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Abstract

It is common in wireless communications to perform some form of linear precoding operation on the source signal prior to
transmission over a channel. Although the traditional reason for precoding is to improve the performance of the communication
system, this paper draws attention to the fact that the receiver can identify the impulse response of the channel without any
prior knowledge of the transmitted signal simply by solving a system of polynomial equations. Since different precoders lead
to different systems of equations, this paper addresses the fundamental issue of determining which classes of linear precoders
lead to a system of equations having a unique solution. In doing so, basic properties of polynomial equations which are
useful for studying other identifiability issues commonly encountered in engineering and the applied sciences are presented.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The need often arises for the estimation of the
impulse response{h0, . . . , hl} of the noise-corrupted
convolutive channel

yi =
l∑
k=0

hkxi−k + wi, i = . . . ,−1,0,1, . . . , (1)
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where{xi}∞i=−∞ is the transmitted signal,{yi}∞i=−∞the
received signal and{wi}∞i=−∞ an unobserved noise
signal, typically assumed to be white Gaussian.
Since the transmitted signal is unknown to the
receiver, this channel identification problem can
only be solved if the receiver knows some prop-
erty about the transmitted signal, such as a sta-
tistical property [7,18] or finite alphabet prop-
erty [5,9,19] of {xi}∞i=−∞. This paper studies a
new method of identifying the channel based
on prior knowledge of the algebraic structure of
{xi}∞i=−∞.
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The motivation for this work is that the use of
linear precoders in wireless transmission systems is
quite common; see[8,11–13,15,20]and the references
therein. As noted in[10,15,20], linear precoders in-
troduce an algebraic structure which can be exploited
at the receiver to estimate (or refine a previously ob-
tained estimate of) the channel. Estimating the chan-
nel in this way is called algebraic channel identifica-
tion because no statistical, finite alphabet or any other
properties besides the algebraic structure of the trans-
mitted signal are assumed.
The main contribution of this paper is to further the

understanding of what classes of linear precoders in-
troduce sufficient algebraic structure to make it feasi-
ble for the receiver to identify the channel.
This paper differs from others in two important

respects. Often the main mathematical tools used
to study precoders are linear algebra andz-domain
analysis, hence only a restricted class of precoders
can be studied[20]. The present paper uses results
from algebraic geometry to study arbitrary linear pre-
coders. Moreover, the definition of identifiability is
often based on whether or not a specific algorithm can
identify the channel whereas the present paper takes
the definition to be whether or not it is theoretically
possible to identify the channel.
As will be shown in subsequent sections, the al-

gebraic channel identifiability problem reduces to
determining if a system of polynomial equations is
invertible. This fundamental problem is known to be
non-trivial [17]. Therefore,the secondary contribu-
tion of this paper is to review a number of results
from algebraic geometry which facilitate the determi-
nation of the invertibility of a system of polynomial
equations.
The paper is organised as follows. Section 2

states the algebraic identifiability problem. Section 3
sketches fundamental properties of polynomial maps
required in later sections. Section 4 derives the first
main result, Theorem 7, which states the original
identifiability problem (complete with additive noise
and scale ambiguity) can be reduced, without any loss
of generality, to a significantly simpler identifiability
problem (one without ambiguity and without noise).
The second main result, Proposition 8 and Theorem
9, is presented in Section 5. It is proved that, with the
exception of some non-generic precoders, the ability
of a precoder to enable the receiver to identify the

channel depends only on the size of the precoder ma-
trix and not on its elements. Section 6 concludes with
a summary of the main results.

2. System model

The linearly precoded communication system con-
sidered in this paper is as follows. Assumep complex
valued source symbols are transmitted over a finite im-
pulse response channel of orderl by first linearly pre-
coding them to formn+ l symbols. Lets ∈ Cp denote
thep source symbols andx=[x1−l , . . . , xn]T ∈ Cn+l
the linearly precoded symbols; by definition,x = Ps
for some precoder matrixP ∈ C(n+l)×p. If x is trans-
mitted through a channel whose impulse response is
h̃ = [h0, . . . , hl]T ∈ Cl+1 then the received vector
y = [y1, . . . , yn]T ∈ Cn of lengthn is related tox by
the convolution

yi =
l∑
k=0

hkxi−k + wi, i = 1, . . . , n, (2)

wherewi denotes a sequence of random variables
modelling the additive noise. The actual distribution
of the noise is relatively unimportant in this paper; it
suffices for the distribution to be absolutely contin-
uous with respect to Lebesgue measure (see Section
3.3). Note that Gaussian noise satisfies this condition.

Remark. The reason for the tilde is that the vector
h = [h1, . . . , hl]T is introduced in Section 4 since it
suffices later to assume thath0 = 1 in (2).

