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Abstract

Principal component flows are flows converging to the eigenvectors associated with the largest eigenvalues of a given
symmetric matrix. Similarly, minor component flows converge to the eigenvectors associated with the smallest eigenvalues.
Traditional flows required the matrix to be positive definite, and moreover, finding well-behaved minor component flows
appeared to be harder and unrelated to the principal component case. This paper derives a flow which can be used to extract
either the principal or the minor components and which does not require the matrix to be positive definite. The flow is shown
to be a generalisation of the Oja–Brockett flow.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

There is considerable interest in constructing and
analysing families of ordinary differential equations
which are parameterised by a symmetric matrixC ∈
Rn×n, which evolve on matrix spaceRn×p, and which
have the following property. Starting from a generic
initial matrixX0∈ Rn×p, the flow converges to a ma-
trix X∞ whose columns are particular eigenvectors
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of C. If these eigenvectors are those associated with
thep largest eigenvalues ofC then the flow is said to
be a principal component flow. Similarly, the flow is
a minor component flow if it converges to the eigen-
vectors associated with thep smallest eigenvalues of
C. An example of a principal component flow is

Ẋ = CXN −XNXTCX, (1)

whereẊ denotes the derivative ofX ∈ Rn×p with re-
spect to time, superscript T denotes matrix transpose,
and N is an arbitrary diagonal matrix with distinct
positive eigenvalues. This flow was introduced and
partially studied in[17,18,27]. A detailed analysis ap-
pears in[32], which termed (1) the Oja–Brockett flow
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because it is a natural generalisation of both Oja’s flow
[13,14] for principal subspace analysis and Brockett’s
flow [2] on orthogonal matrices for symmetric matrix
diagonalisation.
The contribution of this paper is two-fold. The novel

flow

Ẋ = −CXN + �X(N −XTX) (2)

is introduced and analysed. For appropriate choices
of the constants�∈ R andN ∈ Rp×p, it is proved to
be a minor component flow. Moreover, and somewhat
surprisingly, it is shown to be a generalisation of the
Oja–Brockett principal component flow (1). Specif-
ically, provided� is sufficiently large, a coordinate
transformation converting the Oja–Brockett flow (1)
into the proposed minor component flow (2) is exhib-
ited. It is remarked that whereas most flows, including
(1), requireC to be positive definite and symmetric,
the proposed flow (2) only requiresC to be symmetric.
The main interest in principal and minor component

flows arises from being able to derive from them dis-
crete time stochastic averaging algorithms for tracking
the principal or minor components of a time-varying
data matrix[1,9,11]. Subspace tracking algorithms are
widely used in signal processing and control applica-
tions [5,8,12,20,21,25,29,31]such as direction or fre-
quency estimation in antenna arrays[22,24,30], data
compression via the Karhunen–Loéve transform[19]
and multiuser detection in wireless communications
[26].
In practice then, it is important to consider flowsẊ=

f (X,C), where the functionf (X,C) can be evaluated
on a computer quickly. In particular, although a minor
component flow is readily obtained from a principal
component flow by replacingC with C−1, it is not
desirable to do so. Another trick sometimes resulting
in a minor component flow is to reverse the sign of a
principal component flow and incorporate a projection
operator to prevent the flow from diverging. However,
the computation of the projection operator requires a
matrix inverse and hence is not desirable either.
With the proviso thatf (X,C) in the flow Ẋ =

f (X,C) be an element-wise polynomial function, so
that matrix inverses cannot appear, history shows that
minor component flows evolving on matrix space are
harder to construct than principal component flows.
Moreover, there is no historical evidence that princi-
pal and minor component flows are somehow related.

This makes the connection between the proposed mi-
nor component flow (2) and the existing principal com-
ponent flow (1) interesting for two reasons; the very
existence of a connection is itself interesting, and it
is interesting that the minor component flow is more
general than the principal component flow rather than
the other way round.
Related work is now summarised. The starting point

for most of the current work in principal component
analysis and subspace tracking has been Oja’s system
from neural network theory[13–15]. Oja’s principal
subspace flow is

