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Abstract

Consider a parameterised system whose output vector is a polynomial function of the elements of both the source vector
and the parameter vector. Assume there are only a .nite number of possible source vectors. Source recovery endeavours to
determine the source vector given only the output vector and, in particular, without knowledge of the parameter vector. This
paper, after proving both the decidability and implementability of source recovery, focuses on the task of deriving necessary
and su3cient conditions for source recovery to be feasible. Although it is di3cult to derive a condition which is readily
veri.able for most systems, this paper derives a relatively simple condition for source recovery to be feasible in bilinear and
other a3ne-in-parameter systems. An application of this result to wireless communications is given; it is proved that guard
intervals in transmission systems enable the receiver to recover the source symbols using only a single received block and
without knowledge of the channel parameters.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Any discrete time deterministic system observed
over a .nite period of time can be described by y =
F(s; h), where the vectors s; y and h are the collated
input, collated output and initial state, respectively.
The .nite alphabet source recovery problem is to de-
termine s given both y and the knowledge that s be-
longs to a .nite set � of possible input vectors; the set
� naturally arises when the input s is a digital signal
and its elements are restricted to the values −1 or 1,
for instance. The source recovery problem is related
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to, but distinct from, the observability problem of de-
termining h given y. Under the restriction that F is a
polynomial map over the .eld of complex numbers,
this paper proves that the feasibility of source recov-
ery is both a decidable question and an implementable
task. That is to say, a computer (speci.cally, a Turing
machine) can determine in a .nite number of steps
whether or not source recovery is feasible, and more-
over, if source recovery is feasible, a computer can
recover s given y. This paper also derives necessary
and su3cient conditions for source recovery to be
feasible and applies this theory to a practical prob-
lem in wireless communications. This is now elabo-
rated on.
In wireless communications, the received signal is

the convolution of the transmitted signal with the im-
pulse response of the wireless channel (modelled as
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a linear FIR channel) [13]. By sampling the received
signal, the system can be modelled by y = F(s; h),
where s represents one or more blocks of transmit-
ted data, h is the impulse response of the channel,
y is the received vector and F is the bilinear map
convolving s with h. Because s is a digital signal (or
codeword), the set of all possible transmitted signals
� is a .nite set. Recovering s from y is often done
indirectly by .rst determining h from y, a process
known as blind identi.cation [7], and then deconvolv-
ing y with h to obtain s. Blind identi.cation usually
relies on statistical properties of s and thus requires
a relatively large amount of output data for accurate
identi.cation. Exploiting .nite alphabet properties
rather than statistical properties has been investigated
[16] as a way of reducing the required amount of
output data. Conditions for source recovery to be fea-
sible in uncoded wireless communications are given
in [4]. Here, uncoded means � contains all Np se-
quences of p symbols coming from an alphabet of
size N .
The necessary and su3cient conditions derived

here for source recovery to be feasible in a general
polynomial system F simplify considerably when F
is a bilinear map. These simpli.ed conditions com-
plement those in [4] and are valid for both coded and
uncoded communications (that is, for arbitrary �).
Furthermore, it is proved the receiver can recover the
source symbols given only a single received block if
guard intervals (sequences of zeros clearing the mem-
ory of the channel) are inserted between blocks. This
is an interesting result because, without guard inter-
vals present, certain non-persistently exciting input se-
quences exist for which source recovery is not feasible
[4].
Caveats: Only complex-valued polynomial maps

are considered because the approach taken here relies
on the base .eld being algebraically closed. In general,
the symbolic methods alluded to for deciding and im-
plementing source recovery are too computationally
intensive to be practical. The eIect of noise (trying to
recover s from y + n where n represents an additive
disturbance) is not considered.
Notation and conventions: The usual topology is

used throughout. Closure and set complement of X are
denoted by JX and X c, respectively. A superscript T
denotes vector transpose. Standard results in algebraic
geometry are taken from [2,5,6,1].

2. Decidability and implementability of source
recovery

Let F : Cp × Cm → Cn be a polynomial map and
� ⊂ Cp a .nite set of candidate source vectors. The
source recovery problem is to determine the source
vector s from the output vector y= F(s; h) given that
s is an element of � but with essentially no knowl-
edge of the parameter vector h∈Cm. Speci.cally, it
is required to .nd a function r : Cn → Cp satisfying

r(F(s; h)) = s (1)

for all s∈� and, ideally, for all h∈Cm. Unfortunately,
Example 1 shows this property is too stringent to be
of interest.

