised to that of a geodesic on a
unless the class of cost functions is somehow related to th'SRiemannian manifold
extra structure, there is no compelling reason to make use The Newton iterate (1) can be thought of as computing
of this structure x11 by starting atz;, and moving in a straight line in the
direction given by the vector [f”(xk)]_l 1 (xr).

2. GENERALISING THE NEWTON METHOD Based on this line of reasoning, the Newton method on
a Riemannian manifold is to retain (1) as the iteration, but

Given a cost functiorf : R" — R, the Newton iterationis ~ With f’(-) and f”(-) replaced by the Riemannian gradient
and Hessian of the cost function, and with,; computed

3. THE RIEMANNIAN APPROACH

Thi1 = T — [fu(xk)]fl (1) @) by ;tarnr_mg atr;, and moving along a geodesic rather than a
straight line.
where prime denotes differentiation. _ Referring to Se_ction 2, this algorit_hm maintains Proper-
ties 3 and 4, and in the sense explained above, Property 5

The Newton iteration enjoys the following properties,

the first of which is explained in greater detail below. too.

The author’s opinion is that, from a theoretical perspec-
1. Invariance to affine transformations. tive, this approach makes the most sense only when the cost
function itself is somehow related to the Riemannian geom-
2. Convergence in a single iteration for quadratic func- €try. An example of this is if the cost function is defined
tions. in terms of the induced distance function on the Rieman-
nian manifold, such as if it was required to find the center
3. Locally quadratic rate of convergence to a local min- 0f mass [11] of a collection of points on a Riemannian man-
imum in general. ifold [20, 19].
The best situation is if the cost function is convex with
4. Requires only knowledge up to second order of the respect to the Riemannian geometry [29], in which case this
function at the current point. Riemannian generalisation of the Newton algorithm can be
expected to be globally convergent.
5. Given by the iteration in (1). In practice, if the cost function is not related to the Rie-



mannian geometry, other generalisations of the Newton al-such as found in [25].) This works as follows. At a pajint
gorithm may well be better. Here, an algorithm is defined consider the tangent spagg/ of the manifold}M . Since
to be better if it requires fewer (floating point) operationsto M C R™ is a concrete manifold, its tangent spaGg\/
achieve the same accuracy. One potential disadvantage ofan be realised as&dimensional plane ifR”, whered is
the Riemannian approach is that geodesics are often experthe dimension of the manifold. Choosg, : R? — R"
sive to compute. to be a parameterisation @f, A/, with +,(0) = p. Define
m: R* — M C R" to be some projection operator, such
as the Euclidean projectiéoperator, ontd/. Then, define
the parameterisations, : RY — M by ¢,,(2) = 7(¢,(2)).
This method was used in [18] to construct parameterisations
for the Stiefel manifold.

The question of which family of parameterisatiops
is best is a fundamental question. While finding the best
parameterisation appears intractable for all but trivial exam-
ples, it is straightforward to explain intuitively which pa-
rameterisations are good. Indeed, the Euclidean Newton
algorithm converges in a single iteration when applied to
a quadratic cost function, and one can expect that it con-
tinues to converge quickly when applied to approximately
guadratic functions, that is, functions with negligible coeffi-
cients in the third and higher order terms of their Taylor se-
ries. (This can be made precise by using the results in [1].)
Therefore, given the cost functiofy the bestp, to use is
the one for which the local cost functigho ¢, is as close
to quadratic as possible.

Usually, trying to choosey, to make f o ¢, approx-
imately quadratic is harder than solving the original opti-
misation problem. Moreover, it cannot be done offline be-

specify the choice of parameterisations Some possible cause, as stated in S_ection 1, the op_timisation algorithm
. . . _ doesn’t know the functiorf beforehand, it only knows that

choices are given below. First though, it is noted that the comes from a clas®. In general, there will not exist

Riemannian approach of Section 3 is in fact a special casef h that : o gt | ' dratic f 0 P

of this more general framework. It corresponds to choosing such thatf o ¢, is approximately quadratic for afl € €2.