Ẋ = (I −XXT)CX, (3)

whereI denotes the identity matrix. A principal sub-
space flow differs from a principal component flow
in that its stable equilibrium pointsX∞ do not deter-
mine the principal eigenvectors individually, but in-
stead, the space spanned by the columns ofX∞ is the
same as the space spanned by the principal eigenvec-
tors ofC. In fact, although (3) was proved in[13,16]
to be a principal subspace flow ifp=1 (recallp is the
number of columns ofX), the conjecture that it is a
principal subspace flow forp>1 was not proved till
much later in[28].
An interesting feature of the Oja flow (3) is that it

has been shown very recently to be a gradient flow[32]
with respect to a suitable Riemannian metric onRn×p.
This is despite confusing remarks made earlier in the
literature claiming that it cannot be a gradient flow
because the linearisation is not a symmetric matrix.
This claim is only valid for gradient flows with respect
to the Euclidean metric.
Principal component flows were first studied in

[23,17,18,27]. However, pointwise convergence to the
equilibria points was not established in these papers.
Using an early result by Lojasiewicz[10] on real
analytic gradient flows, the pointwise convergence of
the Oja–Brockett flow (1) was established in[32]. It
is also mentioned that although sufficient conditions
for initial matrices in the Oja flow (3) to converge to
a principal subspace are given in[4,28], a complete
characterisation of the stable and unstable manifolds
is currently lacking for flows (1) and (3).
The remainder of this paper is organised as follows.

Section 2 motivates the introduction of a novel cost
function whose critical points are related to the eigen-
structure of a matrixC. Under mild assumptions, all
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the critical points are characterised. The proposed flow
(2) is a gradient flow for this cost function. Section
3 formally states the definition of a minor component
flow and proves that (2) does indeed meet the require-
ments of this definition. Informal arguments and sev-
eral numerical examples in Section 4 provide a feel
for the convergence rate of the flow. Section 5 shows
that replacingC with −C converts (2) into a princi-
pal component flow. It also establishes a connection
between the proposed flow (2) and the Oja–Brockett
flow (1). Section 6 concludes the paper.

2. A minor component cost function

This section introduces and analyses a cost function
necessary for the understanding of the proposed minor
component flow (2).

2.1. Motivation

Subject to the orthogonality constraintXTX= I , it
is a standard result[6] that the generalised Rayleigh
quotient tr{CXNXT} takes its smallest value when the
columns of the tall matrixX are the eigenvectors (ar-
ranged in a suitable order) corresponding to the small-
est eigenvalues of the symmetric matrixC, hereafter
referred to as the minor components ofC. Here,N is
an arbitrary diagonal matrix with distinct positive ele-
ments and tr{·} is the trace operator. With this in mind,
define the penalised cost function

f̃ (X)= tr{CXNXT} + �‖I −XTX‖2, (4)

whereI is the identity matrix and‖ · ‖ the Frobenius
norm. From above, it follows that in the limit� →
∞, the minimum off̃ (X) occurs whenX contains the
minor components ofC. This paper is based on the
novel observation that even for finite but sufficiently
large �, the minimum off̃ (X) still occurs whenX
contains the minor components ofC.
It is remarked that (4) is a generalisation of the

cost function studied in[3], the latter corresponding
to the special case ofX being a vector. Algorithms for
subspace tracking using this special case of the cost
function were developed in[8,12].

2.2. The cost function and assumptions

In Appendix A, it is shown that the cost function (4)
can have critical points unrelated to the eigenstructure
of C. To avoid this, the penalty term is modified thus

f (X)= 1
2 tr{CXNXT} + 1

4�‖N −XTX‖2. (5)

The following assumptions are made throughout.

A1. The scalar�∈ R is strictly positive.
A2. The matrixC ∈ Rn×n is symmetric.
A3. The matrixN ∈ Rp×p is diagonal with distinct

positive eigenvalues.

When discussing local minima, it is convenient to
make the following additional assumptions.

A4. The matrixC has distinct eigenvalues.
A5. The scalar� does not equal any eigenvalue ofC.

2.3. Critical points

The directional derivative of (5) in the direction
�∈ Rn×p is readily calculated to be

Df (X)� = tr{�TCXN + ��T(−XN +XXTX)}.
(6)

Therefore, the critical points off (X) are the pointsX
satisfying

CXN = �X(N −XTX). (7)

The solutions of (7) are stated explicitly in Proposi-
tion 3, the proof of which requires the following two
lemmas.

Lemma 1. If matrices A and N commute and N is
diagonal with distinct eigenvalues then A is diagonal.

Proof. If N = diag{�1, . . . , �p} thenAN − NA = 0
implies theij th element ofA satisfies(�i−�j )Aij =0.

