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Extrinsic Mean of Brownian Distributions
on Compact Lie Groups

Salem Said and Jonathan H. Manton, Senior Member, IEEE

Abstract—This paper studies Brownian distributions on com-
pact Lie groups. These are defined as the marginal distributions
of Brownian processes and are intended as a natural extension of
the well-known normal distributions to compact Lie groups. It is
shown that this definition preserves key properties of normal dis-
tributions. In particular, Brownian distributions transform in a
nice way under group operations and satisfy an extension of the
central limit theorem. Brownian distributions on a compact Lie
group belong to one of two parametric families and

— and a positive-definite symmetric matrix.
In particular, the parameter appears as a location parameter. An
approach based on the extrinsic mean for estimation of the param-
eters and is studied in detail. It is shown that is the unique ex-
trinsic mean for a Brownian distribution or .
Resulting estimates are proved to be consistent and asymptotically
normal. While they may also be used to simultaneously estimate
and , it is seen this requires that be embedded into a higher
dimensional matrix Lie group. Going beyond Brownian distribu-
tions, it is shown the extrinsic mean can be used to recover the lo-
cation parameter for a wider class of distributions arising more
generally from Lévy processes. The compact Lie group structure
places limitations on the analogy between normal distributions and
Brownian distributions. This is illustrated by the study of multi-
variate Brownian distributions. These are introduced as Brownian
distributions on some product group—e.g., . This paper de-
scribes their covariance structure and considers its transformation
under group operations.

Index Terms—Brownian motion, central limit theorem, com-
pact Lie group, extrinsic and intrinsic mean, noncommutative
harmonic analysis, Lévy process.

I. INTRODUCTION

T HIS paper considers the marginal distributions of
Brownian processes in compact Lie groups, which it

refers to as Brownian distributions. On a compact Lie group
, Brownian distributions belong to one of two parametric

families and . In general, and
is a positive-definite symmetric matrix. The existence of two
different parametric families reflects the fact that may be
noncommutative. The introduction of Brownian distributions
is motivated by the desire to extend normal distributions to
compact Lie groups. While the standard definition of normal
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distributions carries no explicit reference to Brownian motion,
essential properties of normal distributions mirror those of
Brownian motion. In particular, normal distributions can be
obtained as marginal distributions of Brownian motion. In the
literature of stochastic processes in Lie groups, Brownian pro-
cesses are already well known and it is accepted they constitute
the correct generalization of Brownian motion to Lie groups.
The analogy between normal distributions and Brownian

distributions is developed in Section III. This section derives
transformation properties of Brownian distributions under
group operations. It also proves Brownian distributions arise
through an extension of the central limit theorem—see Propo-
sition 3. Transformation properties can be used to establish the
role played by parameters and ; in particular, is seen to be
a location parameter. As for the classical theorem, the desired
extension of the central limit theorem is associated with the
property of infinite divisibility.
The central problem studied in this paper is estimation of

the parameters and . The proposed approach is detailed in
Section IV, based on the extrinsic mean. In Section III, the role
of as a location parameter is established. As a result, estima-
tion of can be seen as a special case of the following problem.
Let be a random variable with values in whose distribu-
tion is known. It is required to estimate a parameter from
an observed . In Section IV, and it
is possible to take , where is the identity ele-
ment of . In this case, Proposition 4 in Section IV-A shows
to be the unique extrinsic mean of the distribution of
. Section VIII is concerned with the generalization of this re-

sult. In particular, Proposition 9 shows is the unique extrinsic
mean of the distribution of whenever the distribution of is
the marginal distribution of an inverse invariant Lévy process
in . Propositions 4 and 9 are the main results in this paper,
with respect to the use of the extrinsic mean. For the definition
of the extrinsic mean, as used below, see (22) in Section IV-A.
In particular, this depends on a chosen unitary representation

.
Section IV gives asymptotic properties of estimates based on

the extrinsic mean, which it shown to be consistent and asymp-
totically normal. Improving the rate of convergence is possible
by reducing the dimension of . However, is bounded below
as it must be ensured is injective. This aspect is given in
Proposition 5 and the ensuing discussion. Computation of the
proposed estimates is particularly simple, requiring only a polar
decomposition. In principle, this can be used to simultaneously
estimate the matrix . It is seen this requires that be em-
bedded into a higher dimensional matrix Lie group. This is ex-
plained in Section IV-A, based on an elementary dimension
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argument, and illustrated through the concrete example
in Section VI. For this example, estimation of and

follows only after taking .
Section V introduces multivariate Brownian distributions.

These are defined as Brownian distributions on product groups
and their covariance structure is given accordingly. Considering
the product group , independence follows whenever
the resulting covariance matrix is equal to zero. A precise
statement is given in Proposition 8. Whereas this property is
often exploited in the case of normal distributions, by applying
appropriate linear transformations to obtain independence, a
caveat is that similar tricks are in general hampered by the
compact Lie groups structure. A novel aspect in the current
paper is the introduction of the concept of joint characteristic
function, for two random variables with values in . This
provides the technical basis for Section V, with Proposition 7
extending the classical Kac’s theorem.
This paper complements a previous one [1], with both gen-

eralizing the results of [2]. In [1], a solution is provided for a
problem of nonparametric estimation for compound Poisson
processes in a compact Lie group. Brownian processes and
compound Poisson processes are the two main types of Lévy
processes in a Lie group [3]. An application of the example
in Section VI to a signal processing situation is reviewed in
Section VII. This provides a solution to the inverse problem
of polarized light propagating in a dispersive optical fiber. The
connection to inverse problems may be clarified by making the
following observation. In Section II-A, is first introduced as
the initial condition of a Brownian process ; the distribu-
tion is that of —that is, of the same process
observed after one time unit.
The extrinsic mean, along with the complementary notion of