Example 1. Let F(s; h) = (h; sh). Clearly, s can be
determined from y unless h= 0.

It is therefore appropriate to require (1) to hold for
almost all h rather than for all h.

De�nition 2 (Source recovery). Let F : Cp × Cm →
Cn be a polynomial map and � ⊂ Cp a .nite set of
candidate source vectors. Source recovery is feasible
if there exists a function r : Cn → Cp and an open
dense set H ⊂ Cm such that (1) holds for all s∈�
and h∈H.

The openness condition on H is desirable for oth-
erwise choosing H to be the set of complex numbers
with rational real part makes s∈� = {1; } recover-
able from y = F(s; h) = sh.
Source recovery is equivalent to the following in-

jectivity property of F . The trivial proof is omitted.

Lemma 3. Source recovery is feasible if and only if
there exists an open dense set H such that, for all
h1; h2 ∈H and s1; s2 ∈�; F(s1; h1)=F(s2; h2) implies
s1 = s2.

Sets de.ned by the vanishing of a .nite number of
polynomials are called varieties [2]. (An alternative
convention is to call such sets algebraic sets, with the
term variety reserved for what will be called here an
irreducible variety.) Whereas open dense sets cannot
be manipulated by computers, varieties can. The fol-
lowing is therefore a key technical result; its proof
follows shortly.
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Theorem 4. Source recovery is feasible if and only
if there exists a proper subvariety V of Cm such
that, for all h1; h2 ∈Cm−V and s1; s2 ∈�; F(s1; h1)=
F(s2; h2) implies s1 = s2.

A variety V satisfying the conditions in Theorem 4
is called a blacklist because, as Example 5 illustrates,
a source recovery algorithm might have to assume
the parameter h does not belong to V . This is often
a reasonable assumption because V , being a proper
subvariety, is a nowhere dense set [2]. When this is
not a reasonable assumption, the stricter de.nition of
source recovery introduced in Section 3 should be used
instead.

Example 5. Let F(s; h) = sh; � = {0; 1} and V =
{0}. Source recovery is feasible. However, because
F(1; 0)=F(0; 1)=0, the only way to decide whether
s = 0 or s = 1 given F(s; h) = 0 is to exclude the
possibility that h∈V . A side eIect is that incorrect
decisions are possible if h∈V .
The main results of this section are now stated.

Theorem 6 (Decidable). There exists an algorithm,
implementable on a computer and terminating in ;-
nite time, taking as input a polynomial map F : Cp×
Cm → Cn and a ;nite set � ⊂ Cp, and outputting
“feasible” or “not feasible” depending on whether or
not source recovery is feasible according to De;ni-
tion 2.

Theorem 7 (Implementable). If source recovery is
feasible then there exists a source recovery algo-
rithm implementing the source recovery function r
in De;nition 2. This algorithm is implementable on
a computer and terminates in ;nite time.

The proofs of the above theorems depend on being
able to construct a blacklist V . Algorithm 8 is proposed
for generating V ; that it generates a valid blacklist is
not obvious and is proved later. First some de.nitions.
For any pair of distinct elements s1; s2 ∈�, de.ne the
sets

W = {(h1; h2)∈Cm × Cm: F(s1; h1) = F(s2; h2)};
(2)

W1 = {h1 ∈Cm: ∃h2 ∈Cm; F(s1; h1) = F(s2; h2)};
(3)

W2 = {h2 ∈Cm: ∃h1 ∈Cm; F(s1; h1) = F(s2; h2)}:
(4)

The sets W1 and W2 are constructible sets [2,6] be-
cause they are projections of the varietyW . Therefore,
their closures are varieties and have well-de.ned di-
mensions [2]. (Recall the usual topology and not the
Zariski topology is used throughout. However, the clo-
sure in the usual topology and the Zariski closure of
a constructible set are equal.) De.ne

Vs1 ;s2 =

{
JW 1 if dim JW 16 dim JW 2;

JW 2 otherwise;
(5)

where V is subscripted to indicate the dependence on
s1 and s2.