�

Lemma 2. AssumeA1–A3 hold. A necessary condi-
tion for X to satisfy(7) is that it can be written in the
formX=QD where D is diagonal and Q is isometric
(QTQ= I ).
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Proof. Pre-multiplication of (7) byXT shows that
XT(�I−C)XN=�(XTX)2. Since the right-hand side
is symmetric,XT(�I − C)X commutes withN and
is diagonal by Lemma 1. Thus(XTX)2, and hence
XTX, is diagonal. (Recall� �= 0 by A1.) This im-
pliesX is of the formX=QD with QTQ= I andD
diagonal. �

Proposition 3 (Critical points). AssumeA1–A3 hold.
LetNii denote the ith diagonal element of N. A neces-
sary and sufficient condition forX = [x1, . . . , xp] to
be a critical point of(5) is that, for all i , either

(1) xi is the null vector, or
(2) xi is an eigenvector of C with corresponding

eigenvalue�i and‖xi‖2 =Nii − (�i/�)Nii .

Proof. From Lemma 2, writeX=QD whereD is di-
agonal andQ is isometric. Substituting into (7) yields
CQDN = �QD(N −D2). Let qi denote theith col-
umn ofQ. ThenCqiDiiNii=�qiDii(Nii−D2

ii ). Thus,
eitherDii = 0, in which casexi is the null vector, or
Cqi = �N−1

ii (Nii − D2
ii )qi , implying qi , and hence

xi , is an eigenvector ofC with associated eigenvalue
�i = �N−1

ii (Nii −D2
ii ). The proposition now follows

by noting‖xi‖2 =D2
ii . �

Proposition 3 shows that the only effect decreasing
� has on the location of the critical points is to cause
the columns of each critical point to shrink towards
and ultimately equal the null vector.

2.4. Local stability analysis of critical points

An immediate consequence of Proposition 3 is that
if X is a critical point of (5) then there exists an or-
thogonal matrixQ and a diagonal matrixD such that
X=Q[D 0]T and the columns ofQ are the eigenvec-
tors ofC, that is,� =QTCQ is diagonal. Moreover,
each real valued diagonal elementDii can take at most
three values; eitherDii =0 orD2

ii =Nii −�−1�iiNii .
This representation is used throughout this section.
The following lemma expresses the Hessian of (5)

about any critical point in block diagonal form, with
each block either 1×1 or 2×2. This enables the type
of critical point, such as a local minimum or saddle
point, to be determined by inspection.

Lemma 4 (Hessian). AssumeA1–A3hold. Let X be a
critical point of the cost functionf (X) defined in(5).
Let the orthogonal matrix Q and diagonal matrix D be
such that� =QTCQ is diagonal andX=Q[D 0]T;
such Q and D always exist. Then, the second direc-
tional derivativeg(�)= D2f (X)� of f (X) in the di-
rection� at the point X is given by the quadratic form

g(Q�)=
p∑
i=1

�i�
2
ii +

n∑
i=p+1

p∑
j=1

�ij�
2
ij

+
p−1∑
i=1

p∑
j=i+1

[�ij �ji]�(ij)[�ij �ji]T, (8)

where the scalars�i ,�ij ∈ R and matrices�(ij) ∈
R2×2 are

�i =Nii�ii − �(Nii − 3D2
ii ), (9)

�ij =Njj�ii − �(Njj −D2
jj ), (10)

�(ij)=[
Njj�ii−�(Njj−D2

jj
−D2

ii
) �DiiDjj

�DiiDjj Nii�jj−�(Nii−D2
ii

−D2
jj
)

]
.

(11)

Proof. Differentiating (6) yields

D2f (X)� = tr{�TC�N + ��T(−�N + �XTX

+X�TX +XXT�)}. (12)

For a given critical pointX, defineg(�) to be this
quadratic form. By Proposition 3, there exists an or-
thogonal matrixQ and a diagonal matrixD such that
� =QTCQ is diagonal andX =Q[D 0]T. Thus

g(Q�)= tr{�T��N − ��T�(N −D2)

+ ��T[D 0]T�T[D 0]T
+ ��T[D 0]T[D 0]�} (13)

=
n∑
i=1

p∑
j=1

(Njj�ii − �(Njj −D2
jj ))�

2
ij

+ �
p∑
i=1

p∑
j=1

(D2
ii�

2
ij +DiiDjj�ij�ji) (14)
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=
p∑
i=1