intrinsic mean, has received sizable attention both from the sta-
tistics and the signal processing communities. In most cases, ex-
trinsic and intrinsic means are considered on Riemannian man-
ifolds. Here, the term intrinsic mean refers to the Karcher mean
as considered in [4] and [5]. This is different from the estab-
lished terminology of [6] and [7] (see Section IV-C). Special-
izing to compact Lie groups, a comprehensive framework for
the computation of the sample intrinsic mean is given in [8].
This is applied to the problem of joint approximate diagonal-
ization in [9]. In [6] and [7], the asymptotics of sample extrinsic
and intrinsic means, on Riemannian manifolds, are given. Note
that the intrinsic approach was first considered by Fréchet [10]
In most applications, the use of extrinsic means is more pop-

ular. This is due to nonuniqueness of the intrinsic mean and to
the fact that the extrinsic mean is generally considerably easier
to compute. In [11],Monte Carlo simulation is used to obtain ex-
trinsic means in several classical compact Lie groups and quo-
tient manifolds, which are of particular importance to signal pro-
cessing—see [12] and [13]. In this paper, Section IV applies the
extrinsic mean to parametric estimation of Brownian distribu-
tions. In addition to the parameter , which coincides with the
extrinsic mean, this can also allow the parameter to be re-
covered. Section VIII generalizes the validity of the extrinsic
mean beyond Brownian distributions. Instead of classical com-
pact Lie groups, taken in their standard matrix form, the focus

is on general abstract compact Lie groups. Section VI illustrates
that this is pertinent even in an elementary applied context. Fi-
nally, Section IX investigates the possibility of computing esti-
mates which improve upon those based on the extrinsic mean,
while retaining their symmetry properties. Intrinsic means are
briefly considered in Section IV-C. For a Brownian distribution

, general conditions are discussed under which is an
intrinsic mean.
For the sake of coherence, all discussion in this paper is lim-

ited to the case where the underlying group is compact. While
this assumption is essential to Section IV, it can be overlooked,
after some modifications, for the results of Sections III and V.
The discussion in Section V may be considerably extended in
this direction.
This paper concludes with an appendix, giving necessary

lemmas for the proofs of Propositions 3 and 4.

II. MATHEMATICAL BACKGROUND

In this section, mathematical background required for the fol-
lowing is captured. In Section II-A, Brownian processes in are
defined as solutions of (left or right) invariant Brownian sto-
chastic differential equations. In Section II-B, the concept of
characteristic function of a random variable with values in is
briefly recalled. This is further extended in Section V, to define
the joint characteristic function of two random variables with
values in . Brownian processes are outlined in [14]. For a more
self contained version of Section II-B, see [1]; a detailed and
highly readable reference is [15] and a variety of engineering
applications are discussed in [16]. A recent and comprehensive
treatment of stochastic processes in Lie groups and their con-
nection to information theory can be found in [17].
For computations relating to compact Lie group structure, as

carried out in the following, see [18]. For general reference on
stochastic differential equations on manifolds, see [19]. In ref-
erence to the Lévy property of Brownian processes, a self con-
tained account can be found in [3].

A. Brownian Processes

Let be a compact connected Lie group of dimension with
identity and Lie algebra . Since is compact, it is possible
to choose an Ad-invariant scalar product on . Then, let

be an orthonormal basis of . In addition, suppose
given a -dimensional Brownian motion with
coordinates . Let
be the covariance matrix of . A left Brownian process in is
a process verifying the Stratonovich equation

(1)

Here, and denotes the left invariant vector field. Pre-
cisely, (1) states that

(2)
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The Itô form of this identity, obtained in the standard way, is the
following:

Taking expectations on both sides, the Brownian term disap-
pears

(3)

where the operator is left invariant, defined for by

(4)

A right Brownian process in is defined as in (1). Here,
denotes the right invariant vector field

(5)

The same development shows that (3) holds for the operator
which is right invariant and defined for by

(6)

If is a left Brownian process then is a right Brownian
process. Indeed, this verifies the equation:

In this sense, left and right Brownian processes are equivalent.
Since both are defined by Brownian stochastic differential equa-
tions, they can be assumed to have continuous paths. An explicit
construction follows using multiplicative integration (see [19]).
For completeness, the Lévy property of Brownian processes

is here indicated. This states that the increments of a left
Brownian process , defined as for , are
independent and stationary. In other words, is inde-
pendent of past values of , up to time , and its distribution
depends only on . In particular, is a Markov process.

B. Characteristic Functions

The distribution of a random variable with values in is
completely determined by its characteristic function . More-
over, is compatible with the transformation of the distribu-
tion of under group operations. Characteristic functions are
defined in terms of the irreducible representations of . A gen-
eral reference on representations of compact Lie groups is [20].
Let be the set of equivalence classes of irreducible rep-

resentations of . In particular, let contain the unit
representation and . The set is
countable. Also, each equivalence class contains a
representation which is unitary and of finite dimension .

That is, is an application with the ho-
momorphism property

(7)

for and denotes the Hermitian transpose. It is pos-
sible to choose to be smooth. Recall that and, by
definition, for . Given a fixed choice of
smooth for , the characteristic function of is
the sequence of complex matrices

(8)

where the expectation is applied to matrix elements. That the
distribution of is indeed completely determined by fol-
lows using the Peter–Weyl theorem. Indeed, this states that any
continuous function on is, up to an additive constant, a uni-
form limit of linear combinations of the matrix elements for

and , . For a random variable with

values in , iff . If , are independent and
, it follows from (7) that

(9)

In particular, for

(10)

Another consequence of (7) is that

(11)

It is said that is uniformly distributed in if for
. This is equivalent to for

and . It is shown that is uniformly distributed iff
for . Recall that, then, the distribution

of coincides with the Haar measure of .
For later reference, (see (33) and discussion in Section IV),

recall the following classical property of , .
Namely, is an eigenfunction of with
eigenvalue where . Precisely, matrix elements of

span the corresponding eigenspace of . A direct calcula-
tion shows that this is equivalent to

(12)

where is the identity matrix and . Note
that is skew-Hermitian. This implies that the left-hand side
of (12) is negative definite. It is a nonzero multiple of identity
follows from Ad-invariance of and irreducibility of ,
being connected. The operator is the Laplace operator asso-
ciated to .