Algorithm 8 (Blacklist). Assume � consists of N el-
ements, �={s1; : : : ; sN}. For any pair si ; sj, construct
the variety Vsi ;sj as in (5). Form the blacklist V as
the union

V =
⋃

16i¡j6N

Vsi ;sj : (6)

Since a .nite union of varieties is a variety, V in
(6) is a variety. Moreover, V can be constructed on a
computer because symbolic techniques exist for ma-
nipulating varieties [1–3].
The following lemma implies V is a valid blacklist

provided it is a proper subvariety. The proof below of
Theorem 4 will show V is a proper subvariety if and
only if source recovery is feasible.

Lemma 9. De;ne V as in (6). Then, for all
h1; h2 ∈Cm − V and s1; s2 ∈�; F(s1; h1) = F(s2; h2)
implies s1 = s2.

Proof. Let s1; s2 ∈� be distinct and de.ne W;W1; W2

as in (2)–(4). If F(s1; h1)=F(s2; h2) then (h1; h2)∈W ,
hence h1 ∈W1 and h2 ∈W2. In particular, it follows
from (5) and (6) that either h1 ∈V or h2 ∈V , proving
the lemma.

Proof of Theorem 4. One direction is clear; if V is
a proper subvariety then H = Cm − V is an open
dense set and source recovery is feasible by Lemma
3. To prove the other direction, it is shown that if
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source recovery is feasible then V in (6) is a proper
subvariety. Theorem 4 then follows from Lemma 9.
Assume V is not a proper subvariety. Then V =Cm

and hence there must exist a pair of distinct points
s1; s2 ∈� such that, in (3) and (4), JW 1 = JW 2 = Cm.
De.ne g1(h1) = F(s1; h1) and g2(h2) = F(s2; h2) so
that (h1; h2)∈W if and only if g1(h1) = g2(h2); see
(2). Assume to the contrary that source recovery is
feasible and let H satisfy the conditions in Lemma 3.
By de.nition of H, for any h1 ∈W1, either h1 is ex-
cluded from H or all the pre-images g−1

2 (g1(h1)) are
excluded from H. Equivalently, if Z = g−1

2 (g1(H))
then Z ⊂ Hc must hold. It will be shown that Z con-
tains a non-empty open set, contradicting the dense-
ness of H.
Let U1; U2 ⊂ Cn be the images of g1; g2 respec-

tively. Since g1; g2 are polynomial maps, JU 1; JU 2 are ir-
reducible varieties [2,6]. It is .rst shown that JU 1= JU 2.
Assume to the contrary that JU 1∩ JU 2 ( JU 1. Then, be-
cause JU 1∩ JU 2 is a proper subvariety of the irreducible
variety JU 1, there exists a non-empty set Y ⊂ U1∩Uc

2
open in JU 1. For any h1 ∈ g−1

1 (Y ); g1(h1) = g2(h2)
has no solution. In particular, g−1

1 (Y ) is a non-empty
open set contained inWc

1 , contradicting JW 1=Cm. This
proves JU 1 ∩ JU 2 = JU 1 and, by symmetry, JU 1 = JU 2

too. Since H is non-empty and open, the Open Map-
ping Theorem [14] ensures there exists a non-empty
set Y ⊂ g1(H) open in JU 1. Then Y is open in JU 2

and hence g−1
2 (Y ) is a non-empty open set contained

in Z , the desired contradiction.

Proof of Theorem 6. The proof of Theorem 4 shows
source recovery is feasible if and only if V in (6)
satis.es V 
= Cm. It has already been mentioned that
V can be constructed on a computer using symbolic
techniques. The theorem follows.

Proof of Theorem 7. Given a polynomial map F :
Cp×Cm → Cn and a set� ⊂ Cp, let V be variety (6);
it can be constructed on a computer. It has already been
shown in the proof of Theorem 4 that V is a proper
subvariety if source recovery is feasible. It therefore
su3ces to derive an algorithm mapping y=F(s; h) to
s for any s∈� and h∈Cm − V . The following algo-
rithm does just this. Given the output vector y∈Cn,
symbolic techniques exist [1–3] for constructing the
set S={s∈�: ∃h∈Cm−V; F(s; h)=y}. If y=F(s; h)
for some s∈� and h∈Cm − V then, by Lemma 9,

the set S contains a single element; source recovery is
accomplished by outputting this element.