�i�
2
ii +

n∑
i=p+1

p∑
j=1

�ij�
2
ij

+
p−1∑
i=1

p∑
j=i+1

[�ij �ji]�(ij)[�ij �ji]T, (15)

where�i , �ij and�(ij) are as given in the lemma.�

Of most interest are the local minima off (X), de-
fined to be the critical points for which the quadratic
formg(�) in Lemma 4 is positive definite. Referring to
(8), the local minima are the critical points for which
�i >0, �ij >0 and�(ij) >0.
The following proposition proves that underA1–A5,

f (X) has a unique minimum, up to the sign of each
column, given by the minor components ofCarranged
in an order governed byN, unless� is too small, in
which case some of the columns will be zero instead.

Proposition 5 (Local minima). AssumeA1–A5 hold.
Definef (X) as in (5). Let � be the permutation of
{1, . . . , p} such thatN�(1)�(1) > · · ·>N�(p)�(p). Let
�1< · · ·< �n be the eigenvalues of C in ascending
order and letv1, . . . , vn be the corresponding unit
norm eigenvectors. ThenX = [x1, . . . , xp] is a local
minimum off (X) if and only if

x�(i) = ±	ivi ,

	i =
{√

N�(i)�(i)(1− �−1�i ), �i <�,
0 otherwise

(16)

for i = 1, . . . , p.

Proof. Let 
 denote the unique permutation matrix
arranging the diagonal elements of
TN
 in descend-
ing order. Theith diagonal element of
TN
 is thus
N�(i)�(i). Since
T
 = I , substitution shows that the
cost function (5) satisfies the symmetryf (X;N) =
f (X
;
TN
). By observing that theith column of
X
 is x�(i), it becomes clear from (16) that it suffices
to prove the proposition for the special case when the
diagonal elements ofN are already in descending or-
der.
Henceforth, assumei < j impliesNii >Njj . (Thus

�(i)= i.) LetX be an arbitrary critical point off (X).
LetQ andD be as in Lemma 4 so that� =QTCQ is
diagonal andX = Q[D 0]T. From Proposition 3, for
eachi there are at most two possibilities forD2

ii ; either

D2
ii = 0 or, provided�>�ii , D2

ii =Nii(1− �−1�ii ).
With this in mind, consider�i in (9) for i=1, . . . , p. If
Dii=0 then direct substitution shows that�i >0 if and
only if �ii >�. Similarly, ifD2

ii=Nii(1−�−1�ii ) then
�i >0 if and only if�ii <�. Next, consider�ij in (10)
for i=p+1, . . . , n andj =1, . . . , p. If Djj =0 then
�ij >0 if and only if�ii >�. If D2

jj=Njj (1−�−1�jj )

then�ij >0 if and only if�ii >�jj . Lastly, consider
�(ij) in (11) for 1� i < j�p. There are four cases.
If Dii = Djj = 0 then�(ij) >0 if and only if both
�ii >� and�jj >�. If Dii = 0 butD2

jj = Njj (1−
�−1�jj ) then�(ij) >0 if and only if both�ii >�jj

and(Nii−Njj )(�jj−�)>0. However, the last condi-
tion is always false: Becausei < j impliesNii >Njj

while D2
jj >0 implies �>�jj , (Nii − Njj )(�jj −

�) is always negative. IfD2
ii = Nii(1− �−1�ii ) but

Djj = 0 then�(ij) >0 if and only if both�>�ii

and�jj >�ii . The caseD2
ii = Nii(1− �−1�ii ) and

D2
jj=Njj (1−�−1�jj ) is slightly more involved. Sub-

stitution into (11) yields

�(ij)=[
Njj (�ii−�jj )+�D2

ii �DiiDjj

�DiiDjj Nii(�jj−�ii )+�D2
jj

]
.