III. BROWNIAN DISTRIBUTIONS

Brownian distributions are the marginal distributions of
Brownian processes. For processes and solving (1) and
(5), and denote the distributions of and
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. These give rise to two different parametric families with
the same parameters and a positive-definite symmetric

matrix. This section develops key properties of these two
families. First, it obtains their transformation properties under
group operations. It goes on to prove an extension of the central
limit theorem, Proposition 3. This is discussed along with
the property of infinite divisibility of Brownian distributions.
Proposition 1 ensures that the notation , is
well defined. That is, either one of these distributions is com-
pletely determined by and, moreover, different couples

determine different distributions.
In the following, will denote either the matrix exponen-

tial or the exponential map , according to context.

Proposition 1: For , there exists a Hermitian
strictly positive-definite matrix , completely determined
by , such that
(i) If , then .
(ii) If , then .

Proof: The proofs of (i) and (ii) follow the same steps.
In the case of (i), a stronger result is obtained from (3). For

consider the matrix

This is a Hermitian matrix, since each is skew-Hermitian
and is symmetric. Note that for and

For , let . Recalling the definition of from
(8), it follows by replacing in (3) that

This has an explicit solution, being the matrix exponential

(13)

The proposition follows by putting and recalling that
is Hermitian.

The parameter , with being fixed, acts as a location pa-
rameter for the distributions , . For
and , , it follows by applying
(10) and Proposition 1 that

(14)

Also, both distributions are symmetric around . This is in the
sense that

(15)

Note that the application for is an involution
with fixed point . From (11) and Proposition 1, it follows that

(16)

Combining (14) and (16), it is possible to obtain (15). Note,
from (16), that the two parametric families of and

transform into each other by inversion.
The parameter , with being fixed, acts as a scale or con-

centration parameter for the distributions , .
For , almost surely iff . On the other
hand, if is strictly positive definite and , then
is uniformly distributed in , in the limit . To see this,

write where is diagonal, orthogonal and
stands for transpose. Let , for .
Again, is skew-Hermitian. In the notation of (13), .
Moreover, is strictly negative definite. This follows from
(12) and the fact that is orthogonal. Indeed

where . Thus, in the limit . Note that,
unlike , depends on the orthonormal basis .
Identities (14) and (16) show that is unchanged under (left

or right) translation and inversion. Lie group homomorphisms,
on the other hand, transform in a usual way. The following
proposition gives the case . For ,
it is enough to note and apply (16).

Proposition 2: Let be a Lie group homo-
morphism. Let be its derivative at and the matrix of
in the basis . If then

.
Proof: Let satisfy (1) and the process .

For , by definition of

It now follows by applying (2) to the function that

The covariance matrix of is equal to
. The proposition follows by identifying and .

An important class of Lie group homomorphisms is that of
conjugations (i.e., inner automorphisms). For , these are
the applications . The derivative at of
is represented in the basis by an orthogonal ma-
trix . Applying Proposition 2, for , it follows

, where

(17)

If and , with the identity matrix,

then for . If is a simple group, then the

converse holds. That is, if for , then

and . When for , it is said that
is conjugate invariant.
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Turning to the property of infinite divisibility of Brownian
processes, consider the distribution of the product
of independent random variables and

. In the case where commute with
each other, this is given in the usual way. Precisely, it follows
from (9) and Proposition 1 that

(18)

No similar conclusion can be made when , do not com-
mute. Infinite divisibility of the distribution follows
easily from (18). For , if and
are independent identically distributed (i.i.d.) with common dis-

tribution , then . Infinite divisibility
can be associated with the fact that Brownian distributions arise
as limit distributions of products of independent random vari-
ables with values in . This is proved in Proposition 3, which
can be seen as an extension of the central limit theorem. The
proposition is stated in terms of triangular arrays of random vari-
ables. Precisely, a triangular array is a family of random
variables with values in defined for each and

. For , these are such that are
i.i.d. The limit distribution of interest is that of the product

as .
Recall a property of the exponential map . Since

the group is connected, any can bewritten
for some . Moreover, there exists , open with

, such that is unique for [21]. Let be a
random variable with values in , such that has a probability
density with respect to . It follows that there exist a random

variable with values in such that . Note that it
is difficult to find an analytic relation between the distribution
of and that of [22]. Rather, the introduction of should be
understood in terms of the second-order theory in [23]. This is
essential to the following statement.

Proposition 3: Given a triangular array of random variables
as previously, assume has a probability density with re-
spect to . Let be a random variable with values in such
that and write . Assume
there exists a positive-definite symmetric matrix such that

for . Then, the limit distribution of is given
by

(19)

Proof: Let be the characteristic function of and
the characteristic function of . Recall is given as in (13).
Let be the characteristic function of . By (9)

(20)

The aim will be to show that . Recall the defi-
nition of , as in (8). This is estimated using the Taylor ex-
pansion of the matrix exponential

where is the error in the expansion to second-order
terms. Applying conditions (i) and (ii), it follows from Lemma
1 in the appendix

(21)

Replacing in (20) gives

This is a standard formula for the matrix exponential, so that
(13) can be recovered.

Proposition 3 is interesting since its proof is based on the
same steps as that of the classical central limit theorem and only
requires a Taylor series expansion for the matrix exponential.
A general theory of triangular arrays of random variables with
values in Lie groups may be found in [24].
The product formula (18) and central limit theorem in Propo-

sition 3 distinguish Brownian distributions, introduced in the
current paper, from other extensions of normal distributions to
compact Lie groups, proposed in the literature. One such exten-
sion is through so called wrapping of normal distributions, as in
[25] and [26]. This definition yields transformation properties
similar to the above and the same property as in Proposition 2.
However, it does not satisfy (18) or Proposition 3.

IV. ESTIMATION OF AND

This section is devoted to estimation of using the extrinsic
mean. Precisely, this is understood with respect to an injective
unitary representation of . In Section IV-A, it is shown
is the unique extrinsic mean for Brownian distributions

or . This results in consistent estimates for
, which are simply computed by performing a polar decom-
position. Under specific conditions on , this is seen to lead
to simultaneous consistent estimation of . In Section IV-B,
asymptotic normality of the extrinsic mean estimates of is
obtained by classical means. Finally, Section IV-C is concerned
with intrinsic means, which it discusses using transformation
properties obtained in Section III.

