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Decompounding on Compact Lie Groups
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Abstract—Noncommutative harmonic analysis is used to solve a
nonparametric estimation problem stated in terms of compound
Poisson processes on compact Lie groups. This problem of decom-
pounding is a generalization of a similar classical problem. The pro-
posed solution is based on a characteristic function method. The
treated problem is important to recent models of the physical in-
verse problem of multiple scattering.

Index Terms—Compact Lie groups, compound Poisson pro-
cesses, multiple scattering, noncommutative harmonic analysis,
nonparametric estimation.

1. INTRODUCTION

HIS paper studies the following nonparametric estimation

problem. Let (X,,),,>1 be i.i.d. G-valued random vari-
ables for some group G, and let e denote the identity element
of GG. For example, G might be the group of 3 x 3 orthogonal
matrices, in which case each X,, would be a random 3 x 3 or-
thogonal matrix and e would be the 3 x 3 identity matrix. The
process

N(t)
Y(#t)= ] Xn. Xo=ce
n=0

where N = (N(t))¢>0 is a Poisson process with parameter
A > 0, is called a G-valued compound Poisson process. If G
is not commutative, the above products are taken to be ordered
from left to right, and Y'(¢) is called a left compound Poisson
process. It is assumed that the random variables X,, and N (¢)
are independent of each other, and for simplicity, it is further
assumed that the Poisson parameter A is known. The general
problem is to estimate the distribution of the X, given par-
tial observations of one or more realisations of the compound
Poisson process Y (¢). Of specific interest, is the case when mul-
tiple realisations of Y (T') are available, for some fixed time in-
stant 7" > 0.
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The real numbers form a group, with addition being the group
operation. Choosing G to be this group results in the ordinary
compound Poisson process y(t) = ZT]:T:(%) 2, wWhere 2o = 0 and
@y, for n > 1 are real-valued i.i.d. random variables. Estimating
the distribution of the z,, is known as decompounding and has
been well-studied [1], [2]. In the present paper, decompounding
techniques are extended to the case when G is a noncommuta-
tive group. This new case can not be obtained trivially and re-
quires ideas from noncommutative harmonic analysis. Although
group-valued compound Poisson processes were introduced by
Applebaum in [3], the corresponding decompounding problem
has not been addressed in generality before.

This paper contributes to the relatively recent trend consisting
in the application of noncommutative harmonic analysis (i.e.,
harmonic analysis on groups) to estimation and inverse prob-
lems. It addresses a nonparametric estimation problem stated in
terms of compound Poisson processes on compact Lie groups.
We refer to this as the problem of decompounding on compact
Lie groups, since it directly generalizes the classical problem
of decompounding for scalar processes. This generalization is
mathematically natural and is motivated by the physical inverse
problem of multiple scattering. In particular, this paper also con-
tributes to the modelling of multiple scattering using compound
Poisson processes.

Compound Poisson processes model the accumulation of
rare events. As such, scalar compound Poisson processes are
important tools in queuing and traffic problems and in risk
theory. The classical problem of decompounding arises in
the context of these processes. A functional approach to this
problem is given by Buchmann and Griibel [1]. A characteristic
function method is studied by van Es et al. [2]. The applica-
tions of decompounding in queuing problems and risk theory
are referenced in [1]. We extend this problem by considering
decompounding on compact Lie groups. We approach this
new problem by using noncommutative harmonic analysis to
generalize the above mentioned method of [2].

The important potential which noncommutative harmonic
analysis holds for engineering problems is well illustrated
in the book of Chirikjian and Kyatkin [4]. Its importance to
nonparametric estimation stems from the fact that it leads to
the successful generalization of the highly important concept of
characteristic function in probability. In mathematical research,
this generalization was pioneered by Grenander [5] and exten-
sively developed by Heyer [6]. It has received special attention
in the engineering community. See Yazici [7] and the papers by
Kim et al. [8]-[11].

The paper is organized as follows. Section II sets down the
necessary background in harmonic analysis and characteristic
functions on compact Lie groups. Section III introduces com-
pound Poisson processes on compact Lie groups. In Section IV,
we state the decompounding problem for these processes and

0018-9448/$26.00 © 2010 IEEE



SAID et al.: DECOMPOUNDING ON COMPACT LIE GROUPS

present our approach based on noncommutative harmonic anal-
ysis. In Section V, we propose a model for multiple scattering
based on compound Poisson processes on the rotation group
SO(3). Within this model, decompounding appears as a phys-
ical inverse problem. We apply our approach as described in
Section IV to this problem using numerical simulations.

II. CHARACTERISTIC FUNCTIONS ON COMPACT LIE GROUPS

Characteristic functions of scalar and vector-valued random
variables are defined using the usual Fourier transform. Their
extension to random variables with values on compact Lie
groups owes to the tools of harmonic analysis on these groups.
Our presentation of characteristic functions is adapted from [5],
[12]. Harmonic analysis on compact Lie groups is presented in
more detail in recent papers [8], [7]. More thorough classical
references thereon include [13], [14].

Let G be a compact connected Lie group with identity e.
We denote by p the biinvariant normalized Haar measure on
G. Hilbert spaces of square integrable (with respect to p) com-
plex and real-valued functions on G are denoted L?(G, C) and
L?(G,R). A representation of G is a continuous homomor-
phism 7 : G — GL(V) with V' a complex Hilbert space
and GL(V) the group of invertible bounded linear maps of
V. 1t is called irreducible if any G-invariant subspace of V' is
trivial i.e., equals {0} or V. Two representations m; : G —
GL(V;)-with i = 1, 2-are called equivalent if there exists an in-
vertible bounded linear map L : V; — Vs suchthat Lo (g) =
ma(g)oL forall g € G. Using this relation, the set of irreducible
representations of G is partitioned into equivalence classes.