It is assumed throughout that the precoder matrix
P has full column rank and thatn�p. This is always
the case in practice for otherwise the source vectors
could not be recovered from the outputy even if the
channelh̃ were known.
In the literature[18], (2) is often written in ma-

trix form as y = H̃x + w = H̃Ps + w where H̃ ∈
Cn×(n+l) is the upper triangular Toeplitz matrix hav-
ing [hl, hl−1, . . . , h0,0, . . . ,0] as its first row.
Since it is assumed that onlyy is known to the

receiver, the equationy = H̃Ps + w is not a linear
equation but a bilinear equation iñh ands. To make
this distinction explicit, the functioñF(s, h̃) = H̃Ps
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is introduced, so that

y = F̃ (s, h̃)+ w. (3)

Given onlyy, the channel̃h can be estimated in the

least-squares sense by finding anˆ̃h which minimises

inf ŝ‖y− F̃ (ŝ, ˆ̃h)‖2; an algorithm for doing so is given
in [10]. Roughly speaking, the channel will be said
to be algebraically identifiable if the least-squares es-
timate is unique. However, there are two refinements
that must be made to this definition. The first refine-
ment is to allow for an unknown scaling factor in the

channel estimate; if̃̂h is a least-squares estimate then

so too is� ˆ̃h for any non-zero� ∈ C, a consequence
of the equalityF̃ (�s, �−1h̃)= F̃ (s, h̃). The second re-
finement is to take into account the dependence on the
actual symbols transmitted. For instance, ifs is the
zero vector then it is impossible to identify the chan-
nel. These refinements are made in Section 4 since the
results of Section 3 are required.

3. Polynomial maps

SinceF̃ in (3) is a bilinear map, and hence a poly-
nomial map, the study of such maps is the key to un-
derstanding the intricacies of channel identification.
Although the results in this section are known in

the algebraic geometry community and are thus stated
here without proof, it is not easy to find explicit state-
ments of them in the literature. The reader is referred
to [4,6,14,16]for more information.
Throughout,‖ · ‖ denotes the Euclidean norm and

B(z; r) denotes the open ball centred atzwith radius
r. Topological concepts such as openness and dense-
ness are with respect to the usual topology (and not
with respect to the Zariski topology[3] often used in
algebraic geometry).

3.1. Generic number of pre-images and generic
points

Let F : Cm → Cn be a polynomial map. The pre-
images of a pointy ∈ Cn underF are the elements of
the set{z ∈ Cm : y = F(z)}. Theorem 1 states that,
for mosty, the number of pre-images is constant, and
moreover, that the pre-images behave in a predictable
way if y is perturbed slightly.

Theorem 1. LetF : Cm → Cn be a polynomial map
and letV = F(Cm) ⊂ Cn denote the closure of its
image. There exists a unique numberN , possibly infi-
nite, and a polynomialh: Cn → C used to define the
setW ={y ∈ V : h(y) �= 0}, which satisfies the follow-
ing. (1)The set W is open and dense in V. (2) For any
y ∈ W , there are precisely N pre-images ofy under F.
(3) If N is finite, let z1 ∈ Cm be such thatF(z1) ∈ W
and let z2, . . . , zN be the otherN − 1 pre-images,
that is, F(z1) = · · · = F(zN). Then for any�>0
there exists a�>0 such that for anyz ∈ B(z1; �)
there are precisely N pre-images ofF(z), and more-
over, each setB(zi; �) contains a pre-image ofF(z)
for i = 1, . . . , N .

Remark. Part 3 of Theorem 1 can be replaced by the
stronger requirement that the restriction ofF to the
set{z: F(z) ∈ W } is a covering map; see[1, Section
10.4] for the definition of a covering map.

Pre-images ofF(z) underF for a given pointz ∈
Cm feature prominently in this paper. DefineN and
h as in Theorem 1; it follows that the polynomial
g: Cm → C defined byg(z)=h(F (z)) is not the zero
polynomial, and moreover, ifg(z) �= 0 thenF(z) has
preciselyN pre-images. This motivates the following
definitions.
A property which holds for allz for whichg(z) �= 0

for some non-zero polynomialg is said to hold for
genericz; note that{z ∈ Cm: g(z) �= 0} is open and
dense inCm. The numberN in Theorem 1 is called the
generic number of pre-imagesof F . Any z for which
there exists aWdefined as in Theorem 1 and such that
F(z) ∈ W is called ageneric pointof F . A generic
point should be thought of as a well-behaved point
in the sense that part 3 of Theorem 1 holds about a
generic point.
Sometimes, it is convenient to partitionz as z =

(z1, z2). If a property holds for genericz1 andz2 then
it clearly holds for genericz. Lemma 2 states the con-
verse; if a property holds for genericz then, for a
genericz1, it holds for genericz2 (and, for a generic
z2, it holds for genericz1).