A. Consistency of the Extrinsic Mean

The extrinsic mean of is defined, given an
injective Lie group homomorphism , for some

, by the following formula:

(22)
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where is the extrinsic distance function corresponding
to the Euclidean matrix norm

An injective Lie group homomorphism exists whatever the
underlying group [20]. An intrinsic property of is central in
considering the extrinsic mean. Irrespective of the chosen ,
is the unique global minimum in (22). See Proposition 4.
Matrix functions in the following, i.e., and

logarithm (Log), denote unique Hermitian determinations. Let
. Applying (3), an expression similar to (13) can

be obtained. Precisely, , with and

(23)

where for . Again, the matrix is
Hermitian and is Hermitian strictly positive definite. Note that
is nonsingular. It follows that

(24)

In other words, and are the factors of the left polar decom-
position of . Properties used below, concerning polar decom-
position, are based on [27].

Proposition 4: For (22), the unique global minimum is
.
Proof: For , a direct computation gives

(25)

where the second term does not depend on . Using
and Lemma 2 in the appendix, for unitary

. Recall and is injective. Comparing (22)
to (25), it follows that

(26)

for . So is the unique global minimum.

Note that inequality (26) is a special case of the one used in
[28], in order to establish a general lower bound for estimators
in compact Lie groups.
Computation of as in (24) also yields the Hermitian factor
. Equivalently, it is possible to consider . With
being fixed, this is determined by . Using the fact that is

symmetric

(27)

For recovery of the covariance matrix , the inverse situation
is of interest. Precisely, being given, (27) should be solved
for the . Note is Hermitian positive definite. Also, for

, the matrix is is Hermitian. Since
(27) is known to hold, it does have a solution for the . A
sufficient condition for this solution to be unique is that the ma-
trices be linearly independent. Since these are

Hermitian, this implies . Here, is the dimen-
sion of the space of Hermitian matrices, is the
number of pairs with . If
where , then and it follows . In
other words, recovery of the covariance matrix requires that
be embedded into a higher dimensional matrix Lie group. A

detailed example is given in Section VI.
Consider now the consistency of estimates given by (24).

Starting from i.i.d. observations of , , an empirical
estimation step yields . This is then followed by an identifica-
tion step yielding , and eventually also . It is discussed below
how observations may be obtained when observing
an individual path of a process , solving (1).
By the strong law of large numbers—for further discussion,

see, e.g., [29]:

(28)

where stands for almost sure convergence. Since the set of
nonsingular matrices is open in the standard topology,

is asymptotically nonsingular, again almost surely. Con-
sider the estimates and by putting them to zero on the
event where is singular and writing on the complementary
event

(29)

Recall that the factors of the polar decomposition are continuous
at any nonsingular matrix. Accordingly, it is straightforward that

and . The following Proposition 5 bounds
the sample size used for a certain precision in approximating
. Also from a computational point of view, recall that it is

advantageous to compute polar decompositions using singular
value decomposition rather than directly applying (24).
The following inequalities (30) and (31) are required [27].

For , let be a nonsingular matrix with polar
decomposition , where is unitary and is
Hermitian. In (31), such that the singular values

of are all :

(30)

(31)

Proposition 5: There exist and such that
for

Proof: Let be the smallest singular value of . Since
is nonsingular, . Using Jensen’s inequality, it also holds
that . Indeed, for some complex vector .
For , let be the smallest singular value of .

Consider the event . After using (30) and
(31), respectively:
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where . Note that .
The proposition is obtained by applying Chebychev’s inequality
and summing.

Proposition 5 only uses the weak law of large numbers, so
that independence of the observations is not a nec-
essary condition. The given rate of convergence is controlled by
the classical central limit theorem for and also con-
ditioned by , the smallest singular value of . The singular
value measures the dispersion of away from

where is the identity matrix. Values of closer to 1
imply is distributed closer to and the rate of conver-
gence is improved.
Dispersion of away from is also given by the covari-

ance matrix . In the case , there is a straightforward
relationship between and . Clearly, defines a -dimen-
sional unitary representation of and can be decomposed into
an orthogonal sum,

(32)

Let . Then

(33)

The representations need not be different. However,
since is injective

which imposes a sufficient choice of irreducible representations.
On the other hand, Proposition 5 indicates that should be
chosen to minimize . If is a simple group, any represen-
tation is injective. An obvious choice is
where .
For , the unique global minimum

continues to hold in (22). This follows from (16) and since
is invariant under Hermitian transposition. Moreover,

and defined in (23) are the factors of the right polar
decomposition of .
The estimates and of (29) can be computed when

observing an individual path of a process solving (1). The
key is to use the Lévy property of . Suppose given a path

over some interval . If , then it is
possible to construct the following observations:

The Lévy property of ensures that are indepen-
dent and with the distribution of . Moreover, in this case

is immediately available. In this context, the impor-
tance of the Markov property of becomes clear. Empirical
estimation of is aimed at obtaining the transition operator
of , whose spectral properties are used for the identification
step.