(17)

A 2 × 2 matrix is positive definite if and only if its
trace and determinant are both positive. The trace and
determinant of�(ij) are

tr{�(ij)} = (Nii −Njj )(�jj − �ii )

+ �D2
ii + �D2

jj , (18)

|�(ij)| = (�jj − �ii )(NiiNjj�ii −NiiNjj�jj

+ �NiiD
2
ii − �NjjD

2
jj ) (19)

=(Nii −Njj )(�jj − �ii )(Nii(� − �ii )

+Njj (� − �jj )). (20)

The termNii(� − �ii ) + Njj (� − �jj ) is always
positive becauseD2

ii >0 andD2
jj >0 imply �>�ii

and�>�jj . Similarly,Nii − Njj >0 becausei < j .
Therefore|�(ij)|>0 if and only if�jj >�ii . Further-
more,�jj >�ii implies tr{�(ij)}>0. Thus, ifD2

ii =
Nii(1 − �−1�ii ) andD2

jj = Njj (1 − �−1�jj ) then
�(ij) >0 if and only if�jj >�ii .
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To prove one direction, assumeX is a local mini-
mum and defineQ, D and� as above. (Observe that
the ith column ofQ is an eigenvector ofC with asso-
ciated eigenvalue�ii .) First, assume no diagonal ele-
ment ofD is zero, so thatD2

ii =Nii(1− �−1�ii ) >0.
This necessitates�ii <� for i= 1, . . . , p. The condi-
tion �(ij) >0 then forces�ii <�jj for 1� i < j�p.
Finally, the condition�ij >0 forces�ii >�pp for
i = p + 1, . . . , n. That is,Xmust be given by (16) in
this case. (Recall�(i) = i by assumption.) Now, as-
sume instead that a diagonal element ofD is zero. Let
kbe the smallest integer such thatDkk=0. Then, since
D2
ii=Nii(1−�−1�ii ) >0 for i=1, . . . , k−1,�ii <�

for i = 1, . . . , k − 1. SinceDkk = 0, the condition
�(ij) >0 impliesDjj =0 for j = k+1, . . . , p. It also
implies�ii >� for i=k, . . . , p. Finally, the condition
�ij >0 implies�ii >� for i = p + 1, . . . , n. Again,
Xmust be given by (16), completing the proof in one
direction.
To prove the other direction, defineX as in (16).

(Recall�(i)=i by assumption.) It follows from Propo-
sition 3 thatX is a critical point. LetQ=[v1, . . . , vn]
and D = diag{	1, . . . , 	p}, so that� = QTCQ =
diag{�1, . . . , �n} is diagonal andX=Q[D 0]T. It fol-
lows that�i >0 because either�i >� in which case
Dii = 	i = 0 and thus�i >0, or �i <� in which case
D2
ii =	2i =Nii(1−�−1�ii ) and thus�i >0. (Note that

A6 excludes the case�i=�.) Similarly, it can be shown
that�ij >0 and�(ij) >0, proving that (16) is a local
minimum. �

Propositions 3 and 5 show that to find thep
minor components ofC it is necessary and suf-
ficient to choose�> �p, since then the essen-
tially unique local minimum of (5) corresponds
to the minor components ofC. Interestingly, if
� is also chosen to be less than�p+1 then all
the critical points associated with the principal
eigenvectors, which are nevertheless unstable, are
eliminated.
The eigenvalues of the Hessian about a critical point

influence the asymptotic convergence rate of an opti-
misation algorithm to that critical point and are thus
of interest.

Proposition 6 (Eigenvalues of Hessian). Assume
A1–A3 hold. Let X = [x1, . . . , xp] ∈ Rn×p be a

critical point of f (X) defined in(5). Assume1 that
no column of X is the null vector. Then eachxi is an
eigenvector of C; let �i denote its associated eigen-
value. The np eigenvalues of the Hessian off (X)
about the critical point X are

{2Nii(� − �i ), i = 1, . . . , p}
∪ {Nii(�j − �i ), i = 1, . . . , p, j = p + 1, . . . , n}
∪ {(Nii −Njj )(�j − �i ),1� i < j�p}
∪ {Nii(� − �i )+Njj (� − �j ),1� i < j�p}.

(21)

Proof. That eachxi is an eigenvector follows from
Proposition 3. Lemma 4 implies that the eigenvalues
of the Hessian are simply�i , �ij and the eigenvalues
of �(ij) (with�ii=�i). From Proposition 3, ifDii �= 0
then it must satisfyD2

ii =Nii(1−�−1�i ). Substituting
D2
ii into �i and�ij yields�i =2Nii(�−�i ) and�ij =

Njj (�i−�j ). (Note thati andj have been interchanged
in the term corresponding to�ij in (21).) Substitution
of Dii into �(ij) and taking its trace and determinant
yields (18) and (20), where�ii=�i and�jj=�j . Since
�D2

ii + �D2
jj =Nii(� − �i )+Njj (� − �j ), it follows

from (18) and (20) that the eigenvalues of�(ij) are
(Nii −Njj )(�j − �i ) andNii(� − �i )+Njj (� − �j ).
This completes the proof.�

2.5. Compact sub-level sets

The following lemma establishes that (5) is lower
bounded. Thus, its essentially unique local minimum
(16) is also its global minimum. The lemma also
proves the technical condition that (5) has compact
sub-level sets.