Lemma 2. Let g: Cm × Cn → C be a non-zero
polynomial. There exists a non-zero polynomial
g1: Cm → C such that, for all z1 ∈ Cm satisfy-
ing g1(z1) �= 0, there exists a non-zero polynomial
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g2: Cn → C (possibly depending onz1) such that
g2(z2) �= 0 impliesg(z1, z2) �= 0.

3.2. Invertible, rationally invertible and full rank
maps

A polynomial mapF is invertible if, for all z, F(z)
has one pre-image. It isrationally invertible if F(z)
has one pre-image for genericz. It hasfull rank if the
generic number of pre-images ofF(z) is finite. It is
known thatF is invertible if and only if there exists a
polynomial mapG such thatG ◦ F , the composition
of G andF , is the identity map. Similarly,F is ra-
tionally invertible if and only if there exists a rational
functionG such thatG ◦ F is the identity map over
its domain of definition[3,14]. Proposition 3 below
justifies the term full rank; it requires the following
definitions.
Let f1, . . . , fn be polynomials fromCm to C and

define the polynomial mapF : Cm → Cn so that
F(z)=(f1(z), . . . , fn(z)) ∈ Cn for z ∈ Cm. TheJaco-
bian matrix Jof F is a polynomial matrix whoseij th
entry is the polynomial�fi/�zj . It has a well-defined
rank as a matrix over the ring of polynomials.

Proposition 3. Let J be the Jacobian matrix of the
polynomial map F. The generic number of pre-images
of F is finite if and only if J has full column rank.

Remark. Proposition 3 is a consequence of the
stronger result that the rank ofJ equals the largest
number of algebraically independent polynomials in
the set{f1, . . . , fn}; see[14].

The evaluation of the Jacobian matrix at a point
z is denoted byJz and is a complex valued ma-
trix. The rank of Jz never exceeds the rank ofJ ,
and for genericz, the ranks are equal. Thus,F has
full rank if and only if there exists az such thatJz
has full column rank. Another practical test is the
following.

Proposition 4. Let F : Cm → Cn be a polynomial
map and assume there exists a pointy ∈ Cn such
that the number of pre-images N ofy under F satisfies
1�N <∞. Then F has full rank, and moreover, if
m= n then the generic number of pre-images of F is
greater than or equal to N.

Unfortunately, testing for rational invertibility is
harder[14,17]because it does not suffice to show that
there is a single pre-image ofF(z) for a particular
z. One complication is the possibility of a pre-image
hiding at infinity.1 Later, in Proposition 12, a suffi-
cient condition for a map to be rationally invertible is
derived.

Remark. Testing for invertibility is also non-trivial;
it has long been conjectured that a polynomial map
F : Cn → Cn is invertible if and only if the determi-
nant of its Jacobian matrix is a non-zero constant[2].

3.3. Randomness and least-squares solutions

In the presence of additive noisew, the polynomial
equationy = F(z) + w is often solved in the least-
squares sense: findẑ to minimise‖y−F(ẑ)‖2. A fun-
damental question is whether or not there is a unique
minimum. Proposition 5 implies that providedw is
chosen at random, the number of minimising points
is equal to the generic number of pre-images ofF
almost surely. As will be seen later, this means that
it suffices to ignore the additive noise when studying
identifiability issues.
A vectorw ∈ Cn is chosen at randomif the vec-

tor [RwT IwT]T formed from the real and imaginary
components ofw is a realisation of a 2n-dimensional
real random vector whose probability distribution is
absolutely continuous with respect to 2n-dimensional
Lebesgue measure.

Proposition 5. Let F : Cm → Cn be a polynomial
map, let z ∈ Cm be chosen arbitrarily and letw ∈ Cn

be chosen at random.Define � ⊂ Cm to be the set of
all pointsẑ ∈ Cm which minimise‖F(z)+w−F(ẑ)‖2.
Then,with probability one, there exists āy in the image
of F such that�={ẑ ∈ Cm: ȳ=F(ẑ)}. Furthermore,
for any polynomialh: Cn → C which is not identically
zero on the image ofF, h(ȳ) �= 0with probability one.

1 By definition, F(z) has a pre-image at infinity if there is a
sequence{zk}∞k=1 which diverges(‖zk‖ → ∞) yetF(zk)→ F(z).
For instance,F(z1, z2) = (z1z2, z2(z2 − 1)) generically has two
pre-images butF(z1, z2)= (1,0) has only one solution. The other
solution is hiding at infinity;F(k,1/k) = (1,1/k(1/k − 1)) →
(1,0).
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Remark. In fact, the ȳ in Proposition 5 is the Eu-
clidean projection ofy onto theclosure of the image
of F .