B. Asymptotic Normality

Proposition 5 in Section IV-A established the consistency of
estimates given by (29). This results from consistency of

, due to the strong law of large numbers, and continuity of
the factors of the polar decomposition. Here, asymptotic nor-
mality of will be obtained in a similar way. Indeed, is
asymptotically normal, due to the central limit theorem, and the
factors of the polar decomposition are differentiable, in addition
to being continuous. The reasoning used below is related to that
of [7], also employed by [11].
For nonsingular matrix let be its left polar

factor. For instance, (24) and (29) give and
. The application is defined on a set of matrices which

is open in the standard topology. Moreover, it has its values
in . is continuously differentiable that may be found,
along with an evaluation of the derivative, in [30]. In particular,
the derivative at is a linear map from the set of
complex matrices to the tangent space of at .
Consider the asymptotic distribution of . Since is

unitary, it is bounded. In particular, the in (28) have fi-
nite second-order moments. Clearly, . It follows
from the central limit theorem, in its simplest form [29], that the
distribution of converges to a centered normal
distribution. The corresponding asymptotic covariances are the
same as those of the elements of . Interestingly, these can
be evaluated using only the characteristic function . Indeed,
note that all products of elements of are contained in the
elements of the Kronecker product . However,

, where
is a finite-dimensional unitary representation of . As such, it
can be written as an orthogonal sum of a finite number of ir-
reducible unitary representations for [20]. In
short, second-order moments of are linear combinations
of first order moments, given by the characteristic function.
Asymptotic normality of is obtained from the fol-

lowing general reasoning, applied to each matrix element. Let
be a continuously differentiable function, defined on nonsin-

gular matrices and with values in . Recall is nonsin-
gular. Using the fact that almost surely, it is pos-
sible to assume any convex combination of and is non-
singular. From the mean value theorem,

, where is the derivative of and is a
convex combination of and . In particular

Since almost surely, the same holds for . By
continuity of , it follows that almost surely.
Note is a constant, i.e., nonrandom, linear map. From con-
vergence in distribution of it follows that the
asymptotic distribution of is centered
normal. Using this result, it is immediate to conclude the fol-
lowing. If has the asymptotic distribution of ,
then

(34)
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As expected, the asymptotic distribution has its support in the
tangent space to at .
The derivative of has no straightforward analytic expres-

sion. On the other hand, under simplifying assumptions, can
be replaced by a more tractable application. Precisely, assume

. For simplicity, assume also that is simple. In par-
ticular, it is possible to take for some . In
the notation of (24), it follows that . The rela-
tion between and becomes

(35)

where denotes trace. Let be the application where
according to this formula. This is defined for all nonsin-

gular but does not in general take its values in . It is
possible to evaluate its derivative and see that it is continuously
differentiable. Precisely, for complex matrix

Recalling the expression for . This can further be written as

(36)

If estimates are given as in (35) instead of (24), i.e.,
, then the asymptotic distribution of follows as

in (34). Precisely

(37)

It should be noted that there is an abuse of notation in writing
and , at the same time. However,

this only concerns (37).
While (37) is more explicit than (34), the resulting asymptotic

distribution does not have its support in the tangent space of
at . The asymptotic distribution of (34) can further be

identified with a distributing with support in the tangent space
of at , giving it an intrinsic character. Since is injective,
its derivative can be used to identify the tangent space of at
with a subspace of the tangent space of at . A centered
normal distribution with support in the tangent space of at
can then be obtained by projecting the asymptotic distribution
of (34).

C. Transformation Properties and Intrinsic Means

To clarify the role played by transformation properties of
, a general version of (22) is now considered.

Proposition 6 uses these transformation properties to give a first
insight into using intrinsic means. Let be a distance func-
tion with

(38)

(39)

for . In the following, it is assumed that is strictly
positive definite. In this case, has a smooth probability density
with respect to . Consider the problem ofminimizing the cost
function

(40)

Conditions (38) and (39) both hold for the distance function
, leading to (22). They also hold for the distance function
arising from the Riemannian metric induced by .

With this latter choice for , the problem of minimizing
leads to the notion of intrinsic mean of . Here, an intrinsic
mean is any local minimum of —in [6], [7], a local minimum
is called a Karcher mean and the term intrinsic mean is reserved
for a unique global minimum.
The function is smooth. If , then

for . If, moreover, , then
for . Smoothness of follows since can be written
as a convolution of a continuous function with the smooth
density . It follows from (38) that

(41)

where . The symmetry properties of also
follow from (38) and (39). If , then . By the
discussion after (17), is conjugate invariant. Accordingly, for

Here, the first step uses (38) and the second step uses con-
jugate invariance of . Using the definition of , it follows

.
The unique global minimum (22) is a specific property of the

extrinsic distance function . For a general distance func-
tion , multiple local minima may arise in (40). To decide
whether the parameter of is such a local minimum, it is
enough to consider the case . The general case is
then obtained by (14) and (38). Assuming , the
symmetry properties of can be used to simplify its derivatives
of first and second order at . These then characterize the exis-
tence of a local minimum.
For Proposition 6, , is the

Hessian matrix of at . In particular, this is calculated
with respect to the basis of

Proposition 6: The following hold.
(i) If , then for , .
(ii) If , then for , .

Proof: For (i), let and .
For

the second step uses . In particular, (i) follows
since .
For (ii), note that for and



SAID AND MANTON: EXTRINSIC MEAN OF BROWNIAN DISTRIBUTIONS 3529

where the notation stands for . Here, the second step
uses for . Now

Replacing the fact that , it follows in matrix
form that

putting , (ii) follows immediately.

If is simple, it follows from (ii) of Proposition 6 that
is a multiple of identity. Moreover1, if where
is open with

(42)

If , then this is the right-hand side of (3) for a

process such that . Intuitively, it may be said
is positive definite if is, at time 1, is moving away from .
Positive definiteness of is a sufficient condition for to be
a local minimum of [31], i.e., an intrinsic mean of .
If is not simple, the situation of (42) continues to hold if the

function can be decomposed into a sum of similar functions
(squared distance to ) for each simple or one dimensional factor
of . This aspect will not be detailed here.