3. Strict source recovery

The de.nition of source recovery in De.nition 2
was shown in Example 5 to have two potential dis-
advantages; source recovery may require knowledge
of the blacklist, and furthermore, incorrect decisions
are possible. This section states a stricter de.nition of
source recovery simultaneously removing the need for
a blacklist and the potential for incorrect decisions.
In Lemma 3, assume s1 and h1 represent the true

source and channel vectors while s2 and h2 represent
any combination resulting in the same output. Restrict-
ing h2 to lie in H is the reason a source recovery al-
gorithm may require knowledge of the blacklist. This
motivates the following de.nition.

De�nition 10 (Strict source recovery). Let F : Cp ×
Cm → Cn be a polynomial map and� ⊂ Cp a .nite set
of candidate source vectors. Strict source recovery is
feasible if there exists an open dense setH ⊂ Cm such
that for all h1 ∈H; h2 ∈Cm and s1; s2 ∈�; F(s1; h1)=
F(s2; h2) implies s1 = s2.

De.nition 10 is indeed stricter than De.nition 2;
source recovery but not strict source recovery is fea-
sible in Example 5. Moreover, De.nition 10 is not
vacuous because strict source recovery is feasible in
Example 1.
Theorem 11 proves results analogous to Theorems

4, 6 and 7 but for strict source recovery. Theorem 12
proves incorrect decisions are avoidable under De.-
nition 10.

Theorem 11. For a given F and� as in De;nition 10,
construct the variety V ⊂ Cm as in (6) of Algorithm
8 but with Vs1 ;s2= JW 1∪ JW 2 replacing (5). Strict source
recovery is feasible if and only if V 
= Cm.Moreover,
if strict source recovery is feasible thenH=Cm−V
satis;es the conditions in De;nition 10. Strict source
recovery is both decidable and implementable.

Proof. De.ne H = Cm − V . If V 
= Cm then V is
a proper subvariety of Cm and hence H is open and
dense. Moreover, if s1; s2 ∈� and h1; h2 ∈Cm are such
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that F(s1; h1) = F(s2; h2) but s1 
= s2 then, from the
de.nition of V , it can be deduced that h1 ∈V and
hence h1 
∈ H. This proves V 
= Cm implies strict
source recovery is feasible. Assume now that V =Cm.
Then there exists a distinct pair s1; s2 ∈� such that
Vs1 ;s2 = JW 1 ∪ JW 2 = Cm, and hence either JW 1 = Cm

or JW 2 = Cm. By interchanging s1 and s2 if neces-
sary, assume JW 1 = Cm. By de.nition of W1, if strict
source recovery is feasible then H in De.nition 10
must satisfy H ⊂ Wc

1 . Because H is non-empty and
open and W1 is dense, this is not possible, proving
V =Cm implies strict source recovery is not feasible.
That strict source recovery is decidable and imple-
mentable follows analogously to the proofs of Theo-
rems 6 and 7. (Replace S in the proof of Theorem 7
by S = {s∈Q: ∃h∈Cm; F(s; h) = y}:)

Theorem 12. If source recovery is feasible but strict
source recovery is not, there exists an s∈� and h 
∈
H such that an incorrect decision is made; see Def-
inition 2 and Example 5 for notation. Conversely, if
strict source recovery is feasible then incorrect deci-
sions 1 are avoidable.

Proof. Assume source recovery is feasible and let H
be a set satisfying the conditions in Lemma 3. Because
source recovery but not strict source recovery is feasi-
ble, there exist distinct s1; s2 ∈� such that JW 1=Cm but
JW 2 
= Cm in (3) and (4); see the proofs of Theorems 4
and 11. For any point (h1; h2)∈W , either h1 or h2 must
be excluded from H because F(s1; h1) = F(s2; h2).
Since W1 is dense and H is open and dense, there
must exist a point (h1; h2)∈W such that h2 is ex-
cluded from H but h1 is not. Since h1 ∈H; r in (1)
must satisfy r(F(s1; h1)) = s1. However, this means
r(F(s2; h2))= s1 because F(s1; h1)=F(s2; h2) by con-
struction. That is, an incorrect decision is made.
Assume strict source recovery is feasible. Refer-

ring to the proof of Theorem 11, given y, source
recovery can be performed by forming the set S =
{s∈�: ∃h∈Cm; F(s; h) = y} and outputting the el-
ement of S if S contains a single element and out-
putting “unrecoverable” otherwise. Because S always