¢, 10 be the inverse of normal coordinates about the point Thereforg, given th'.ﬁp cannot be chosen simply on the
» basis of hoping to achieve fast global convergence, a more

If the manifold is an abstract manifold then the very def- pragmatic approach is 0 chqo&g S0 as to minimise the
computational effort per iteration. This computational effort

inition of it m Ir ri in terms of parame- . . o S
t_o 0 t may al e_ady be desc b_ed terms of parame includes evaluating o ¢,, and its first two derivatives, and
terisations (or their inverses, coordinate charts), and hence

there is often at least one sensible (if not natural) choice ofOfte;]’ this computaur(])nalhbgrden |sdqu|te glgh' h .
parameterisations to use. 0 summarise, the choice ¢f, depends on the mani-

Alternatively, an abstract manifold (such as the Grass- IOI% ltself as V,\[’e” 25 ?Jn Ithgs(;:ass of cpslt funcﬂc{pgkelr)]/. h
mann manifold) can be specified as the quotient of a con- 0 be encountered. LUniesshas special properties whic

crete manifold with a group action. In such cases, if a sen-an be exploited, it is recommended to chodgdo try to

sible set of parameterisations for the concrete manifold is mlnlmlfse Fhe computgtlonal ?:_eren per ||t$rat|on. K vield
given, itis often possible to extract from each parameterisa- _ R_eherrlng to Section 2, this gen((ajra ralznewoL y;]e S
tion a parameterisation for the abstract manifold. (Such an&/90rithms satisfying Properties 3 and 4. (The author hopes

approach was done in [18], where a parameterisation of thel© publish in the near future a “universal convergence proof

Grassmann manifold was determined in a natural way from "hich shows that provided the parameterisatiopsvary
the parameterisation of the Stiefel manifold.) smoothly withp, the resulting Newton algorithm achieves

Given a concrete manifold, one way of choosing the pa- local quadratic convergence.)

4. THE VARYING PARAMETERISATION
APPROACH

On an arbitrary manifold, the only structure that is available
is that about any point, the manifold locally looks like& .
Therefore, the following general framework was proposed
in [18].

Given ann dimensional abstract manifold’, define be-
forehand, for every poing € M, a distinguished parame-
terisationg, : R" — M such thatp,(0) = p andg, is a
diffeomorphism onto its image. (In a more general setting,
it is possible to take the range ¢f to be an open subset of
R™ but this is not considered here for simplicity.)

A Newton iterate onV/ can then be defined as follows:
At the current pointry, consider the local cost functigho
¢, about the origin. (Recal,, (0) = zy.) Since the local
cost function maps fronR™ to R, a single Newton iterate
(1) can be applied to it, thus moving from the origin to a
new point, call itz € R™. The next pointy 1 is defined to
bexii1 = ¢z, (2).

To define a particular Newton method, it is necessary to

rameterisationg,, is to make use of the Euclidean (or other)
projection operator in the ambient space. (This duege-
sult in an algorithm similar to the well-known “projection
Newton methods” in the constrained optimisation literature,

Although the framework described in this section is gen-

2For the Euclidean projection to be well-defined everywhere, the mani-
fold M should be closed. Now, it/ is not closed, the original optimisation
problem may not have a solution!



eral enough to encompass all the published optimisation onSection 1, there is no compelling reason to make use of the
manifold algorithms the author is aware of, it does not nec- Euclidean structure.)
essarily include the new approach suggested in the next sec- Lie groups and homogeneous spaces [2] are two types of
tion. manifolds with extra structure. This extra structure means
the space about any two points looks the same, at least lo-
cally. Therefore, it is sensible to consider generalised New-
ton algorithms which are invariant to the appropriate struc-
ture on these spaces. This has been done in [15, 16, 22].
Itis remarked though that in all cases the author is aware
of, the resulting Newton algorithm can be written in the
Yorm described in Section 4. Therefore, designing Newton
algorithms with certain invariance properties is equivalent
to choosing a set of parameterisatiafis which preserve
the symmetrical structure. (Roughly speakipgmust map