4. Algebraic channel identifiability

This section uses the results of the previous section
to define precisely the concept of algebraic identifia-
bility introduced in Section 2.A technique for convert-
ing the original identifiability problem into a simpler
one without scale ambiguity or additive noise is given.
As in Section 2, lety= F̃ (s, h̃)+ w be the received

vector. For a giveny, define� ⊂ Cl+1 to be the set
of all least-squares estimates of the channel. That is,
ˆ̃h ∈ � if and only if there exists an̂s ∈ Cp such that

(ŝ, ˆ̃h) is a global minimum of the cost function

‖y − F̃ (ŝ, ˆ̃h)‖2. (4)

Note that uniqueness ofŝ is not required.

Since ˆ̃h ∈ � implies� ˆ̃h ∈ � for any non-zero� ∈
C (see Section 2), it is more interesting to study equiv-
alence classes of�, whereh̃1, h̃2 ∈ � are equivalent
if there exists a non-zero� ∈ C such thath̃1 = �h̃2.
(Such equivalence classes ofCl+1 with the origin
omitted forml-dimensional complex projective space
[3,10].) DefineN(s, h̃,w) to be the number of ele-
ments up to equivalence of�; here the dependence of
� on y, and hence ons, h̃ andw, is made explicit.
Observe that, for a given source vectors, channel

vector h̃ and noise vectorw, if N(s, h̃,w) = 1 then
the receiver can identify the channelh̃ uniquely up to
an unknown complex valued scaling factor based only
on the received vectory= F̃ (s, h̃)+ w by computing
the least-squares estimate ofh̃. It is important then to
study howN(s, h̃,w) depends ons, h̃ andw. Theorem
7 below proves thatN(s, h̃,w) is constant for almost
all s, h̃ andw, and moreover, that this constant value
can be determined by studying a related but simpler
identifiability problem.
The statement of the theorem requires the polyno-

mial mapF : Cp+l → Cn defined as

F(s,h)= F̃ (s, [1 hT]T)=HPs,
s ∈ Cp, h = [h1, . . . , hl]T ∈ Cl , (5)

whereH ∈ Cn×(n+l) is the upper triangular Toeplitz
matrix with first row [hl, hl−1, . . . , h1,1,0, . . . ,0].
Note thaty = F(s,h) is simply (2) withh0 = 1.
To motivate the theorem, consider the four sets

X1(y)= {(s, h̃): F̃ (s, h̃)= y},
X2(y)= {h̃: ∃s, F̃ (s, h̃)= y}, (6)

X3(y)= {(s,h): F(s,h)= y},
X4(y)= {h: ∃s, F (s,h)= y}, (7)

wheres ∈ Cp, h̃ ∈ Cl+1 andh ∈ Cl . Observe that,
in the noise free case(w = 0), X2(y) equals the set
of least-squares channel estimates�. When noise is
present then Proposition 5 implies that, with proba-
bility one, there exists āy such that the set of global
minima of (4) equalsX1(ȳ), hence� =X2(ȳ).
DefineN2(y) to be the number of elements inX2(y)

up to equivalence and defineN3(y) andN4(y) to be
the number of elements inX3(y) andX4(y) respec-
tively. As is reasonable to expect, Lemma 6 proves
that for mosty, N3(y) = N4(y). Moreover, provided

none of the channel estimatesˆ̃h ∈ X2(y) have their
first element equal to zero,N2(y)=N4(h). Theorem 7
proves that this is almost always the case; the number
of least-squares channel estimates up to equivalence
almost surely equals the number of pre-images ofy
underF .

Lemma 6. DefineF(s,h), X3(y), N3(y) and N4(y)
as above. Define N to be the generic number of pre-
images of F. There exists a polynomial h which is not
identically zero on the image of F and such that, for
anyy in the closure of the image of F, h(y) �= 0 implies
thatN3(y)=N4(h)=N .Furthermore, if F has full rank
then it suffices to choose h as in Theorem1, in which
case both thes-coordinates and theh-coordinates of
the points inX3(y) are distinct ifh(y) �= 0.