V. MULTIVARIATE BROWNIAN DISTRIBUTIONS

Multivariate Brownian distributions are Brownian distribu-
tions on some product group . The current sec-
tion aims to describe the covariance structure of multivariate
Brownian distributions. For this, it will be enough to consider
the product . This is again a compact connected group,
so that a Brownian process may be introduced
as in (1). Given random variables with values in , these
are said to be jointly Brownian if for
some Brownian process . The main result here is Proposition
8. This states that are independent whenever ,
where is the covariance matrix of to be defined
below. In order to prove this proposition, the concept of joint
characteristic function is introduced. Independence is then char-
acterized in Proposition 7, which is an extension of the classical
Kac’s theorem. A further question considered is transformation
of the covariance structure of jointly Brownian random vari-
ables under Lie groups homomorphisms. It is seen the compact
Lie group structure does not, in general, allow statistical anal-
ysis by means of Lie group homomorphisms.
To write down (1) on , recall the product Lie group

structure. Note that where
and . are Lie subgroups commuting
with each other. The Lie algebra of is a direct sum

where and . Here,

1In particular, this is the case for both and .

are the Lie algebras of and also commute with
each other. Consider the chosen basis of . This
gives a basis of , and
a basis of , . It follows
that is a basis of the Lie algebra of

. Of course, .
A Brownian process in verifies the fol-

lowing Stratonovich equation, where and
is a Brownian motion with

values in :

(43)

Let be the covariance matrix of . This has a block structure
where are positive-definite symmetric matrices
and is a off diagonal block. If are such that

, then is referred to as the covariance
matrix of .
The joint statistics of are given by the characteristic

function of the random variable which has its
values in . In order to construct this characteristic function,
recall that the set can be identified with

. For , there exists of
dimension and where it is possible to choose

, given by

(44)

where, as already defined in Section IV-B, is the Kronecker
product. Any is of the above form.
According to (8) and (44), the characteristic function of

appears as a joint characteristic function of

(45)

Here and in the following, .
Proposition 8 uses the following Proposition 7. This is an

extension of the classical Kac’s theorem (see, for example, [32])
and essentially also holds when is any compact topological
group.

Proposition 7: Let be random variables with values in
and define . are independent iff

(46)

Proof: are independent iff, for all continuous func-
tions , , . The only
if part follows since the functions are continuous,
and , . The if part follows by the Peter–Weyl the-
orem, applied to , , and dominated convergence.

Proposition 8: Let be jointly Brownian and their
covariance matrix. If , then are independent.

Proof: Let be a process verifying (43) such that

. By Proposition 1, the left-hand side of
(46) is equal to

(47)
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where . Here, ,
where

Putting and then in (47), it follows that

where . This allows for the right-hand side of (46) to be
evaluated. Applying Proposition 7 and taking Hermitian matrix
logarithms, are independent iff

(48)

The proposition follows immediately.

Let be jointly Brownian random variables. It appears
natural to attempt to apply Proposition 2 in order to obtain

jointly Brownian and with a prescribed covariance
matrix. For example, this could be aimed at obtaining an inde-
pendent couple from the original . The compact
Lie group structure of imposes strong restrictions on this
approach.
Consider the basic case where is a simple group. Let

be a Lie group homomorphism and
, for , where are the

canonical projections. It can be shown that, for ,
either or for some
, where . Assume nontrivial and let

. It follows that are independent only if
are independent. Thus, the class of Lie group homomorphisms
is not sufficiently rich in order for the desired statistical analysis
to be defined.
The problem of obtaining an independent couple from

the original can be considered from an information the-
oretic point of view. Tentatively, a Lie group homomorphism

may be sought which minimizes the mu-
tual information of . In this connection, a broad review of
information theoretic inequalities relevant to compact Lie group
structure can be found in [33].

VI. EXAMPLE: THE SPECIAL UNITARY GROUP,

The current section illustrates the situation described in
Section IV-A, with regard to estimation of , through the
example . Although is naturally a matrix
group, it will be necessary to embed it into the higher dimen-
sional in order to estimate both and .
For relevant properties of , see [34]. In the following,
and denote the 2 2 and 3 3 identity matrices. Recall

that is the group of 2 2 complex matrices , which
are unitary, , and have unit determinant .
The corresponding Lie algebra is the vector space of
2 2 complex matrices , which are skew-Hermitian and with

zero trace, considered with the additional bracket operation
. The dimension of is . It

is usual to choose the following basis of :

From bilinearity, the operation is completely determined
from

(49)

where is totally antisymmetric, . The matrices
of the linear maps —in the basis —are
the following:

These satisfy the same relations (49). An immediate computa-
tion shows that the matrices , are not lin-
early independent, while the matrices , are
linearly independent.
The scalar product on is obtained by declaring the

basis , , to be orthonormal. This is -invariant that
will be verified below. Note here that, by (49), is simple,
so that there exists essentially one -invariant scalar product
on .
Let be a 3-D Brownian motion with co-

variance matrix . Equation (1) may be copied:

(50)

According to Sections II-A and III, is a left Brownian process
in and the distribution of is . The approach
of Section IV will be applied to estimation of from
\textbackslash\ observations of .
This consists in three main steps. The first is to choose an
injective Lie group homomorphism .
The second is to apply (24) and the third is to retrieve the
covariance matrix from the resulting Hermitian factor. The
first step controls the precision of the estimates, as discussed
after Proposition 5. It also determines the possibility of recov-
ering . As discussed in Section IV, this requires . The
proposed choice is . Precisely

(51)

where is the identity representation
and is the adjoint representation. It
is clear that and .
For , , the matrix of in the basis

. For , where
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Since this is an orthogonal matrix, is indeed -invariant.

In the notation of (12), and for .
Moreover, and .
Note that and are irreducible representations of

. In other words, (51) is a special case of (32). By
Proposition 1

where in particular

(52)

Letting , (24) gives the polar factors

(53)

Thus, using by itself allows for , but not for , to be re-
covered. On the other hand, does not give but, according
to (52), it is necessary in obtaining . The choice of simply
consists in combining both and . Recovering in addi-
tion to , from observations , by forming and
as in (29), comes at the price of a slower convergence. Indeed,
increasing dimensionality from to will increase
both and in Proposition 5. If , then by itself
allows for both and to be recovered.