Lemma 7. AssumeA1 holds. The cost function(5) is
lower bounded and, for any constantc∈ R, its sub-
level set{X : f (X)�c} is compact.

Proof. Function (5) can be written as

f (X)= 1
4 tr{�N2 + 2XTCXN − 2�XTXN

+ �XTXXTX} (22)

1 It is straightforward to modify the proof so as to find the
eigenvalues of the Hessian if one or more columns ofX are zero.
Indeed, if eitherDii = 0 or Djj = 0 then �(ij) reduces to a
diagonal matrix.



J.H. Manton et al. / Systems & Control Letters 54 (2005) 759–769 765

fromwhich it is clear thatf (X) is a fourth degree poly-
nomial in the elements ofX. For largeX, the dominant
term is (�/4) tr{XTXXTX} which is lower bounded
by zero and has compact sub-level sets. The lemma
now follows. �

3. The minor component flow

Proposition 5 established that the essentially unique
local minimum of the cost function (5) corresponds to
the minor components ofC. It is therefore natural to
consider the corresponding gradient flow, which the
following lemma shows is precisely (2). For an intro-
duction to gradient flows, see[7].

Lemma 8 (Gradient flow). Define f (X) as in (5).
Then(2) is the negative gradient flow

Ẋ = −gradf (X), (23)

where the gradient is with respect to the Euclidean
inner product〈A,B〉 = tr{BTA} on matrix space.

Proof. It follows from (6) that

Df (X)� = 〈CXN − �X(N −XTX), �〉. (24)

Thus gradf (X) = CXN − �X(N − XTX), proving
the lemma. �

The main result of this paper is that (2) is a minor
component flow. In order to state this rigorously, the
definition of a minor component flow is first given.

Definition 9 (Minor component flow). The flow Ẋ =
f (X,C) onRn×p is a minor component flow for ma-
tricesC belonging to the classC ⊂ Rn×n if the fol-
lowing hold:

(1) For any initial conditionX0 and anyC ∈C, a
solutionX(t) of the flowẊ=f (X,C) satisfying
X(0)=X0 exists and is unique for allt�0.

(2) The limitX∞ = lim t→∞X(t) always exists.
(3) If X0 is a generic initial condition, then thep

columns ofX∞ are orthogonal to each other and
each one is an eigenvector associated with one of
the p smallest eigenvalues ofC, counting multi-
plicities.

Theorem 10(Minor component flow). Let n and p be
arbitrary integers withn�p�1. For any real valued
�>0,defineC� to be the set of all symmetric matrices
in Rn×n whose eigenvalues are distinct, are not equal
to �, and at least p of them are less than�. Then, for
any diagonal matrixN ∈ Rp×p with distinct positive
eigenvalues, the flow(2) is a minor component flow
for C ∈C�.

The proof of Theorem 10 relies on the following
standard result.

Lemma 11. Consider the negative gradient floẇX=
−gradf (X) and letX0 be an arbitrary initial con-
dition. If f (X) is a smooth, lower bounded function
with compact sub-level sets, then there exists a unique
trajectoryX(t) defined and bounded for allt�0 and
satisfyingX(0)=X0.Moreover, if the critical points of
f (X) are isolated, and if the Hessian off (X) at every
critical point is non-singular, thenX∞=lim t→∞X(t)

exists and is a critical point off (X), and ifX0 is cho-
sen generically thenX∞ is a local minimum off (X).

Proof of Theorem 10. Lemma 8 established that (2)
is the negative gradient flow of the cost function
f (X) defined in (5). Lemma 7 provedf (X) is lower
bounded and has compact sub-level sets. Being a
fourth degree polynomial in the elements ofX, f (X)
is smooth. IfC ∈C�, �>0 andN is diagonal with
distinct positive eigenvalues, then A1–A5 hold. Thus,
Proposition 3 implies that the critical points off (X)
are isolated. Inspection of (21) reveals that the eigen-
values of the Hessian about any critical point are all
non-zero because A3–A5 hold. Proposition 5 shows
that the only local minima are those corresponding
to the minor components ofC. Therefore, Lemma 11
implies that all three requirements in Definition 9 are
satisfied. �

4. Numerical examples and convergence rates

The results of this section are informal, the inten-
tion being merely to give a feel for how�, N andC
influence the convergence rate of the proposed minor
component flow (2).
It is assumed for this section only that

• C = diag{�1, . . . , �n}, where�1< · · ·< �n,
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Fig. 1. Graph of the evolution of the errors�1(t), . . . , �3(t),
defined in (25), of the flow (2) with�=6, C=diag{ }1,2,5,8,11
andN = diag{ }3,2,1. Initial point was chosen randomly.