Proof. Assume first thatF has full rank and chooseh
as in Theorem 1, so thath(y) �= 0 impliesN3(y)=N .
Assume to the contrary that there exist distinct points
(s1,h1), (s2,h2) ∈ X3(y) with eithers1 = s2 or h1 =
h2.Due to the bi-affine structure ofF , if h1= h2 then
F(s1,h1)=F(s1+�(s2−s1),h1) for all � ∈ C. Simi-
larly, if s1=s2 thenF(s1,h1)=F(s1,h1+�(h2−h1))
for all � ∈ C. Both cases contradictN3(y)=N <∞,
proving that thes andh coordinates are distinct, in
turn proving thatN3(y)=N4(y).
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Assume now thatF does not have full rank. Define
the varietyW ={(s,h): rank{HP }<p} and note that
dimW <p+ l because it is assumed in Section 2 that
P has full column rank. Defineh as in Corollary 16
(Appendix A) so thath(y) �= 0 implies that there are
an infinite number of pre-images ofy lying outside
W . Let (s1,h1) and(s2,h2) be two such pre-images,
that is,F(s1,h1)=H1Ps1=H2Ps2=F(s2,h2) with
bothH1P andH2P having full column rank. Clearly,
if h1 = h2 thens1 = s2. ThusN4(y)= ∞ =N . �

Theorem 7. As above, letN(s, h̃,w) denote the num-
ber of least-squares estimates of the channel up to
equivalence. Define N to be the generic number of
pre-images of the polynomial map F defined in(5).
If there is no noise(w = 0) then, for generics and
h̃, N(s, h̃,0) = N . If additive noise is present then,
for w chosen at random and for arbitrarys and h̃,
N(s, h̃,w)=N with probability one.

Proof. The proof continues on from the discussion
preceeding Lemma 6. It is proved below that there
exists a polynomialh which is not identically zero
on the image ofF̃ such that, for anyy in the clo-
sure of the image of̃F, h(y) �= 0 impliesN2(y)=N .
This proves the theorem in the noise free case because
N(s, h̃,0)=N2(F̃ (s, h̃)), and moreover, Lemma 2 im-
plies that, for generics and h̃, h(F̃ (s, h̃)) �= 0.It also
proves the theorem when noise is present because,
with probability one,N(s,h,w) = N2(ȳ) where ȳ is
defined in Proposition 5, and moreover, Proposition 5
proves thath(ȳ) �= 0 with probability one.
Consider first the caseN = ∞. DefineW to be the

set of all points(s, h̃) with the first element of̃h zero.
Corollary 16 applied toF̃ proves that there exists a
polynomial h1 such thath(y) �= 0 implies thaty is
contained in the image ofF . Lemma 6 proves that
there exists anh2 such that, providedy is in the image
of F , h2(y) �= 0 impliesN4(y) = ∞. Defineh(y) =
h1(y)h2(y). Thenh(y) �= 0 impliesN4(y)= ∞ which
in turn impliesN2(y)= ∞ becauseN2(y)�N4(y).
The case ofN finite is similar but requires the

stronger condition in Corollary 16. It is proved below

that dimF̃ (W)<dim F̃ (Cp+l+1) if N is finite. (Note
that theN in Corollary 16 is still infinite becausẽF
cannot have full rank due to the scale ambiguity.) Thus,
sinceN2(y)=N4(y) if no element ofX1(y) lies inW ,
Corollary 16 shows that there exists a polynomialh1

such thath1(y) �= 0 impliesN2(y)=N4(y). Defineh2
as in Lemma 6 so thath2(y) �= 0 impliesN4(y)=N .
Thus,h(y) = h1(y)h2(y) �= 0 impliesN2(y) = N , as
required.

To prove dimF̃ (W)<dim F̃ (Cp+l+1) if N is finite,
define the sets

U1 = {y: y = F̃ (s, [0 0 hT]T), s ∈ Cp,h ∈ Cl−1},
(8)

U2 = {y: y = F̃ (s, [0 1 hT]T), s ∈ Cp,h ∈ Cl−1},
(9)

U = {y: y = F̃ (s, [0 hT]T), s ∈ Cp,h ∈ Cl}, (10)

V = {y: y = F̃ (s, [1 hT]T), s ∈ Cp,h ∈ Cl}. (11)

SinceV is the image of the full rankmapF , Lemma 15
implies that dimV̄ =p+l. Lemma 15 also implies that
dim Ū1<p+l and dimŪ2<p+l. SinceU=U1∪U2,
dim Ū <p+l too. In particular, dimŪ <dim V̄ . Since

F̃ (Cp+l+1)= U ∪ V , F̃ (Cp+l+1)= Ū ∪ V̄ = V̄ , the
last equality a consequence ofF̃ (Cp+l+1) being an
irreducible variety (Lemma 15) and dim̄U <dim V̄ .

