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Abstract

Discrete optimisation problems arise naturally in wireless communications because the
source symbols come from a finite alphabet. However, solving these discrete optimisation
problems optimally is often computationally too expensive to be implemented in practice.
This paper presents a fast sub-optimal algorithm, named “Fisher Information Decision Di-
rected Quantisation”, for solving a broad class of discrete optimisation problems. This
algorithm is applied successfully to three problems of increasing complexity: integer linear
regression, source symbol estimation in precoded transmissions and joint source and channel
estimation in precoded transmissions.

1 Introduction

Optimally estimating the source symbols in a wireless communications system is an example of
a discrete optimisation problem whose solution often cannot be computed in practice due to the
high computational cost involved. It is therefore important to devise sub-optimal solutions which
strike a satisfactory balance between accuracy and computational cost. This paper proposes a
novel method for finding a sub-optimal solution to a wide class of discrete optimisation problems
in signal processing. The method is called “Fisher Information Decision Directed Quantisation”
because it uses the Fisher Information Matrix2 to determine the best sequence in which to
estimate the discrete parameters.

The idea behind the proposed method is now explained by way of example. Consider the
integer linear regression problem of estimating the integer valued vector s given the observed
vector y defined by y = As + n where A is a (square or tall) real valued matrix and n denotes
additive noise (a random variable). The optimal (least-squares) solution is to find the integer
valued vector ŝ which minimises ‖y − Aŝ‖2. This can be computed using the algorithm in [1]
and, in the context of communication systems, is referred to as sphere decoding. A very simple
sub-optimal solution, but one often used in practice, is to compute the optimal solution ŝ =
(A′A)−1

A′y of the non-integer-constrained linear regression problem and then quantise the
elements of ŝ, thus forcing them to be integer valued. (Throughout, a prime is used to denote
matrix transpose or complex-conjugate transpose, whichever is appropriate.)

1This work was supported by the Australian Research Council, the Special Research Centre for Ultra-
Broadband Information Networks (CUBIN) and the Cooperative Research Centre for Sensor Signal and Informa-
tion Processing (CSSIP). Presented at International Conference on Optimisation Theory and Applications, Hong

Kong, December 2001.
2However, the method extends to deterministic problems for which the FIM is not defined; see Section 2.3.
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The novel Fisher Information Decision Directed Quantisation method lies between these two
extremes; although it is not optimal, it has a low computational complexity and it often produces
significantly more accurate estimates than the popular per-symbol quantisation method. The
basic idea behind the method is as follows. Consider the non-integer-constrained solution

ŝ =
(
A′A

)
−1

A′y

= s +
(
A′A

)
−1

A′n. (1)

Due to the factor (A′A)−1
A′, certain elements of the error vector (A′A)−1

A′n are likely to be
larger, on average, than other elements. Indeed, if E[n] = 0 and E[nn′] = I (the identity
matrix) then the error covariance matrix is

E

[((
A′A

)
−1

A′n
) ((

A′A
)
−1

A′n
)
′

]
=

(
A′A

)
−1

(2)

showing that if the ith diagonal element of (A′A)−1 is the smallest diagonal element then the
ith element of s is the one which can be estimated most accurately3; note that the Fisher
Information Matrix for this estimation problem is A′A. It is therefore proposed to solve initially
the optimisation problem minbs ‖y − Aŝ‖2 subject to the constraint that the ith element of ŝ is
integer valued but all other elements are real valued. The ith element of ŝ found in this way is
fixed and the process repeated for the remaining elements.

The reason why the method is called Fisher Information Decision Directed Quantisation
is because the (inverse of the) Fisher Information Matrix is used to decide which element to
quantise next, and moreover, the quantisation rule used at each stage depends on previous
quantisation decisions. Indeed, it is shown in the next section that previous correct decisions
improve the chances of the remaining elements being correctly quantised.