• N=diag{N11, . . . , Npp}, whereN11> · · ·>Npp,
• �p <�.

This causes no loss of generality because replacingX
with UX
 leaves the form of (2) unchanged ifU is
an orthogonal matrix and
 a permutation matrix.
Under these assumptions, Theorem 10 (see also

Proposition 5) shows that the essentially unique stable
equilibrium point of (2) isX = [I 0]T. Let vi denote
the ith column of this stable equilibrium point, so that
if X(t) is the value ofX in the flow (2) at timet then
it can be assumed that, by appropriate choice of the
initial conditionX(0), the ith columnxi(t) of X(t)
converges tovi . The distancexi(t) is from its limit vi
can be measured by the angle between them, given by

�i (t)= arccos
xi(t) · vi

‖xi(t)‖ ‖vi‖ , (25)

where· denotes vector dot product.
The eigenvalues of the linearised flow about the

stable equilibrium point are precisely the eigenvalues
of the Hessian about the equilibrium point, and are
given in (21). Since the Hessian is positive definite
about the stable equilibrium point,�i (t) converges to
zero asymptotically like e−�t where� is related to the
eigenvalues of the Hessian and depends oni in general.
Figs. 1–3bear testament to this; the log of the error
decreases linearly with time.
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Fig. 2. Graph of the evolution of the errors�1(t), . . . , �3(t),
defined in (25), of the flow (2) with�=6, C=diag{ }1,2,3,8,11
andN = diag{ }3,2,1. Initial point was chosen randomly.
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Fig. 3. Same as in Fig.2 except a different initial point was chosen
randomly.

Define the largest error to be maxi �i (t). Its rate
of decrease is dominated by the smallest eigenvalue
in the set (21). Clearly, sinceN11> · · ·>Npp and
�1< · · ·< �p, the smallest eigenvalue in (21) must
belong to the set

{2Npp(� − �p),Npp(�p+1 − �p),
(N11−N22)(�2 − �1), . . . ,
(Np−1,p−1 −Npp)(�p − �p−1)}. (26)
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Fig. 4. Graph demonstrating the relative insensitivity of the flow
to changes in the parameter�. Here,C = diag{ }1,2,3,8,11 and
N = diag{ }3,2,1.

Usually, such as if��(�p + �p+1)/2, the minimum
of (26) does not depend on�. Thus, it can be expected
that the largest error decreases at a rate relatively in-
sensitive to�. Fig. 4 supports this argument. When
choosing� though, recall from Proposition 3 that one
mild advantage of choosing� to lie between�p and
�p+1 is that the number of unstable critical points is
reduced.
DoublingN causes all the eigenvalues in (21) to be

doubled. Therefore, the asymptotic convergence rate
increases by a factor of two (that is, the rate e−�t

becomes e−2�t ).
Observe from (26) that if�i is close to�i−1 then

Ni−1,i−1 − Nii must be large if the error is to con-
verge to zero at a reasonable rate. If the eigenvalue
distribution ofC is unknown, as is usually the case,
then a sensible choice forN is one such that the differ-
encesNi−1,i−1 −Nii are equal for alli; for instance,
N = diag{p, p − 1, . . . ,1} is suitable.
Lastly, the possibility of replacingC with C + �I

to improve the convergence rate is ruled out. IfC
is replaced byC + �I and � is replaced by� + �
then eigenvalues (21), and in particular (26), are un-
changed. Therefore, the asymptotic convergence rate
is insensitive to shifts inC.

5. Connection with principal component flows

This section shows that the Oja–Brockett flow (1)
is a special case of the minor component flow (2). It

also derives a novel principal component flow based
on (2).
For convenience, the Oja–Brockett flow is restated

here but with different variable names,

Ż = AZN − ZNZTAZ, Z ∈ Rn×p, (27)

whereA∈ Rn×n andN ∈ Rp×p are positive definite
symmetric matrices with distinct eigenvalues. The
columns ofZ converge to the eigenvectors associ-
ated with thep largest eigenvalues ofA in an order
determined byN; see[32] for a proof.