The central result of harmonic analysis on compact groups
is the Peter—Weyl theorem. For the current context, it can be
stated as follows. Let Irr(G) be the set of equivalence classes of
irreducible representations of G. Trr(G) is a countable set. If § €
TIrr(@) then we have the two following facts. All representations
of the class 6 have the same finite dimension dgs. There exists
in this class a unitary representation U®. Choosing one such
representation we can suppose that U® : G — SU(C%) with
SU(C4) the group of special unitary ds x ds matrices. We
distinguish the unit representation 8y € Irr(G) where U% (g) =
1 for all ¢ € G. With this choice being fixed, we can state the
Peter—Weyl theorem.

Theorem 1 (Peter-Weyl): The functions dé/ ZU,L-‘} taken for
6 € Irr(G) and 4,j = 1,...,ds form an orthonormal basis
of L*(G,C).

Note that Ui‘sj is the usual notation for the matrix elements of
U®.Forall f € L?(G,C) the theorem gives the Fourier pair

As = / F@)U(9) du(g) (1)
flg)= > dstr(AsU%(9)) ©)
S€lrr(G)

where T denotes the Hermitian conjugate and tr the trace. The
Fourier series (2) converges in L?(G, C).

Consider the example G = S*. It is possible to make the
identification 6 = 0,1,.... Then U%(z) = 2% for = € SL.
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Writting z = ¢ for some # € [0, 27], this gives the classical
Fourier expansion of periodic functions.

We consider random objects and in particular G-valued
random variables defined on a suitable probability space
(2, A,P). When referring to the probability density of
such a random variable X, we mean a probability density
px € L?(G,R) with respect to p. The characteristic function
of a GG-valued random variable is defined as follows. Compare
to [5].

Definition 1: Let X be a G-valued random variable. The char-
acteristic function of X is the map ¢x given by

61— ¢x(8) = E(U(X)) 6 €Iir(Q).

Here, E stands for expectation on the underlying probability
space. For all § € Irr(G), the expectation in the definition is
finite since U/® has unitary values. When X has a probability
density px its characteristic function gives the Fourier coeffi-
cients of px as in (1). We have

4x(8) = EU(X) = / (@)U (g)dulg) 8 € Trn(G).

The following proposition 1 recalls the relation between char-
acteristic functions and the concepts of convolution and con-
vergence in distribution. It is a generalization of classical prop-
erties for scalar random variables. Remember that a sequence
(Xn)n21 of GG-valued random variables is said to converge in
distribution to a random variable X if for all real-valued contin-
uous function f on G, we have

lim E(f(X.,)) = E(f(X)).

The proof of proposition 1 is straightforward. See [5].
Proposition 1: The following two properties hold.
1) Let X and Y be independent G-valued random variables
and let Z = XY. We have for all § € Irr(G)

¢z(0) = dx(6)Py (0).

2) A sequence (X,,)n>1 of G-valued random variables con-
verges in distribution to a random variable X iff for all
6 € Irr(G)

lim gy, (8) = ¢x(6).

In order to solve our estimation problem in Section IV we
will require random variables to have certain symmetry proper-
ties. We deal with these properties here. The following analysis
draws on Liao [12], [15].

We will say that a G-valued random variable X is inverse in-
variant if X < X 1. We will say that it is conjugate invariant
if for all k € G we have that X < kXk~1. As usual < de-
notes equality in distribution. The following proposition 2 char-
acterizes these two symmetry properties in terms of character-
istic functions. It will be important to remember that for any

two G-valued random variables X and Y we have X <V iff
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¢x = ¢y . This results from the completeness of the basis given
by the U? as stated in the Peter—Weyl theorem [5].
Proposition 2: The following properties hold.
1) X is inverse invariant iff for all 6 € Irr(G) we have that
¢x(6) is Hermitian.

2) Let X be inverse invariant. If Xq,...,X,, are indepen-
dent copies of X then the product X; ... X, is inverse in-
variant.

3) X is conjugate invariant iff for all § € Irr(G) we have
that ¢x (8) = asly, where as € C and Iy, is the ds X ds
identity matrix.

4) If X and Y are independent and conjugate invariant then
XY is conjugate invariant.

5) X is conjugate invariant iff for all G-valued random vari-
able Y independent of X we have XY Lyx.

Proof:

1) Notethatforall§ € Irr(G) we have by the homomorphism

property of U® and the fact that it has unitary values

¢x-1(8) = E(U° (X)) = E(U°(X))" = ¢x (6)".

2) This follows from 1 of proposition 2 and 1 of proposition
1, since the powers of a Hermitian matrix are Hermitian.

3) Note that for all k € G we have that X = kX%~ iff for
all § € Irr(G)

E(U°(X)) = E(U°(kXk™1)) = U (R)EU* (X)U° ()'
identifying ¢ x on both sides, this becomes
$x(6) = U (k)px (8)U° (k).

If this relation is verified for all k& € G then ¢x () is a
multiple of I, . This follows by Schur’s lemma [13].

4) This follows from 3 of proposition 2 and 1 of proposition
1.