Thus dimF̃ (W)= dim Ū <dim V̄ = dim F̃ (Cp+l+1),
as required. �

Remark. Theorem 7 considered the noise free case
as well as the additive noise case because, on its own,
the statement thatN(s,h,w)=N with probability one
for arbitrarys andh hides the need for a persistence
of excitation condition onsand a regularity condition
on h if the resulting channel estimate is to be mean-
ingful. Specifically, assume that the precoder is such
thatN = 1 in Theorem 7. Ifs= 0 and/orh = 0 then
the channel output is just noise:y = w. Even though
(4) will almost surely have a unique minimum up to
scale ifw is chosen at random (that is,N(0,0,w)=1
almost surely), it is clearly not possible to identify the
channel in any sensible way. This is reflected in the
noise free statement thatN(s,h,0)=∞ if s=0 and/or
h=0. The importance of the noise free result is that it
shows that the persistence of excitation and regularity
conditions are very mild; for generics and generich,
N(s,h,0)= 1 in this example.

The implication of Theorem 7, irrespective of
whether or not additive noise is present, is that the
following three cases are exhaustive. The channel is
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identifiableif F in (5) generically has one pre-image,
it is weakly identifiableif F generically has more than
one but a finite number of pre-images, and it isnot
identifiableif F generically has an infinite number of
solutions. The physical meaning of these definitions
follows from Theorem 7; in the noise free case, un-
der mild conditions on the source symbols and the
channel, the receiver can determine the channel, up to
an unknown scaling factor, if and only if the channel
is identifiable. If additive noise is present, the least-
squares estimate will be unique up to an unknown
scaling factor with probability one if and only if the
channel is identifiable. Similarly, if the channel is
weakly identifiable then there is more than one but
a finite number of possibilities for the channel up to
scale.

Remark. Weak identifiability is still a useful prop-
erty; the finite number of possible channel estimates
might be reduced to a single one by exploiting extra
knowledge gained from a finite alphabet constraint on
the elements ofsor, in an adaptive environment, from
an old estimate of the channelh. (In the latter case,
choose the current estimate to be the one closest to the
old estimate.) Note too that since the Jacobian matrix
of F is linear ins andh, Proposition 3 is a straight-
forward test for weak identifiability.

5. Generic linear precoders

Rather than consider individual precoders, this sec-
tion considers whole families of precoders and makes
statements about almost all members of each family.
This enables the big picture to be seen. It is proved that
the amount of redundancy that must be introduced to
enable the identification of the channel almost always
depends on the size of the precoder matrix and not on
its individual elements.
The following definitions are introduced for con-

ciseness. For a given channel orderl and precoder ma-
trix P ∈ C(n+l)×p, defineF(s,h) = HPs as in (5).
LetN denote the generic number of pre-images ofF .
ThenP is said to bestrong if N = 1, it is weak if
1<N <∞, and it isinept if N = ∞. From Theorem
7, it is clear that a strong precoder enables the receiver
to identify the channel while a weak precoder enables
the receiver to identify weakly the channel.

Remark. The strength of a specific precoder can be
determined by using symbolic techniques[3] to cal-
culate the generic number of pre-images ofF .

A property holds for a generic precoder if there
exists a non-zero polynomialg: C(n+l)×p → C in
the elements ofP such that the property holds for all
precodersP satisfyingg(P ) �= 0. If a property holds
for a generic precoder then it holds with probability
one for a precoder chosen at random.
Proposition 8 and Theorem 9 are the main results

of this section and are proved in Section 5.1. Propo-
sition 8 states that the strength of a generic precoder
depends only on its size and the channel order. The-
orem 9 gives necessary and sufficient conditions for
a generic precoder to be strong, weak or inept. The
section concludes with two examples showing that
non-generic precoders not obeying these rules do
exist.

Proposition 8. For any triple (n, p, l) there exists a
numberN(n,p,l) such that, for a generic precoderP ∈
C(n+l)×p, the resulting system F, defined in(5), has
N(n,p,l) pre-images generically.

The functionF consists ofn equations inp + l

variables. Excluding the trivial casep = 1, it might
be anticipated that ifn= p + l, a generic precoder is
strong. Theorem 9 shows that this is not the case; if
n=p+ l then a generic precoder is weak. Only if the
number of equations exceeds the number of variables
(n>p + l) is a generic precoder strong. This is due
to the special structure ofF .

Theorem 9. DefineN(n,p,l) as in Proposition8.Then
N(n,p,l)=∞ if n<p+ l;1<N(n,p,l) <∞ if n=p+ l
andp>1; or N(n,p,l) = 1 if n>p + l.

The following exceptions to the rule illustrate the
need for considering generic precoders.

Example 10. Choosep and l arbitrarily but setn =
p + l. Consider the precoderP which mapss to
[0, . . . ,0, s1,0, . . . ,0, s2, . . . , sp] where there arel
zeros both before and afters1. The elements of the
output vector (given by (2) withh0 = 1) satisfyy1 =
s1, y2 = h1s1, y3 = h2s1 and so forth. Therefore,P is
strong.
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Adding an extra equation to a weak precoder does
not necessarily make it strong.