VII. APPLICATION: POLARIZED LIGHT IN A DISPERSIVE FIBER

The problem of estimating , for the example of Section VI,
has an immediate application to a signal processing situation.
Precisely, this concerns the inverse problem of polarized light
propagating in a dispersive optical fiber. In this section, the
application is discussed and the inverse problem formulated
in terms of physical quantities. The use of a comprehen-
sive formalism for polarization optics, based on the tools of
Section II-A, with , was advanced in [2] and [35].
This has been successful in interpreting recent experimental
results.
In a variety of signal processing situations, wave propagation

is the physical support of signals of interest. Lightwaves have
a vector nature, so that measurements made on them create a
state of polarization, whose determination is of great physical
significance. On the other hand, from the point of view of com-
munication, this vector nature seems to offer a desirable redun-
dancy. Unfortunately, it may happen that different components
of a vector wave propagate at different speeds or with different
attenuation. Formulation of a signal model which takes into ac-
count polarization-dependent effects arising for lightwaves nat-
urally involves classical Lie groups, in particular compact Lie
groups.
Transverse lightwaves are described using the two compo-

nents of an electric field, in the plane orthogonal to the direction
of propagation. An optical fiber acts as a waveguide so that the
direction of propagation is constant. The desired signal model is
obtained from the Stokes formalism of polarization optics. The

following development relies on [35] and [36]. A general back-
ground may be found in [37].
Let denote distance measured along the fiber, in the direc-

tion of propagation. The state of polarization is given by the so
called Jones vector, which has two complex components

, . These are the analytic signals corresponding to the
components of the electric field. Let be the total length of the
fiber. The resulting inverse problem is to estimate based
on observation of . When the fiber is predominantly dis-
persive, this problem is resolved by an immediate application of
the example of Section VI.
Physically, the situation is the following. In a perfectly cir-

cular fiber, the two components of the electric field propagate
at the same speed. In terms of the Jones vector, the phase dif-
ference between and and the physical orientation
of the vector are constant. Small departures from circu-
larity occurring throughout the length of the fiber lead to two
random effects. Namely, phase difference between and

and change of the physical orientation of . The word
“random” here has a straightforward meaning. Repetition of an
experiment, with the same input to the fiber, leads to different
observed outputs belonging to some well defined probability
distribution. The output of the fiber is . Iteration of the
two effects, in general, leads to a random linear relation between

and

(54)

where is a random unitary matrix, known as the
Jones matrix. Equation (54) constitutes the signal model to be
used in solving the inverse problem. The unknown appears
as a parameter of the probability distribution of the observed

. Indeed, is usually prepared in a given deterministic
value.
The physical origin of suggests that it may be described as

the terminal value of a diffusion with values in .
Further simplifying assumptions show this to be a Brownian
process. Precisely, independent stationary increments are jus-
tified by the local nature of physical effects and homogeneity
of the fiber. It is clear that —recall the notation of
Section VI. It follows that , where is a co-
variance matrix. The results of [36] suggest that .
From (13) of Proposition 1, the average of is a real mul-
tiple of . This relation is further refined by removing the
redundancy present in .
If one is interested in the underlying state of polarization, then
contains information on the intensity of the lightwave,

which is irrelevant. The state of polarization is uniquely given
by the Stokes vector , which belongs to the unit sphere
in . This is defined as , where

are real numbers such that

(55)

The matrix on the left-hand side is known as the coherency ma-
trix. Equation (54) is equivalent to

(56)
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In other words, transforms under the adjoint representation
of , denoted in Section VI. From (13)

(57)

where angular brackets denote averaging over repeated exper-
iments. Since belongs to the unit sphere, it becomes pos-
sible to solve the inverse problem, identifying and also
which is a physical constant of the fiber, related to its birefrin-
gent strength.
As mentioned in Section II-A, explicit construction of

Brownian processes follows using multiplicative integration.
The resulting numerical scheme is common in the literature,
for example, [12], [23]. In the present situation, this can be
particularly helpful. While it is easy to observe , the Jones
matrix —or the corresponding , as in (56)—are “inside
the fiber” and not easily accessible.

VIII. VALIDITY OF THE EXTRINSIC MEAN

In Section IV-A, it was shown is the unique extrinsic mean
of Brownian distributions or . Here, the va-
lidity of the extrinsic mean for a wider class of distributions is
shown. The proposed generalization will retain properties (14)
and (15) of Brownian distributions. Let be a random variable
with values in . Assume also ; is then said to be
inverse invariant. Consider the problem of estimating
from an observed . The distribution of , parametrized
by , belongs to a location model, with as location param-
eter. Proposition 9 below gives a sufficient conditions for to be
the unique extrinsic mean of the distribution of . This condi-
tion captures the importance of the Lévy property of Brownian
processes, indicated in Section II-A. Recall, for instance from
[1], that is inverse invariant if is Hermitian for all

. The characteristic function of is given by

(58)

In particular, is a left polar factor of . If is
strictly positive definite, for at least some , then
can be recovered as in (24).
For Brownian distributions, Proposition 1 showed that

is strictly positive definite for all whenever
. Other distributions that lead to the same property

were encountered in [1]. If are i.i.d. random variables
with values in and , a Poisson random variable, indepen-
dent from , then defined as follows is said to have a
compound Poisson distribution, (putting ):

(59)

If is inverse invariant then is strictly positive definite
for all . Precisely

(60)

where is the parameter of and denotes the characteristic
function of . Analytically, what is in common between (13)

and (60) is the matrix exponential leading to strict positive def-
initeness. The same is true for any marginal distribution of a
Lévy process in .

Proposition 9: Let be a Lévy process in with ,
, and . Let be an

injective unitary representation. If is inverse invariant then
is the unique global minimum for (22).

Proof: By a well-known reasoning (see, for example, [3]),
there exist matrices such that

(61)

where . Indeed, it is straightforward to show is
continuous in and

This only uses the Lévy property of , with , and im-
plies the general form (61). It follows that if is inverse in-
variant, then is strictly positive definite for .
Note here that .
Let be an injective unitary representation, and

.Writing as in (32) and applying (58) and (61),
it follows that

(62)

In particular, is nonsingular and is its left polar
decomposition. The proposition now follows by the same rea-
soning as Proposition 4.

It may be interesting to recall the concept of positive-definite
function on [38]. Assume has a smooth density with re-
spect to . It is said that is a positive-definite function on if

(63)

for all , and , with the bar
denoting complex conjugation. In fact, is positive definite iff

is positive definite for all . Unfortunately,
this falls short of the desired strict positive definiteness.