5) The if part follows by setting Y = k € G for arbitrary k.
The only if part follows from 3 of proposition 2 and 1 of
proposition 1.

|

Article 1 of proposition 2 motivates a practical recipe for gen-
erating inverse invariant random variables from general random
variables. Let X and Y be GG-valued random variables. Suppose
X and Y are independent with Y’ £ X -1, 1t can be verified by
1 of proposition 2 that XY £ Y X and that both these products
are inverse invariant. In practice, if we have generated X then
we can immediately generate Y as above. In this way, an inverse
invariant XY or Y X is generated from X.

III. COMPOUND POISSON PROCESSES

Compound Poisson processes on groups naturally generalize
scalar compound Poisson processes. They are introduced by
Applebaum in [3]. Let us start by recalling the definition of
scalar compound Poisson processes. Let N = (N(t)):>0 be
a Poisson process with parameter A > 0. Suppose (z,,),>1 are
i.i.d. R-valued random variables. Suppose the family (2, )n>1
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is itself independent of V. The following process ¥ is said to be
a compound Poisson process

N(t)

y(t) =Y wn

G-valued compound Poisson processes are defined by analogy
to this formula. We continue with the process N. Let (X, )5 >1
be i.i.d. G-valued random variables and suppose as before that
the family (X, ),,>1 is independent of N. The following process
Y is said to be a G-valued left compound Poisson process

N(t)

v(t) =[] X

We understand that products are ordered from left to right. It
is possible to obtain a right compound Poisson process by con-
sidering Y (¢) ™! instead. Thus, the two concepts are equivalent.
See [12] and [3].

Before going on, we make the following remark on the above
definition of compound Poisson processes. This definition was
stated for G a compact connected Lie group. This topological
and manifold structure of G is not necessary for the definition,
which can be stated in its above form for any group with a mea-
surable space structure. The compact group structure of G al-
lows us to use the Peter—Weyl theorem and characteristic func-
tions. The connected Lie group structure allows the introduction
of Brownian noise in Section IV, see [12].

We wish to summarize the symmetry properties of the random
variables Y (¢) for ¢ > 0. Note first that for all ¢ > 0, Y (¢) does
not have a probability density. Indeed, for all ¢ > 0 we have
P(Y(t) =e) > P(N(t) = 0) = e~ . It follows that Y (¢) has
an atom at e. In the absence of a probability density, we study
Y (t) for t > 0 using its characteristic function. This is given in
the following Proposition 3 which can be seen to immediately
extend the well known formula for scalar compound Poisson
processes. This proposition follows [12], [3].

Proposition 3: For all t > 0 the characteristic function ¢y ()
of Y (t) is given by

by (1)(8) = exp(At(¢px (6) — 14,)) 3)
for § € Irr(G), where ¢px = dx, .
Proof: Lett > 0. ¢y (4) can be calculated by conditioning

over the values of N(¢). Using the independence of N and
(Xn)n>1 we have for ¢ € Irr(G)

by () =e M GO II v xm).

Using the fact that (X,,),,>1 are i.i.d. it is possible to replace

EJI 0°(Xuw) = [T EWU° (X)) = ¢x(8)"
m=0 m=0
the proposition follows by rearranging the sum. ]
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Combining Propositions 3 and 2, we have the following
proposition. It states that for all £ > 0 the symmetry properties
of Y (¢) are the same as those of the X,.

Proposition 4: For all t > 0 we have:

1) if X is inverse invariant, then so is Y ();

2) if X is conjugate invariant, then so is Y ().

We end this section with Proposition 5. It gives a property
of uniformization of the distribution of Y (¢) as ¢ T oo. This is
similar to the behavior of the products X ... X, forn | oo, see
[5]. For a more general version of Proposition 5 see [12], [15].
We say that a G-valued random variable X is supported by a
measurable subset S of G if P(X € S) = 1. If X and X' are

G-valued random variables with X < X’ then X is supported
by S iff X' is supported by S. In Proposition 5, U is a G-valued
random variable with probability density identically equal to 1.
That is, U is uniformly distributed on G.

Proposition 5: If X is not supported by any closed proper
subgroup S of G or coset g5, g € G of such a subgroup then
Y (t) converges in distribution to U as ¢ T oo.

Proof: Under the conditions of the proposition we have
for all § # &, that the eigenvalues of ¢x(6) are all < 1 in
modulus [5]. It follows that the eigenvalues of ¢ x (§) — 14, all
have negative real parts. Thus, when § # 69 we have by (3)
that ¢y (;y(6) — 0 ast T oo. Moreover, it is immediate that
by (+)(60) = 1 for t > 0. We conclude using 2 of Proposition 1.
Note that [13]

s = [V @idug) =0 528
and ¢y (6o) = 1 trivially. ]

IV. DECOMPOUNDING

In existing literature, decompounding refers to a set of
nonparametric estimation problems involving scalar compound
Poisson processes [1], [2]. In this section, we will consider
the generalization of these problems to compound Poisson
processes on compact Lie groups. The new problems can be
stated in the notation of Section III. We refer to them also as
decompounding problems. As in the scalar case, they consist
in estimation of the common probability density (supposed to
exist) of the random variables X,, from observations of the
process Y. The unknown common probability density of the
X, will be denoted p. We are unaware of any work on similar
problems for vector-valued compound Poisson processes.
Our consideration of compact Lie groups is motivated by the
applications presented in Section V.

A. Typology of Decompounding Problems

Several decompounding problems can be stated, depending
on the nature of the observations made of Y [2]. Decom-
pounding is performed from high-frequency observations if an
individual trajectory of the process Y is observed over time in-
tervals [0, 7] where T | co. It is performed from low-frequency
observations if i.i.d. observations are made of the random
variable Y (T') for a fixed T' > 0.