Example 11. Setl=1,n=4 andp=3. The precoder
which mapss to [0, s3, s1, s2, s3] can be shown to be
weak; the systemF generically has 3 pre-images. It
might be expected that the precoder of sizen = 5
which mapss to [0, s2, s3, s1, s2, s3] is strong now
sincen>p + l. However, the systemF still has 3
pre-images generically.

5.1. Proofs of Proposition 8 and Theorem 9

If a systemF has full rank then adding an extra
equation will often make the enlarged system ratio-
nally invertible (see Example 11 though). Proposition
12 makes this precise.

Proposition 12. LetG(z, v) be a polynomial map de-
composable asG(z, v)= (G1(z),G2(z, v)) whereG1
has full rank. If there exists a point(z̄, v̄) such that
z̄ is a generic point ofG1 andG(z̄, v̄) has a single
pre-image then G is rationally invertible.

Proof. A consequence of parts 1 and 2 of Theorem 1
is that it suffices to find open sets� and� such that
for all v ∈ � and z ∈ �, G(z, v) has a single pre-
image. Letz1, . . . , zN be theN pre-images ofG1(z̄)
with z1 = z̄. For �1, �2>0 define the sets

Yi = {G2(z, v): z ∈ B(zi; �1), v ∈ B(v̄; �2)},
i = 1, . . . , N. (12)

The continuity ofG2 ensures there exist�1, �2>0
such thatY1 ∩ Yj = ∅ for j >1. Choose� as in part
3 of Theorem 1 so that a change inz̄ of less than�
will change each of the pre-imageszi by less than�1.
Taking� = B(v̄; �2) and� = B(z̄; �) completes the
proof. �

Define p ∈ C(n+l)p to be the vector rep-
resentation of the precoder matrixP , that is,
P = vec−1p. The mapF in (5) can thus be written as
F(s,h; p)=H(vec−1p)s. Define the polynomial map
G: Cp+l+(n+l)p → Cn+(n+l)p to be

G(s,h,p)= (F (s,h; p),p). (13)

Proof of Proposition 8. Define N(n,p,l) to be
the generic number of pre-images ofG. Since

G(s′,h′,p′) = G(s,h,p) is equivalent toF(s′,h′) =
F(s,h) and P ′ = P , apply Lemma 2 to conclude
that, for genericP , F(s′,h′) = F(s,h) hasN(n,p,l)
solutions for generic(s,h). �

Lemma 13. For any l�1,p>1 andn=p+ l, there
exists a weak precoderP ∈ C(n+l)×p.

Proof. ChooseP so as to maps to [0, . . . ,0, s1,
s2,0, . . . ,0, s3, . . . , sp] where there arel zeros both
before s1 and betweens2 and s3. The elements of
the output vector (2) thus satisfy the equationsy1 =
s1, y2= s2+h1s1, y3=h1s2+h2s1 up toyl+2=hls2.
These representl+2 equations inl+2 unknowns. By
Proposition 4, it suffices to find a single output vec-
tor for which there is more than one solution. Choose
y1=−1 then. Repeated substitution shows thats2 must
satisfy sl+1

2 − y2s
l
2 − y3s

l−1
2 − · · · − yl+2 = 0. For

generic(y2, . . . , yl+2) there arel+ 1>1 solutions of
this equation, and it can be verified that each leads to
exactly one solution of the full systemy=F(s,h). �

Proof of Theorem 9. DefineG as in (13) and observe
from the proof of Proposition 8 thatN(n,p,l) is simply
the generic number of pre-images ofG. If n<p + l
thenG has fewer equations than unknowns and hence
an infinite number of pre-images;N(n,p,l) = ∞ if
n<p + l.
Assumen = p + l and p>1. Lemma 13 proves

that there exists a point(s,h,p) such thatG(s,h,p)
has more than one but less than an infinite num-
ber of pre-images. Thus, Proposition 4 implies that
1<N(n,p,l) <∞.
Assumen>p + l. The following proof thatG is

rationally invertible exploits the fact that the last ele-
mentxn of the encoded vectorx=Psaffects only the
last elementyn of the output vectory=Hx. Partition
the matricesH andP as follows:

HPs=
[
H1 0
uT 1

] [
P1
vT

]
s=

[
H1P1s

uTP1s+ vTs

]
, (14)

whereuT =[0 · · ·0 hl · · ·h1] andvT is the last row of
P . Let p1 be the vector representation ofP1, that is,
P1 = vec−1p1. Decompose the mapG accordingly