1 Making an incorrect decision refers to recovering s incorrectly,
as in Example 5, and is distinct from not being able to recover s
if h �∈ H, as in Example 1.

contains the true source vector (that is, if y = F(s; h)
then s∈ S), an incorrect decision is never made.

Remark 13. Identi.ability results in the literature
usually take the following form. First, a set of channel
assumptions is imposed on the channel; this is equiv-
alent to requiring h lies in the set H in De.nition 2.
Then the equation F(s; h)=F(s̃; h̃) is studied for mul-
tiple solutions indicating identi.cation is not possible.
Here, some studies assume h̃ also satis.es the chan-
nel assumptions whereas other studies do not. The
former corresponds to De.nition 2 (see also Lemma
3) while the latter corresponds to De.nition 10.

4. An equivalent condition for feasibility of source
recovery

Sections 2 and 3 showed that feasibility of source re-
covery can always be proved or disproved using sym-
bolic techniques. Sometimes it is desirable to prove
source recovery is feasible without using symbolic
techniques. To facilitate this, a condition more con-
venient than in De.nition 2 for source recovery to be
feasible is derived below.
Referring to Lemma 3, it might be hoped that, for

.xed s1 and s2, if there exists a point h1 such that
F(s1; h1) =F(s2; h2) has no solution in h2 then a con-
tinuity argument implies F(s1; h1) = F(s2; h2) has no
solution for almost all h1. Example 14 shows this is
not so due to possible solutions at in.nity.

Example 14. Let F(s; (h1; h2)) = (sh1h2 − h1; h2)
and � = {0; 1}. De.ne g1(h1; h2) = F(0; (h1; h2)) =
(−h1; h2) and g2(h1; h2) = F(1; (h1; h2)) = (h1h2 −
h1; h2). Consider the choice h1 = 5 and h2 = 1. Then
g1(h1; h2) = (−5; 1) and, in particular, g2(h′1; h

′
2) =

(−5; 1) appears to have no solution. However, there
is a solution of g2(h′1; h

′
2) = (−5; 1) hiding at in.n-

ity; the divergent sequence {(−5k; 1 + 1=k)}∞k=0 is
such that g2(−5k; 1+ 1=k) = (−5; 1+ 1=k) converges
to (−5; 1). In particular, this means that for most
(h1; h2); g1(h1; h2)=g2(h′1; h

′
2) has a solution, contrary

to what might have been thought had the solution at
in.nity not been detected.

Proving no solution at in.nity exists is tantamount
to verifying the condition in the following theorem.
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Theorem 15. Source recovery is feasible if and only
if, for any pair of distinct points s1; s2 ∈�,
∃ non-empty open X1; X2 ⊂ Cm with one dense;

∀h1 ∈X1; ∀h2 ∈X2; F(s1; h1) 
= F(s2; h2): (7)

Strict source recovery is feasible if and only if, for
any pair of distinct points s1; s2 ∈�,
∃ non-empty open X ⊂ Cm; ∀h1 ∈X; ∀h2 ∈Cm;

F(s1; h1) 
= F(s2; h2): (8)

Note that the sets X1; X2 and X can depend on s1
and s2.

Proof. Assume source recovery is feasible and let H
be any set satisfying the conditions in Lemma 3. Then
(7) holds with the choice X1 = X2 =H. Similarly, if
H satis.es the conditions in De.nition 10 then (8)
holds with the choice X =H. Conversely, if source
recovery is not feasible then the proof of Theorem 4
shows there exist distinct s1; s2 ∈� such that the clo-
sures of the images of g1 and g2 are identical, and
moreover, if X1; X2 are non-empty open sets then both
g−1
2 (g1(X1)) and g−1

1 (g2(X2)) contain non-empty open
sets. Since (7) implies both g−1

2 (g1(X1)) ⊂ X c
2 and

g−1
1 (g2(X2)) ⊂ X c

1 , neither X1 nor X2 can be dense,
proving (7) cannot hold. If strict source recovery is
not feasible then the proof of Theorem 11 shows there
exist distinct s1; s2 ∈� such that JW 1 = Cm in (3). In
particular, no open set X ⊂ W c

1 exists, hence (8) can-
not hold.