Decompounding from high- and low-frequency observations
lead to different difficulties. For high-frequency observations,
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the problem is greatly simplified if the assumption is made that
X, does not take the value e, for any n > 1. With probability 1,
a trajectory of IV has infinitely many jumps over ¢ > 0. Under
the assumption we have made, all these jumps correspond to
jumps of Y which we do observe. The jumps of Y then give
i.i.d. observations of X; and the average time between these
jumps is 1/A. In particular, it is important for high-frequency
observations to take the limit T" T oo.

Low frequency observations do not give direct access to A.
In scalar decompounding from low-frequency observations, A
is often assumed to be known [1], [2]. In the context of a com-
pact group G, Proposition 5 leads to a difficulty that does not
appear in scalar decompounding. Under the conditions of this
proposition, if low-frequency observations are made at a suffi-
ciently large time 7' then these observations will be uniformly
distributed on G and will have no memory of the random vari-
ables X,,.

A third intermediate type of observations is possible. It is
possible to make observations of an individual trajectory of ¥
at regular time intervals 7,27, .... This is in fact equivalent
to low-frequency distributions. Remember that N is a Lévy
process, i.e., has independent stationary increments. Moreover
we have that the (X, ),,>1 are i.i.d. Using this, it is possible to
prove that the G-valued random variables

Y(T),Y(T)"'Y (2T),Y (2T)" 'Y (3T). ..

are i.i.d.. Thus, our observations are i.i.d. observations of Y (7).
This remark refers to the fact that Y is a left Lévy process in G
[12]. We do not develop this here.

B. Noise Model for Low Frequency Observations

We will consider decompounding from low-frequency obser-
vations. T > 0 is fixed and i.i.d. observations (Z,),>1 of a
noisy version Z of Y (T') are available. Z is given by Y cor-
rupted by multiplicative noise. We have the noise model

Z = MY/(T) @
where M is independent of Y. By 1 of Proposition 1 we have
for the characteristic function of Z

bz = dmby (1)

The noise model is equivalent to having an initial value Y (0) =
M with a general distribution. We consider the case of Brownian
noise. The characteristic function of M is then given by [12], [8]

2
gﬁ]\[(é) = exp (-Aﬁ%) Idé

where o is a variance parameter and for § € Irr(G) the con-
stant \s is the corresponding eigenvalue of the Laplace-Bel-
trami operator. In particular, As, = 0 and As > 0 for § # do. It
is clear from 3 of Proposition 2 that M is conjugate invariant. It
follows by 4 of Proposition 2 that, as far as the distribution of Z
is concerned, left and right multiplication of Y (7T') by the noise
M are indifferent.

It is possible to construct a G-valued process ¢ such that

7z 4 ¢(T). The corresponding construction is well known in
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the theory of group-valued Lévy processes and is referred to as
interlacing [3], [12]. Here we only state this construction. Let
W be a Brownian motion on G independent of NV and with vari-
ance parameter 2. This is a process with continuous paths and
independent stationary increments. Moreover, W(0) = e and
for 6 € Irr(G)

52
bw (1) (6) = exp (—/\571‘/) Iy,

Let Ty = 0 and suppose (7},),,>1 are the jump times of N. The
interlaced process ( is defined as follows. We have ((0) = e.
Fort > 0 and n > 1 we have

C(t) = {Tp_ ) )W(Tp—y) "W (t) on {T_1 <t <T,}

where the following formula holds at each time 7;, (here,
¢(T,,—) denotes the left limit at T,,):

C(Tn) = C(Tn_)Xw

This definition is sufficient, since 7,, T oo almost surely. The
term interlacing comes from the fact that the trajectories of ¢
are obtained by introducing the jumps of Y into the trajectories
of W as these jumps occur. The trajectories of W are thus in-
terlaced with the jumps of Y.

For t > 0 the characteristic function of {(¢) is given by

/\55’2
(b((t)(é) = exp (b\(bx(é) —tlg, (/\ + 5 )) (®)]

for 6 € Irr(G). It follows that we have Z & (1) ifTa? = o2

Although we do not deal with the case of high-frequency ob-
servations, we would like to end this subsection with a remark
on the role of noise in this case. The trajectories of the interlaced
process ( are noisy versions of the trajectories of Y. However,
these trajectories have the same jumps as the trajectories of Y. In
this sense, high-frequency observations are unaltered by noise.

C. Characteristic Function Method

We present a characteristic function method for decom-
pounding from low-frequency observations. This method
extends a similar one considered in [2]. In carrying out this
extension, we are guided by the properties of characteristic
functions on G presented in Section II. Our observations
(Zn)n>1 and noise model (4) were described in Section IV-B.
We aim to estimate the common density p of the X,,. A charac-
teristic function method consists in constructing nonparametric
estimates for p from parametric estimates for its Fourier coeffi-
cients ¢x () given for § € Irr(G). See [8].

We suppose that A and ¢ are known. Equation (5) can be
copied as follows:

dz(6) = exp (TA(;SX(&) — T;\Idé) 6 €lr(G) (6)
where ) is a constant determined by A and o2. We refer to
this transformation ¢ x — ¢z as the compounding transforma-
tion. Decompounding will involve local inversion of the com-
pounding transformation. This is clearly related to inversion
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of the matrix exponential in a neighborhood of ¢ () for all
6 € Irr(G). Rather than deal with this problem in general, we
make the following simplifying assumption.

Assumption: X is inverse invariant.