Theorem 12. Under the linear coordinate transfor-
mation

X = �−1/2A1/2ZN1/2, (28)

which is only defined if both A and N are positive def-
inite symmetric matrices, the Oja–Brockett flow(27)
becomes

Ẋ = (A− �I )XN + �X(N −XTX), (29)

which is the minor component flow(2)withC=�I−A
and� = �.

Proof. DefineX as in (28). Then

Ẋ = �−1/2A1/2ŻN1/2 (30)

=AXN − �XXTX (31)

=(A− �I )XN + �X(N −XTX), (32)

where (31) is obtained by substituting (27) into (30).
�

Since the Oja–Brockett flow (27) requiresA and
N to be positive definite and symmetric, transforma-
tion (28) from the Oja–Brockett flow to the minor
component flow (2) is always valid. However, as is
now shown, the reverse transformation from (2) to
(27) is not always possible, meaning that the minor
component flow (2) is a strict generalisation of the
Oja–Brockett flow. The reverse ofC = �I − A and
� = � is A= �I −C and� = �. SinceAmust be pos-
itive definite for (28) to be defined (and for (27) to be
stable), the reverse transformation is only valid if� is
larger than the largest eigenvalue ofC.
Since (2) is a generalisation of (27), it is natural to

consider using (2) withC=�I−A to find the principal



768 J.H. Manton et al. / Systems & Control Letters 54 (2005) 759–769

components ofA. Since there is no requirement for
C to be positive definite in (2), the choice of� is
relatively unimportant. Indeed, the informal analysis
in Section 4 suggests� does not affect the asymptotic
convergence rate.

6. Conclusion

The novel minor component flow (2) was derived
and analysed. It was shown to be a generalisation of
the Oja–Brockett principal component flow (1). The
derivation of (2) was based on the observation that the
penalty term in the cost function (4) has a benign effect
on the critical points. Section 2 performed a local sta-
bility analysis about all critical points of a mild mod-
ification of this penalised cost function, showing that
the only local minima are those corresponding to the
minor components ofC. Section 3 derived the flow (2)
as a gradient flow minimising this modified cost func-
tion. Moreover, pointwise convergence of this flow to
the minor components ofC was proved. The effect of
changing�, N andC on the convergence rate of the
flow was investigated in Section 4. Section 5 eluci-
dated the connection between (2) and theOja–Brockett
flow. It also stated that replacingC by −C in (2) re-
sults in a satisfactory principal component flow.
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Appendix A. The orthonormal penalty function

The reason the cost function (4), whose penalty
term forcesX to be orthonormal, is not used is due
to the possibility of critical points unrelated to the
eigenvectors ofC, as is now shown.
From Section 2, the critical points of (4) with� =

1 are the solutions ofCXN = X(I − XTX). Thus
XTCXN = XTX(I − XTX) and CXNXT = (I −
XXT)XXT both hold. AssumeC andN are both di-
agonal with distinct elements. It follows that both
XTX(I−XTX) and(I−XXT)XXT are diagonal. Un-
fortunately, this is not enough to conclude thatXTX

is diagonal, as required if the columns ofX are to
correspond to eigenvectors ofC. For example, ifX is
any two-by-two matrix with singular values

√
s and√

1− s, thenXTX(I − XTX) = (I − XXT)XXT =
s(1− s)I .
The above observation can be used to construct ex-

amples of undesired critical points as follows. LetU
andVbe arbitrary orthogonal two-by-twomatrices and
setS = diag{√s,√1− s} for some constants. Sub-
stituteX=USV T into CXN =X(I −XTX) to yield
S(UTCU)S=s(1−s)(V TN−1V ). Even thoughCand
N are assumed to be diagonal, note thatUTCU and
V TN−1V are arbitrary positive definite matrices. In
particular, ifVandNare chosen at random, withNpos-
itive definite to satisfy A3, a solution ofS(UTCU)S=
s(1− s)(V TN−1V ) is found simply by taking the sin-
gular value decomposition ofS−1(V TN−1V )S−1 and
reading off suitable values forU andC. In this way, di-
agonal matricesC andN can be found such that there
exists a critical pointXwhose columns are not related
to the eigenvectors ofC.
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