5. THE FUNCTION MATCHING APPROACH

Whereas all useful Newton algorithms have an asymptoti-
cally quadratic rate of convergence, their global behaviour

if the cost function is convex, the Newton method is known
to be globally convergent. This section introduces an idea
which is aimed at improving the global properties of a New-

ton algorithm for_non-convex problem_s. ) . ... the action of the affine group dR™ onto the relevant group
The Newton iterate (1) converges in a single iteration if 5¢tion on the manifold, the relevant group action being the
the cost functiory is quadratic (Property 2 in Section 2) by 56 \ye want the Newton method to be invariant to.)
design; (1) is derived by approximatingabout the point
x;, by a quadratic function and then moving to the critical
point of that function. 7. QUASI-NEWTON METHODS
Property 2 cannot carry over directly to arbitrary mani-
folds because it is not possible to define a quadratic functionQuasi-Newton methods [5, 6, 28] build up an approximation
in general. However, the following generalisation of Prop- to the Hessian over successive iterations. They are therefore
erty 2 can be carried over. computationally less expensive than a Newton method, and
Let © denote a set of functions on the manifold. In the have super-linear convergence rather than quadratic conver-
Euclidean case® could be the set of all quadratic func- gence locally.
tions. The generalised Newton iterate is defined roughly as  Whereas the Newton iterate (1) only uses information
follows: When at the poing, first find a functiong € © at the pointzy, to calculater;,,, a quasi-Newton method
which “best” approximates the cost function and then set implicitly uses information at;,_1, zx_2,--- t00. In the
Zr1 to be the minimum of. To recover the standard New- Euclidean setting, if the Hessian of a function at a poirg
ton iterate, “best” is defined as requiring the second order H, a reasonable approximation to the Hessian of the func-
Taylor series about the poin, of the cost function and of  tion at a neighbouring point is agafi. Because a mani-
the approximang to match. fold twists and turns though, this is not true for a general
On an arbitrary manifold, there are two choices to be manifold. (Recall too that a Riemannian structure is needed
made; the choice of approximar@sand the method used before the Hessian of a function can be defined.)
to find the best approximant about any given point. How to Quasi-Newton methods have been extended to Rieman-
do this is the subject of current research and will be reportednian manifolds in [8]. On Riemannian manifolds, there is
on elsewhere. The author currently believes though that itsuch a thing as parallel transport, and this is what is used
is the generalisation of Property 2 in Section 2 which is the to adjust information obtained a{,_1, zx_2,--- So that it
key to designing Newton algorithms with desirable global becomes relevant aj.
performance. However, as stated earlier, unless the cost function is re-
lated to the Riemmanian geometry, it is usually preferable
to develop an optimisation algorithm which uses only the
manifold structure and not the extra Riemannian structure.

) ) o ) While there are a number of ways this can be done, the au-
Inthe Euclidean setting, the affine invariance property of the iy is not aware of any published papers in this area.
Newton method (Property 1 in Section 2) is desirable be-

cause Euclidean space “looks the same” regardless of what

affine transformation has been applied to it. In other words, 8. CONCLUSION

changing the coordinate system in an affine way should not

affect the performance of the algorithm. (Here, of course, it Comparisons between optimisation on manifold techniques
is assumed that the cost function is somehow related to then the literature have been made and several new ideas pro-
Euclidean structure, such as if the cost function representspounded. It is hoped these new ideas will motivate further
some real life quantity. Otherwise, as stated at the end ofresearch in this area.

6. LIE GROUPS AND HOMOGENEOUS SPACES
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