Forall § € Trr(G) we have by applying 1 of Proposition 2 and
(6) to this assumption that ¢~ (6) is Hermitian positive definite.
Note Log the unique Hermitian matrix logarithm of a hermitian
positive definite matrix. We can now express the inverse of the
compounding transformation. From (6), it follows that

¢x(0) = %

Log [p7(8)] + (AA) Iy, 6 €Trx(G). (1)
Let 6 € Irr(G). It follows from definition 1 that empirical esti-
mates of ¢ (6) based on the observations (Z, ), >1 are unbiased
and consistent. This is a simple consequence of the strong law of
large numbers. See for example [16]. In order to estimate ¢ x ()
using (7), it is then important to ensure that the empirical esti-
mates of ¢ (8) are asymptotically Hermitian positive definite.
We start by defining the empirical estimates QAVZ‘ (6) for 6 €

Irr(G)andn > 1

n

Y (U (Zm) + U (Zm)')

m=1

1

T

Hermitian symmetrization of empirical estimates is necessary
for the application of (7). Since it is a projection operator, this
symmetrization moreover contributes to a faster convergence of
the ¢ (6) to $2(5).

Continuous dependence of the spectrum of a matrix on its co-
efficients is a classical result in matrix analysis. Several more or
less sophisticated versions of this result exist [17]. For a remark-
ably straightforward statement, see [18]. For a complex matrix
C we will denote A(C) its spectrum. For each ¢ € Irr(G) and
n > 1 define the event Ry by

b= {1 (92(6) clo,o0l}-

For ¢ € Irr(G), the sequence (RY), -, controls the convergence

of the spectra of the empirical estimates q/g%(é) In particular,
since lim,, ¢p%(6) = ¢z(6) almost surely

P (Up>1 Ninsn BYY) = imP (Nim>n Ry = 1.

Using the events Ry we can write down well defined estimates
of ¢x. These are denoted ¢%-(6) for § € Irr(G) andn > 1
¢%(8) =0 on Q — R}

T{,
F%(6) = oy Log [45(9)] + (AA) L, on RE.

This expression gives our parametric estimates for the Fourier
coefficients of p. We use them to construct nonparametric esti-
mates based on an expression of the form (2). Let (I';);>1 be an
increasing sequence of finite subsets I'; C Irr(G) with the limit
Ui>1T = Irr(G) — {6p}. Let K > 0 and for each § € Irr(G)
define

fs = dse” KN
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Forn > 1and! > 1, our nonparametric estimate p;" is given by

) =1+ fir (5 (OU0)') g€ ®

b€l

The subscript [ > 1 corresponds to a cutoff or smoothing pa-
rameter. Indeed, infinitely many representations are excluded
from the sum over [';. A more complete expression of this fact
appears in [8]. When K > 0 the coefficients fs form a con-
volution mask ensuring that the estimates p;' can be taken to
converge to a smooth probability density. We make this more
precise in Section IV-D.

It is usual to rewrite expressions similar to (8) in terms of a
group invariant kernel. See [8] and [9]. Such a transformation is
not possible here due to the indirect nature of our observations.
This is in particular related to the more involved form of the
¢ (6) as given above.

D. Convergence of Parametric and Nonparametric Estimates

Here, we discuss the convergence of the parametric and non-
parametric estimates given in Section IV-C. Our argument is
presented in the form of Propositions 6 and 7 below. Proposi-
tion 6 gives the consistency of the parametric estimates ¢ (6).
Proposition 7 states a subsequent result for the nonparametric
estimates pj’.

For Proposition 6, we will need inequalities (9) and (10).
These express stability results for the eigenvalues of Hermitian
matrices and for the Hermitian matrix function Log. Let A and
B be Hermitian d x d matrices, forsome d > 1.For1 <1 <d,
let «; and f3; be the eigenvalues of A and B, respectively. Sup-
pose they are arranged in nondecreasing order. We have

d

> (Bi—i)? < |B— AP )

=1

where |-| is the Euclidean matrix norm. This inequality is known
as the Wielandt—Hoffman theorem. In [17], it is stated for A and
B real symmetric. The general case of Hermitian A and B can
be obtained from this statement using a canonical realification
isomorphism.

Suppose A and B are positive definite. For our purpose, it
is suitable to assume both A(A) and \(B) are contained in an
interval [k, 1] for some k& > 0. Under this assumption we have
the following Lipschitz property:

[Log(B) — Log(A)| < Vdk™?|B — A|. (10)
In order to obtain (10), it is possible to start by expressing
Log(A) as follows:

Log(A) = /0 (A= I)[H(A = I,) + I "dt.

This expression results from a similar one for the real logarithm

applied to each eigenvalue of A. Subtracting the same expres-

sion for Log(B), (10) follows by simple calculations.
Proposition 6: For all § € Irr(G) we have the limit in prob-

ability lim,, ¢ (8) = ¢x ().
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Proof: We only need to consider § # 8. Indeed, q@}(éo) =
¢x(6p) = 1foralln > 1.Let § # by, forall n > 1, we have

P%(5) -1

1 n
3 25 0l + 1020

op

where | - |01, is the operator matrix norm. Passing to the limit,
we have the same inequality for ¢z (). It follows that all eigen-
values of ¢7(6) or ¢z(8) are < 1. Since ¢ () is positive def-
inite, there exists ks > 0 such that A(¢z(6)) C [ks, 1]. For
n > 1,let R? be the event

i = {0 (6309)) € ks/2.11}
From inequality (9), we have

P(Q—R?)SP(

F3(0) = 62(5)| > ks /2).

Since Rg C RY, it follows from inequality (10) that

P (

P5(6) = 9x(6)] > e N )
<P (|#3(0) - 62(0)| > kie/L)
for all € > 0, where L = 4\/ds/T .