The following section states formally the Fisher Information Decision Directed Quantisation
method and various extensions of the method. It also studies further the integer linear regression
problem. Section 3 introduces a realistic non-linear estimation problem in wireless communi-
cations and demonstrates that the Fisher Information Decision Directed Quantisation method
can be incorporated with good effect in practical systems. Section 4 concludes the paper.

2 Fisher Information Decision Directed Quantisation

This section states formally the proposed Fisher Information Decision Directed Quantisation
method for solving discrete optimisation problems. A straightforward argument is given ex-
plaining why the method appears to perform well in practice. Several extensions of the method
are also proposed.

2.1 The Proposed Method

Assume that the output y of a stochastic system is a function of a discrete valued vector
s, a continuous valued vector h and a continuous valued random noise vector n, that is, y =

3The expected value of
˛̨
˛
“
(A′A)

−1
A′n

”
i

˛̨
˛
2

is given by the ith diagonal element of (A′A)
−1

.
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f(s,h,n). For example, choosing f(s,h,n) = As+n corresponds to the integer linear regression
problem considered in Section 1. (For the precoded transmission problem considered in Section 3,
the extra term h is required.) It is required to estimate s and h given y.

It is also assumed that there is a cost function g(ŝ, ĥ;y) which can be evaluated for continuous
values of ŝ and which achieves its minimum when (ŝ, ĥ) is an “optimal” estimate of (s,h). One
such choice is the negative of the log likelihood function. For the aforementioned integer linear
regression problem, g(ŝ;y) = ‖y − Aŝ‖2 for instance.

The only remaining ingredient is a measure of how accurately the estimator (obtained by
minimising g) can estimate each element of s. If the estimator is Fisher efficient then the inverse
of the Fisher Information matrix [3], known as the Cramer-Rao Bound, provides a good measure
of how accurately the elements of s can be estimated (see Section 1 for an example). Note that
the Fisher Information matrix is a function of the true parameter vectors s and h in general.

The proposed Fisher Information Decision Directed Quantisation algorithm works as follows.
With ŝ allowed to take on continuous values, find the minimum (ŝ, ĥ) of the cost function
g(ŝ, ĥ;y), which serves as a first guess of s and h. Using the Fisher Information matrix evaluated
at (ŝ, ĥ) or otherwise, determine which element of ŝ is likely to be the most accurate. Then, with
this element of ŝ constrained to take only discrete values but all other elements unconstrained,
find the minimum4 (ŝ, ĥ) of the cost function g(ŝ, ĥ;y). (Note that here, the optimisation is over
both ŝ and ĥ. Therefore, at least in concept, the estimate ĥ of h improves with each iteration
due to the exploitation of the prior knowledge of the discrete nature of s.) The constrained
element of ŝ is now locked into place and the above process repeated; first evaluate the Fisher
Information matrix at the new point (ŝ, ĥ) so as to determine which remaining element of ŝ

to quantise next, then minimise g(ŝ, ĥ;y) with the element of ŝ to be quantised constrained to
take discrete values only, with one or more elements of ŝ fixed from previous stages, and with
all other elements of ŝ unconstrained.
Complexity: If s has n elements, and if each element can take one of m possible values, then
the above method requires the cost function g to be minimised at most5 nm times.

2.2 Justification of Method

In order to provide insight into how the method works, the integer linear regression problem
considered in Section 1 is revisited. Since the cost function is quadratic, all the required min-
imisations are trivial to perform. Indeed, if just one element of ŝ is constrained to be integer
valued then it is readily proved that the minimum can be found by first computing the minimum
without the constraint and then quantising (rounding to the nearest integer value) the element
of ŝ to be constrained.

Figures 1 and 2 help put the performance of the Fisher Information Decision Directed Quan-
tisation method into perspective. Figure 1 shows the quantisation regions obtained for a discrete
linear regression problem with two regressors, each of which can take the values −1 or 1 only.
The ellipses represent equiprobable error distributions assuming the noise to be white Gaussian;
recall that the error is given by the second term in (1). The centre subgraph shows the optimal

4If there are only a finite number of discrete values then this minimisation can always be achieved by exhaustive
search; set the constrained element of bs to an admissible value and minimise g with respect to the unconstrained
elements, then repeat for all other discrete values.