G(s,h,p)= (G1(s,h,p1),G2(s,h,p1, v)), (15)

G1 = (H1(vec
−1p1)s,p1), (16)
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G2 = ((uT(vec−1p1)s+ vTs), v). (17)

Notice thatG1 is identical toG in (13) if the precoder
P1 were used instead ofP . Proposition 4 implies that
G1 has full rank since for anyn>p+ l there exists a
P1 ∈ C(n+l−1)×p which is a weak precoder (take for
instance the precoder in Example 10withn−(p+l)−1
zeros appended). In order to apply Proposition 12, let
(s̄, h̄, p̄1) be a generic point ofG1 and define(si ,hi )
so that

{(s1,h1), . . . , (sN,hN)}
= {(s,h): G1(s,h, p̄1)=G1(s̄, h̄, p̄1)}. (18)

Note that the last sentence of Lemma 6 ensures that
si �= sj for i �= j . For each(si ,hi ) the first compo-
nent ofG2 takes the valueuTi P̄1si + vTsi (whereui
depends only onhi). These values can be made dis-
tinct by a judicious choice ofv. By Proposition 12,G
is rationally invertible. �

5.2. Generic zero prefix precoders

A zero prefix precoder is a precoderP ∈ C(n+l)×p
whose firstl rows are zero. Such a precoder sets the
initial state of the channel to zero, that is,x1−l=· · ·=
x0=0 in (2). This is arguably a nice thing to do. Since
a randomly chosen precoder will not have a zero prefix
with probability one, there is no reason for Proposition
8 and Theorem 9 to hold for zero prefix precoders.
Moreover, it is plausible that the conditionn>p + l
in Theorem 9 can be relaxed for zero prefix precoders.
However, this is not the case. This is formalised below.
A property holds for a generic zero prefix precoder

if there exists a non-zero polynomialg: C(n+l)×p →
C such that the property holds for all precodersP
satisfyingg(P ) �= 0 and whose firstl rows are zero.

Theorem 14. For any triple (n, p, l) there exists a
numberNzp

(n,p,l) such that, for a generic zero prefix pre-

coderP ∈ C(n+l)×p, the system F defined in(5) has
N

zp
(n,p,l) pre-images generically. Moreover, Nzp

(n,p,l) =
∞ if n<p+l;1<Nzp

(n,p,l) <∞ if n=p+l andp>1;

or Nzp
(n,p,l) = 1 if n>p + l.

Proof. By design, only a minor modification of the
proofs in Section 5.1 is required.�

Remark. Whether or notNzp
(n,p,l)=N(n,p,l) holds for

all (n, p, l), whereN(n,p,l) is defined in Proposition
8, is not investigated here.

6. Conclusion

This paper drew attention to the fact that, in a lin-
early precoded wireless communication system, the
impulse response of channel (1) can often be deter-
mined by solving a system of noise-corrupted poly-
nomial equations. In Section 4 it was proved that the
number of channel estimates obtained by solving this
system of equations in the least-squares sense can be
determined by studying the generic number of solu-
tions of a related polynomial equation. Standard re-
sults from algebraic geometry were then applied in
Section 5 to prove that the feasibility of the receiver
identifying the channel is governed primarily by the
size of the precoder matrix and not, in general, on the
individual elements of the precoder matrix.

Appendix A. Technical results on polynomial
maps

The following known results on polynomial maps
are not included in Section 3 because knowledge of
these results is not essential on a first reading. These
results require the definitions of a variety,2 an irre-
ducible variety, and the dimension of a variety, all of
which can be found in[3].

Lemma 15. Let F : Cm → Cn be a polynomial map
and letW ⊂ Cm be a variety. ThenU = F(W),
the closure of the image ofW , is also a variety.
Moreover, if W is irreducible then so too isU . Also,
dimU� dimW . If W = Cm thendimU = m if and
only if F has full rank.

Corollary 16 is an extension of Theorem 1 and can
be deduced from Lemma 15. Note thatN is allowed
to be infinite.

2 The word variety is used here to mean an algebraic set and
is consistent with the usage in[3]. However, the reader should be
aware that this differs from the modern terminology which defines
a variety to be an irreducible algebraic set.
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Corollary 16. Let F : Cm → Cn be a polynomial
map which generically hasN pre-images and let
W ⊂ Cm be a variety withdimW <m. There exists
a polynomialh: Cn → C which is not identically
zero onF(Cm) and such that, for any y ∈ F(Cm),
h(y) �= 0 implies that there are N pre-images ofy
under F that lie outside W. This can be strengthened
ifdimF(W)<dimF(Cm) (which is always the case
if N is finite), in which caseh(y) �= 0 also implies
there are no pre-images ofy under F contained in W.
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