The proof can be completed by a usual application of Cheby-
chev’s inequality

P
an

forall € > 0. [ ]

8+2L2/52> <\/£>2

2
n ks

B0 = ox(0)] > ) < (

Proposition 7 relies on Proposition 6 and the Peter—Wey] the-
orem. It implies the existence of sequences (ﬁk)kzh of non-
parametric estimates given by (8), converging to p in probability
in L?(G, C) with any prescribed rate of convergence. Conver-
gence in probability in L?(G, C) means that the following limit
in probability holds:

tim [~ pl = 0

where || - || is the L?(G,C) norm. It is clear from (8) that for
all k > 1, we have p;, € L*(G, C). In order to obtain nonpara-
metric estimates in L?(G,R) and converging to p in the same
sense, it is enough to consider the real parts of the py. The fol-
lowing proof of Proposition 7 uses Plancherel’s formula as in
[8].

Proposition 7: Putting K = 0 in (8), we have the limit in
probability

li}nlim llp;" — pl| = 0.

Proof: Forl > 1, letp, € L*(G, C) be given by

p(g) =1+ Z tr (¢x(8)U°(9)")

sely
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for g € G. By the Peter—Weyl theorem, lim,; ||p, — p|| = 0. By
(8) and Proposition 6, we have lim,, ||p]' —p,|| = 0 in probability
for all [ > 1. The proposition follows by observing that

N 2 A 2
157 = pll” = 167 = pll” + [lpe = plI? (12)

foralln,l > 1. [ ]

Proposition 6 obtained convergence in probability of the para-
metric estimates ¢’ (8) for all § € Irr(G). These parametric
estimates depend only on the observations. In particular, they
can be evaluated without any a priori knowledge of p. By intro-
ducing such knowledge, it is possible to define parametric esti-
mates &"X(é ) converging in the square mean to the same limits
¢x(8). For § € Irr(G) and n > 1, the ¢'% (§) are given by

% (6) =0 on Q — RY

in 1 n 3 on

P%(6) = 5 Log [ #5(8)] + (A/A) L, on R

where the events R? are as in the proof of Proposition 6, and we
assume known a priori constants ks necessary for their defini-
tion. As in (8), we can define nonparametric estimates p;* where
forn,l > 1

() =1+ Y fotr (S5O (9)T) geG.

sely

For all § € Irr(G) and n > 1, we have

- " A\ 2
E[x0) - axo)] < 2 (3)

< — 13)
n
where L’ is a constant depending on the product T'\. This fol-

lows by a reasoning similar to the proof of Proposition 6. More-
over, for all n,[ > 1, we have after putting K = 0

. L
Ellop —pl” < — > (d3/k3) + [l — 2> (14)

b€l

for the functions p, defined in the proof of Proposition 7. This
follows from Plancherel’s formula in (12).

We have characterized the convergence of parametric esti-
mates using (11) and (13) and the convergence of nonparametric
estimates using (12) and (14). We make the following remarks
on these formulae. Inequalities (11) and (13) only give gross
bounds for the rate of convergence of parametric estimates.
The quality of these bounds improves when the constants ks
are greater, i.e., closer to the value 1. This is equivalent to the
L?(G,R) distance between p and the uniform density being
greater. This last point can be appreciated in relation to the
example of Fig. 3 in Section V-C.

Equations (12) and (14) describe the convergence of non-
parametric estimates in a way similar to the one used in [8].
Indeed, the nonparametric estimation error is decomposed into
two terms. One is given by the parametric estimation error and
the other depends only on p. This second term is given by the
convergence of the Fourier series of p. This is determined by
the smoothness properties of p. We note the two following dif-
ferences with [8], both related to the indirect nature of our ob-
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servations. First, the first and second terms in (14) can not be
identified as the “variance” and “bias” of p;*. Second, (14) char-
acterizes the nonparametric estimation error as depending on
the whole spectrum of p—through the constants ks—rather than
just its smoothness properties.

We finally return to the role of the parameter K introduced
in (8). For simplicity, we have put K = 0 for Proposition 7
and inequality (14). Let K > 0. The following function px €
L?(G,R) is an infinitely differentiable probability density, com-
pare to [12], [8]

prl(9) =14 Y fstr(AsU(g)").
5#£68,

15)

Using the same K in (8) and proceeding as for proposition 7, it
is possible to obtain the limit in probability

lim lim ||p; — pk|| = 0.
I n

A similar limit also holds for the p;'. Note that in addition
to being smooth, px can be chosen arbitrarily close to p in
L?*(G,R) for K > 0 small enough.

V. DECOMPOUNDING ON SO(3) AND MULTIPLE SCATTERING

This section fulfills two goals. First, it summarizes recent
use of compound Poisson processes on the rotation group
SO(3) in the modelling of multiple scattering and introduces
decompounding on SO(3) as a physical inverse problem.
Second, it illustrates the characteristic function method pre-
sented in Section IV-C by applying it to a numerical example of
decompounding on SO(3). Nonparametric estimation on the
rotation group SO(3) has received special attention [11], [9].
It is important to many concrete applications and constitutes a
privileged starting point for generalization to compact groups.

A. Compound Poisson Model for Multiple Scattering

Many experimental and applied settings aim to infer the prop-
erties of complex, e.g., geophysical or biological, media by con-
sidering multiple scattering of mechanical or electromagnetic
waves by these media. Inference problems arising in this way
are formulated as physical inverse problems within the frame-
work of various approximations of the exact equations of radia-
tive transfer. See [19]-[21].