Remark 16. Polynomial systems F with the property
that {(s′; h′): F(s′; h′) = F(s; h)} contains only a .-
nite number of elements for almost all (s; h) are called
weakly identi.able in [11]. This property is readily
established by checking the Jacobian matrix of F has
full column rank [10,11]. A straightforward argument
shows that for almost any �, source recovery is fea-
sible. 2 However, for a speci.c �, using (7) to prove
source recovery appears unavoidable. Indeed, it is re-
quired to study the behaviour of F in a neighbour-
hood of a point rather than at a single point to ensure

2 Provided s is a generic point [11], if s∈� then there are at
most a .nite number of points s′ which must be excluded from
� as a consequence. As almost all points are generic points, it
follows that almost any � will satisfy this condition.

solutions at in.nity and other non-generic behaviour
are detected.

5. Source recovery in a-ne-in-parameter systems

The map F(s; h) is bilinear if it is linear in s with
h held .xed and linear in h with s held .xed. The
conditions for source recovery in Theorem 15 simplify
greatly if F is bilinear. This generalises to the wider
class of systems now de.ned.

De�nition 17 (A3ne in parameters). The polynomial
map F :Cp×Cm → Cn is a3ne in its parameter vector
h∈Cm for all source vectors s∈� ⊂ Cp if it satis.es

∀s∈�; ∀h1; h2 ∈Cm; ∀!∈C;

F(s; !h1 + (1− !)h2)

= !F(s; h1) + (1− !)F(s; h2): (9)

Theorem 18. Let F :Cp×Cm → Cn be a polynomial
map satisfying (9) for some ;nite set of candidate
source vectors � ⊂ Cp. Source recovery is feasible if
and only if, for any pair of distinct points s1; s2 ∈�,
there exists an h∈Cm (possibly depending on s1 and
s2) such that either F(s1; h) = F(s2; h′) or F(s2; h) =
F(s1; h′) or both has no solution in h′ ∈Cm. Strict
source recovery is feasible if and only if, for any pair
of distinct points s1; s2 ∈�, there exists an h∈Cm

(possibly depending on s1 and s2) such that F(s1; h)=
F(s2; h′) has no solution in h′ ∈Cm.

Proof. One direction follows immediately from The-
orem 15. To prove the other direction, for .xed
s1; s2 ∈�, de.ne g1(h)=F(s1; h) and g2(h)=F(s2; h).
Assume there exists an h such that g1(h) = g2(h′)
has no solution. Since g2(Cm) is an a3ne space, it
is closed. Therefore, there exists a neighbourhood X1

of h such that g1(X1) and g2(Cm) are disjoint sets.
In particular, such an X1 satis.es (7) with X2 = Cm

and satis.es (8) with X = X1, proving feasibility of
source recovery.

Remark 19. There is still a distinction between
source recovery and strict source recovery in a sys-
tem a3ne in its parameters. A system F can be con-
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structed such that, in the proof of Theorem 18, g1(Cm)
is strictly contained in g2(Cm). Source recovery but
not strict source recovery would be possible.

Remark 20. The key ingredient in the proof of Theo-
rem 18 is that, for any s∈�, the set F(s;Cm) is known
to be closed. This prevents the situation in Example
14 from arising. It also suggests that source recovery
in complex projective space is more easily studied be-
cause the image of a homogeneous polynomial is al-
ways closed [2].