IX. EQUIVARIANT ESTIMATORS

The extrinsic mean estimator of Section IV-A can be regarded
as an equivariant estimator, for the risk function arising from
(22). The current section investigates the possibility of com-
puting an estimator which improves upon that of Section IV-A,
while retaining its property of equivariance. It is argued this
could be carried out numerically, using the development of
Section V.
Consider again the case , for a fixed sample

size . The notation and is the same as for (29).
With a slight abuse of notation, write .
Based on (22), the risk function associated to is

(64)
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where indicates are taken from . The
function is constant

The second equality uses (14). The third equality uses unitary
invariance of the Euclidean matrix norm and the fact that

(65)

which follows from an elementary property of Polar decomposi-
tion. According to a usual terminology, (65) states that is an
equivariant estimator of [39]. The property of Equivariance
does not uniquely define . If is an equivariant estimator,
then

where is a -valued function of vari-
ables, with values in . A usual approach for improving
upon is to search for an equivariant estimator with
minimum risk, by optimizing over the function . This
leads to minimum risk equivariant (MRE), estimation
(again, see [39]). Following a usual transformation, let

. This is again equivariant, i.e.,
verifying (65). The MRE estimator is

, where is given
by

In this formula, evaluation of the right-hand side re-
quires knowledge of the joint distribution of and

. This is provided using the develop-
ment of Section V. For simplicity, assume so that the
goal is to obtain

(66)

In this expression, and are independent and, by (11)
and Proposition 1, both have distribution . Moreover,
from the definition in Section V, the couples and

are jointly Brownian, with joint characteristic functions
written down as in (47). Since these couples are also indepen-
dent, (9) can be used to calculate the joint characteristic function
of .
The last remark completely describes the joint distribution of

. This could be exploited to evaluate numerically
(66), e.g., using Bayes formula.

X. CONCLUSION

This paper has consideredmarginal distributions of Brownian
processes in compact Lie groups, which it has called Brownian
distributions. These appear as belonging to parametric fami-
lies, which display certain similarities to the well-known normal
families. For Brownian distributions, as well as a more general
class of distributions, the paper has justified the use of the ex-
trinsic mean for the estimation of location parameters. Indeed,

for the class of distributions in question, the location param-
eter was shown to be the unique extrinsic mean. Moreover, at
least for Brownian distributions, resulting estimates were seen
to have adequate asymptotic properties and to be computation-
ally uncostly. A further aspect of the paper was the study of
multivariate Brownian distributions. Several improvements to
the presented material are possible. With respect to the extrinsic
mean, as used for parametric estimation of Brownian distribu-
tions, two issues arise. First, it was shown that extrinsic esti-
mation can simultaneously recover the location parameter (i.e.,
parameter ) and the concentration parameter (i.e., parameter
). However, conditions required on the embedding used for

the extrinsic mean, in order to allow recovery of both param-
eters, were only given in a general form. It seems particularly
interesting to be able to obtain an analytic or at least numerical
construction of an embedding verifying these conditions—pos-
sibly, this could arise from a generalization of the example in
Section VI.
Second, it should be noted the extrinsic mean does not, in

a specific way, lead to optimal estimates for the location pa-
rameter. For finite sample size, it was argued that optimal equi-
variant estimates could be computed numerically, after a simpli-
fication due to the development of multivariate Brownian distri-
butions. An open problem remains as to asymptotically optimal
estimates. It should be noted that this is quite separate from
the problem for finite sample size. While Brownian distribu-
tions can be generalized to arbitrary sample size, in the form of
multivariate Brownian distributions, they do not seem to admit
closed-form simplification independent of sample size. The dis-
cussion of multivariate Brownian distributions presented in this
paper does not depend on the hypothesis that the underlying
group is compact. However, compact Lie group structure was
seen to impose strong restrictions on statistical analysis of mul-
tivariate Brownian distributions. It would be interesting, and rel-
atively straightforward, to see if this situation is changed when
considering Abelian or noncompact, e.g., nilpotent, Lie groups.

APPENDIX

Lemmas 1 and 2 give technical aspects of the proofs of Propo-
sition 3 and 4, respectively. These lemmas state results fromma-
trix analysis which were used in the proofs, but were skipped in
order to maintain a direct flow of ideas.
Lemma 1 provides an estimate for the rest in the Taylor de-

velopment of the matrix exponential of an antisymmetric ma-
trix. Its use in the proof of Proposition 3 is explained below. As
for lemma 2, it states the approximation property of Polar de-
composition, with respect to the Euclidean matrix norm. It is a
special case of a more general result given in [27]. This lemma
was used in the proof of Proposition 4.

Lemma 1: Let be a complex matrix, .
For let . Then

(67)

where indicates the minimum.
Proof: For and , let and

. Let . Recall
the identity
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(68)

which can be shown by induction. This holds for if
. Using norm inequalities

(69)

Since is skew-Hermitian, is unitary. It follows that

The lemma follows by induction in (69), using both of these
estimates. Note that and .

Lemma 1 is used in the proof of Proposition 3 in order to
obtain (21). Note that, according to this lemma, in the notation
of the proposition

where . By condition (ii), the average
of the squared norm is a constant multiple of . Then, by
Jensen’s inequality, the factor in brackets is . Finally

which is enough for (21), by a second application of Jensen’s
inequality.

Lemma 2: Let be a nonsingular complex matrix
with polar decomposition , where is unitary and
Hermitian strictly positive definite. All unitary verifies
the inequality .

Proof: Since are both unitary, .
Letting , it follows that

(70)

Indeed, the left-hand side is equal to .
A straightforward computation gives

Subtracting from a similar identity for and using
yields

(71)

Using (70) and , it follows that

Replacing in (71), the strict inequality is seen to hold since is
strictly positive definite.

In [27], it is shown that if the Euclidean matrix norm is re-
placed by a general unitary invariant matrix norm, the lemma
continues to hold, but with strict inequality replaced by plain
inequality . This shows the importance of Euclidean matrix
norm to Proposition 4.
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