A compound Poisson model for the direct problem of mul-
tiple scattering was considered by Ning et al. [22]. It is based on
a R-valued compound Poisson process. Consideration of com-
pound Poisson processes on SO(3) leads to a model of mul-
tiple scattering which is sufficiently precise as well as amenable
to statistical treatment. This model extends the validity of the
small angles approximation of radiative transfer. It also allows
the formulation of the physical inverse problem of multiple scat-
tering as a statistical nonparametric estimation problem.

We give an example expanding the above discussion. The de-
velopment of Section III is converted into the terminology of ra-
diative transfer, see [23]. Certain usual results in harmonic anal-
ysis on SO(3) are here referred to freely. They are set down in
a precise form in Section V-B.
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A scalar plane wave is perpendicularly incident upon a plane
parallel multiple scattering layer of thickness H. The velocity
of the wave in the layer is normalized so that we have 7 =
{ for the mean free time 7 and mean free path /. Coordinates
and time origin are chosen so that the wave enters the layer
at time 0 with direction of propagation s(0) = (0,0, 1). After
time ¢ in the layer this direction of propagation becomes s(t) =
(st(t),s2(t), s>(t)). This is considered to be a random variable
with values on the unit sphere S? C R3. The distribution of the
random variable s(H) is denoted If. It is identified with the
normalized angular pattern of intensity transmitted by the layer.
We return below to the validity of this identification.

The interaction of the wave with the layer takes place in the
form of a succession of scattering events. These are understood
as interaction of the wave with individual scatterers present
at random emplacements throughout the layer. The random
number of scattering events up to time 0 < ¢t < H will be
denoted N (). Suppose the n'" scattering event takes place at
the time 0 < 7;, < H. This affects the direction of propagation
as follows:

s(Ty) = s(Th—)Xn. (16)
Here, X, is a random variable with values in SO(3). It is iden-
tified with a random orthogonal matrix. Formula (16) is under-
stood as a matrix equality where s(7},) and s(7,,—) are line
vectors. From (16) and the definition of N (¢) we can write for
0<t<H

N(t)

s(t) = s(0) | J] X» (17)
n=0

A certain number of standard physical hypotheses can be incor-
porated in (17). This will allow for the random product therein to
be exhibited as a conjugate invariant compound Poisson process
on SO(3).

Under the condition ¢ < H it is possible to make the hy-
pothesis that the time between successive scattering events has
an exponential distribution [21]. This allows us to model N (¢)
as a Poisson process with parameter 1/£. Moreover, we suppose
the scatterers identical and scattering events independent. This
amounts to taking the SO(3)-valued random variables X, to be
i.i.d.. If the additional assumption is accepted that the number of
scattering events is independent of the whole outcome of these
events then formula (17) can be rewritten for 0 < ¢ < H as

s(t) = s(0)Y (1) (18)
where Y is a (left) compound Poisson process on SO(3) with
parameter 1/£. It is usual to assume that the random variables
X, have a common probability density p. For homogeneity with
Section IV, we mention that p is a square integrable probability
density with respect to the Haar measure of SO(3). In the theory
of radiative transfer, p is known as the phase function of the layer
[23].

In order to simplify the Fourier series of p to a Legendre
series (22) we profit from the physical hypothesis of statis-
tical isotropy. This implies that scattering events in the layer as
given by (16) are symmetric around the direction of propagation
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s(T,,—). Statistical isotropy is a valid assumption in a plurality
of concrete situations. It is verified by analytical models such as
Gaussian and Henyey—Greenstein phase functions, commonly
used to describe scattering in geophysical and biological media
[24].

Under the hypothesis of statistical isotropy the phase func-
tion p is a zonal function in the sense precised in Section V-B.
It admits a Legendre series (22) wherein the coefficients as for
6 € N are said to form the associated power spectrum of het-
erogenities [23]. If p is the Henyey—Greenstein phase function
then the power spectrum of heterogenities is given by as = ¢°
for 6 € N and p can be expressed in the closed form [24], [25]

1 —g2
(14 9% —2gcosf)?

p(cosf) = (19)

In this formula the variable § € [0, 7] refers to the scattering
angle from an individual scatterer. It is given a mathematical
definition in formula (22) of Section V-B. The parameter g €
[0, 1] is called the anisotropy or asymmetry parameter. It can be
shown to give the average cosine of the scattering angle 6. For
the scattering of light waves by water clouds and blood, we have
respectively ¢ = 0.85 and g = 0.95, see [25].

Proposition 3 of Section III can be used to give the angular
pattern of transmitted intensity Iz in terms of the power spec-
trum of heterogenities. This is expressed in the following (20).
This relates the directly observable outcome of multiple scat-
tering in the layer to the constitutive microscopic properties of
the layer, typically quite difficult to ascertain directly. Replacing
in Proposition 3 the definition of the process Y of (18) and using
the Legendre series (22) of p we have

0
&@:Zmﬂﬁww/mema@m
JO

2w
§>0

where I5 () is the ratio of intensity transmitted within a pencil
of angle 26 around s(0).

Equation (20) is well known in the small angles approxi-
mation of radiative transfer where it is derived under the as-
sumption of strong forward scattering [23]. Mathematically, this
translates into a phase function p with a sharp peak around
6 = 0. Our probabilistic development of (20) does not explicitly
make this assumption. However, the identification of Iz with
the angular pattern of transmitted intensity implicitly requires
for all the intensity of the wave entering the layer to be trans-
mitted. This precludes an important deviation between s(0) and

Equation (20) is an interesting starting point for the formula-
tion of the physical inverse problem of multiple scattering. Sup-
posing a situation where this equation holds, being able to in-
vert it implies access to the power spectrum of heterogenities
or alternatively the phase function from direct intensity mea-
surements. This implies inference of physical parameters such
as the parameter g of the Henyey—Greenstein phase function or
determination of microscopic properties such as the shape of in-
dividual scatterers [25].