6. An application to wireless communications

For practical reasons, it is not uncommon for a wire-
less communications system to break the sequence of
source symbols to be transmitted into blocks of .xed
length and transmit a single block at a time, with guard
intervals inserted between blocks [12,15]. This sec-
tion proves the novel result that the presence of guard
intervals allows the source symbols to be recovered
given only a single received block.
For consistency with the digital communica-

tions literature [13], the system model is .rst de-
scribed in matrix form. Later, a connection with
systems theory is made. For a given channel vector
h= [h0; : : : ; hm−1]T ∈Cm, de.ne the matrix H ∈Cn×p

to be the lower triangular Toeplitz matrix having
[h0; : : : ; hm−1; 0; : : : ; 0]T as its .rst column; see Exam-
ple 21. De.ne F :Cp × Cm → Cn as F(s; h) = H s
where s∈Cp and n = p + m − 1; the output block
y= F(s; h) is the result of passing the source block s,
whose elements are the source symbols to be trans-
mitted, through a convolutive channel with .nite im-
pulse response {h0; : : : ; hm−1} modelling the wireless
link. The structure of H accounts for the transmitted
symbols being pre.xed and su3xed by m − 1 con-
secutive zeros known as a guard interval [8,9]. The
.nite set � ⊂ Cp is de.ned to be the set of all blocks
of source symbols the digital communications system
can transmit.

Example 21. An unrealistically small but otherwise
representative example is the following. Letp=3; m=
2 and hence n = p + m − 1 = 4. Element-wise, y =
F(s; h) = H s is given by y1 = h0s1; y2 = h0s2 +
h1s1; y3 = h0s3 + h1s2 and y4 = h1s3; by convention,

elements of h are indexed from zero. If Quadrature
Amplitude Modulation is used then each element of
s lies in the set {ej=4; ej3=4; ej5=4; ej7=4}. Thus, � is
the set of all 4p=64 permutations. (If channel coding
is used then � is chosen instead to be the set of all
possible codewords.)

An alternative interpretation is obtained by taking
the z-transform of y= F(s; h). Speci.cally, if y(z) =∑n

k=1 ykz
k−1 and similarly for h(z) and s(z), then

y(z)=h(z)s(z). In other words, the eIect of the guard
intervals is to make the communication system mimic
an input/output system on a per-block basis.

Remark 22. Since F(!s; !−1h) = F(s; h) for any
non-zero !∈C, a necessary condition for source re-
covery is that s∈� implies !s 
∈ � for any ! 
= 0; 1.

Theorem 23. De;ne F(s; h) = H s as above and let
� ⊂ Cp be any ;nite set satisfying the scale condi-
tion in Remark 22. Source recovery is feasible.More-
over, if [0; : : : ; 0]T 
∈ � then strict source recovery is
feasible.

Proof. Since F is bilinear, it su3ces to verify the
conditions in Theorem 18. Let s1; s2 ∈� be distinct
points and assume [0; : : : ; 0]T 
∈ �, so that s1(z) 
≡ 0
and s2(z) 
≡ 0. As previously explained, the equa-
tion F(s1; h) =F(s2; h′) can be written as s1(z)h(z) =
s2(z)h′(z) where h(z) and h′(z) have degree at most
m − 1. Choose h(z) to be a polynomial of degree
m − 1 coprime to s2(z); such a choice always exists.
It is shown s1(z)h(z) = s2(z)h′(z) has no solution in
h′(z). Indeed, if it did, h(z) must divide h′(z), but
since the degree of h′(z) is at most m − 1, this im-
plies h′(z) = !h(z) for some non-zero !∈C and thus
s1(t) = !s2(t), contradicting the scale condition on �.
Hence, strict source recovery is feasible by Theorem
18. An analogous argument proves source recovery is
feasible even if [0; : : : ; 0]T ∈�.

Remark 24. In communication systems, the set �
may not satisfy the scale condition in Remark 22. In
such cases, a straightforward extension of Theorem
23 shows the source vector s can be always recovered
up to an unknown scaling factor. This is often su3-
cient in practice; either diIerential coding or a pilot
symbol can be used to overcome scale ambiguity [13].
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7. Conclusion

This paper considered the problem of recovering
the source vector from the output vector of a param-
eterised polynomial system without knowledge of the
parameter vector but with knowledge that the source
vector belongs to a .nite set of candidates. The prob-
lem was studied from several aspects ranging from
theoretical considerations, namely the decidability and
implementability of the problem, to more applied con-
siderations, such as how to prove source recovery is
feasible in any particular system. A speci.c example
to an important problem in wireless communications
was given; it was proved that source recovery is al-
ways possible in digital communication systems using
guard intervals.
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