5It is shown later that only n minimisations are required for the integer linear regression problem.
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Figure 1: Decision regions for per-symbol quantisation, optimal quantisation and Fisher Infor-
mation Decision Directed quantisation.

quantisation regions obtained by minimising the quadratic cost function. The left subgraph
shows the standard per-symbol quantisation regions which match up poorly with the optimal
regions. The Fisher Information Decision Directed quantisation regions, shown on the right, can
be explained as follows. Since the error ellipses are taller than they are wider, the first regressor
(graphed along the horizontal axis) can be estimated more accurately than the second regressor
(graphed along the vertical axis). Therefore, the first regressor is the one to be quantised first.
Its two quantisation regions are separated by the solid vertical line. The quantisation rule for
the second regressor depends on the decision made about the first regressor; this is seen from
the two different solid lines, one on the left and one on the right. Indeed, comparing the Fisher
Information Decision Directed quantisation regions with the optimal regions shows that if the

first regressor is correctly quantised then the second regressor will be quantised optimally. Con-
versely, if the first regressor is incorrectly quantised then the second regressor will be quantised
poorly. This justifies the ordering, from most accurate to least accurate, in which the regressors
are quantised.

Even though earlier incorrect decisions increase the chance of subsequent incorrect decisions,
this does not imply that the Fisher Information Decision Directed Quantisation method will
not perform well in the presence of noise; if it makes a mistake quantising the most accurate
element of ŝ then it can be expected that per-symbol quantisation will make many mistakes
since the other elements of ŝ contain even larger errors. This argument is justifed in Figure 2 as
well as in further simulation results in the next section. Figure 2 shows that Fisher Information
Decision Directed Quantisation performs significantly better than per-symbol quantisation in
integer linear regression problems.
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2.3 Generalisations

Two generalisations are now discussed briefly. First, it is not necessary to quantise only one
element of ŝ at a time. The above method is trivially modified to choose the k most accurate
elements and then minimise the cost function with these k elements constrained to take discrete
values. As k increases, the accuracy of the method improves6 but the computational complexity
increases too. The second generalisation is if the noise is not random. That is, if it is desired
to minimise a cost function g(s,h) with s constrained to take discrete values then the above
method can still be applied by replacing the Fisher Information matrix by the Hessian of g(s,h)
evaluated at the unconstrained minimum (ŝ, ĥ). Specifically, if (ŝ, ĥ) is the minimum of g(s,h)
then g(s, ĥ) ≈ g(ŝ, ĥ)+(s− ŝ)′Q(s− ŝ) where Q is (half of) the Hessian of g and therefore gives
an indication of which elements of s lead to the greatest change in the cost. It is interesting to
note that for the linear regression problem, the Fisher Information matrix equals the Hessian
matrix of the cost.

3 Precoded Transmissions

The Fisher Information Decision Directed Quantisation method is applied in this section to
the problem of estimating the source symbols in a precoded transmission system. Simulations
demonstrate the improvement over standard per-symbol quantisation.

3.1 Problem Formulation

Using a linear precoder (or a filterbank precoder) to encode the source symbols prior to trans-
mission was first considered in [2] and has received significant attention since; see [10] and the
references therein. A simple but important extension is to use an affine precoder [9]. Specifically,
the following problem is considered.

Let s ∈ C
p denote a vector of source symbols whose elements belong to a finite alphabet.

(For example, in a BPSK system the elements are either -1 or 1 whereas in a QAM system the
elements belong to the set {±eπ/4,±e3π/4}.) These elements are first precoded by an affine
precoder [9] to form the transmitted vector As+b where A ∈ C

n×p and b ∈ C
n are known. (The

purpose of the A matrix is to spread the symbols in the frequency domain so as to avoid channel
spectral nulls [7] while the purpose of the vector b is to introduce a training sequence or pilot
tones [5] to assist in identifying the channel.) The received symbols are a noise corrupted version
of the transmitted vector convolved with the channel impulse response h = [h0, · · · , hL−1] ∈ C

L,
which in matrix form is

y = H(As + b) + n (3)

where H is the (n − L + 1) × n upper triangular Toeplitz matrix whose first row is equal to
[hL−1, · · · , h0, 0, · · · , 0].

Given the received vector y, the aim is to estimate the source symbols s and the channel
h. (Note that this is possible provided there is enough redundancy introduced by the affine

6Choosing k equal to the length of bs corresponds to optimal quantisation.
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precoder; see [8, 6].) Specifically, it is required to minimise the cost function

g(ŝ, ĥ;y) =
1

2
‖y − Ĥ(Aŝ + b)‖2

where Ĥ is obtained from ĥ in the same way H is obtained from h.

3.2 Source Estimation

If the channel h is known in advance (perhaps by using an alternative identification scheme)
then (3) reduces to a discrete linear regression problem. The previous section demonstrated
that the Fisher Information Decision Directed Quantisation method is superior to the standard
approach of using a linear equaliser7 followed by per-symbol quantisation.

3.3 Joint Source and Channel Estimation

It is reasonably straightforward to implement the Fisher Information Decision Directed Quanti-
sation method for estimating s and h. It can be shown that the inverse of the Fisher Information
matrix (that is, the Cramer-Rao Bound) for estimating s is

(
A′H ′

(
I − Z

(
Z ′Z

)
−1

Z ′

)
HA

)
−1

where
Z = [J0(As + b), · · · , JL−1(As + b)]

and Ji = ∂H
∂hi

. Note that the Fisher Information Matrix for estimating h is not required since
the elements of h are not restricted to being discrete.
Important Note: The minimisation of g cannot be performed reliably by standard minimisa-
tion algorithms due to a singularity of the cost function at h = 0. However, the novel algorithm
in [6] overcomes this problem by minimising an associated cost function on complex projective
space.

3.4 Simulations

The performance of the Fisher Information Decision Directed Quantisation method applied to
the precoded transmission problem is illustrated in Figure 3. The choice of precoder is such
that the training sequence 0, · · · , 0, 1, 0, · · · , 0 is first sent followed by the BPSK source symbols
followed by trailing zeros; this is referred to as a Zero Padded system in the literature. (The
importance of using either a cyclic prefix or zero padding is explained in [4].) The left subgraph
shows the Bit Error Rate (BER) while the right subgraph shows the Packet Error Rate defined
as follows. Each erroneously decoded source symbol counts as a bit error while the erroneous
decoding of one or more source symbols counts as a single packet error. It is clear from Figure 3
that the Fisher Information Decision Directed Quantisation method significantly outperforms
the standard per-symbol quantisation method.
Remark: Even better performance (at the expense of computational complexity) results if the
source symbols are quantised in groups of two or more at a time; this will be investigated in
subsequent work.

7The linear equaliser computes the optimal solution of the unconstrained estimation problem; c.f., Section 1.

6



4 Conclusion

Discrete optimisation problems arising in wireless communications due to the source symbols
coming from a finite alphabet are often computationally prohibitive to solve optimally. There-
fore, in practice, it is common to solve first a related continuous optimisation problem and then
quantise each element of the result separately. This paper propounds a novel Fisher Information
Decision Directed Quantisation method which is computationally inexpensive yet significantly
outperforms the standard per-symbol quantisation approach, as evidenced by simulation results.
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Figure 2: Graph of error rates of per-symbol quantisation and Fisher Information Decision
Directed quantisation applied to a representative integer linear regression problem with six re-
gressors. Note that the lower trace disappears because the Fisher Information Decision Directed
quantisation algorithm made no estimation errors at 15dB in the simulation.
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Figure 3: Graph of error rates of per-symbol quantisation and Fisher Information Decision
Directed quantisation applied to the precoded transmission problem described in Section 3.
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