Our use of compound Poisson processes on SO(3) to model
multiple scattering lead to the probabilistic counterpart (18) of
(20). In relation to (18), the physical inverse problem inherent
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to (20) is reformulated as a statistical estimation problem. This
appears as the problem of decompounding on SO(3) or some
related parametric estimation problem. A crucial difference be-
tween the two approaches is that they proceed from different
types of data.

Suppose the distribution of s(0) is known and symmetric
around (0, 0, 1)—this is the case in many experimental settings.
Instead of carrying out measurements of transmitted intensity,
it is possible to make observations of s(H ). Under the hypoth-
esis of statistical isotropy these observations of s(H ) are equiv-
alent to observations of Y (H ). If our objective is to estimate the
phase function p then we have to deal with decompounding on
SO(3) from low-frequency observations of Y. In many cases,
we could be interested in the power spectrum of heterogenities
or some related physical parameters. We then have to deal with
a parametric estimation problem.

B. Harmonic Analysis on SO(3)

We here make a short digression on harmonic analysis on
SO(3) in order to clarify the references made to this subject
in Section V-A and to prepare for Section V-C. SO(3) is often
used as the archetype compact connected Lie group. Essentially,
we will specify the Peter—Weyl theorem as stated in Section II
to the case G = SO(3). For the following, see [9] or the more
detailed account in [4].

We use the notation of Section II. In particular, + denotes the
Haar measure of SO(3). It is possible to identify Irr(SO(3)) =
N so that ds = 26 + 1 for each § € Irr(SO(3)). With this iden-
tification, the most current choice of functions U?® : SO(3) —
SU (ds) can be given in analytical form using the parameteriza-
tion of SO(3) by Euler angles.

The ZY Z Euler angles ¢,v € [0,27] and § € [0, ] are
well defined coordinates only on a subset of SO(3). This is,
however, a dense subset in the Euclidean topology of SO(3)
and has Haar measure equal to 1. Let p : SO(3) — C.If p
is continuous or p € L?(SO(3),C) it follows that p can be
identified with a function of the Euler angles p = p(p, 0, ).
The chosen functions U® are extended by continuity from the
following expression for their matrix elements

Uly(,0,9) = e=**#d}, (cos §)e " (21

for 6 € Trr(SO(3)) and —6 < a,b < §. The notation d?, is used
for the real-valued Wigner d-functions, which can be given in
terms of the Jacobi polynomials. For § € Irr(SO(3)) we have
d3, = Ps the Legendre polynomial of order §.

The Haar measure 1 is expressed in the coordinates (¢, 6, v)
as follows:

du(p,0,1) = 8_71r2 sin Odpdfda).

Suppose a function p € L%(SO(3), C) is expressed in the form
p(@,0,1). In order to obtain its Fourier coefficients, it is enough
to replace the above expressions for the functions U? and 4 in
formula (1). This formula then reduces to a triple integral. By
the Peter—Weyl theorem, the Fourier coefficients of p give rise
to a Fourier series approximating p in L2(SO(3), C).

The class of zonal functions on SO(3) arises in relation to
the hypothesis of statistical isotropy mentioned in Section V-A.
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We will say that a function p € L*(SO(3),C) is zonal if p =
p(0). That is, if the expression of p in the coordinates (i, 0, 1)
depends only on 6. Zonal functions form a closed subspace of
p € L2(SO(3), C).If pis azonal function then its Fourier series
reduces to a Legendre series

p(0) = (26 + 1)as Ps(cos b) (22)
6>0
where for § > 0 the Legendre coefficient as is given by
1 ™
as = 5 / p(8)Ps(cosB) sin 0df. (23)
Jo

Identities (22) and (23) can be found as follows. Let p be a zonal
function. For ¢ € Irr(SO(3)) let As be the Fourier coefficients
of p obtained by taking p = f in (1). The matrix elements of
each As are denoted Agb for —6 < a,b < 6. Forall §,a,b as
above we have that A2 is given by

1 2m ™ 2 ) )
) / / / e**p(0)d3, (cos 0)e*” sin fdpdfdi)
™ Jo Jo Jo

which follows using (1). Thus, for all § € Irr(SO(3)) we have
that A" # 0 only if @ = b = 0. In other words, the matrix
A contains at most one nonzero element. This is the diagonal
element A% = a5 given by identity (23). Identity (22) follows
by constructing the Fourier series of p as in (2).

C. Numerical Simulations

Here, we will illustrate the characteristic function method
of Section IV-C by applying it to a numerical example of de-
compounding on SO(3). Within this example we will consider
a parametric estimation problem related to a physical inverse
problem as described in Section V-A. Our example is of a
compound Poisson process Y on SO(3). As in Section V-A,
SO(3)-valued random variables are identified with random
orthogonal matrices. For £ > 0

N(t)

where the Poisson process IV has parameter A = 0.3 and the
random variables X,, have a common probability density p
given by expression (19). Four values will be considered for the
parameter g in this expression: 0.85, 0.9, 0.95, and 0.99. We
will put T' = 10. We simulate a number n of i.i.d. observations
of Y(T'). The following values of n are used: 500, 5000 and
50000. Note that on average the number N(T') of factors
involved in the random product Y (T') is equal to 3.

Before going on, we confirm that the method of Section IV-C
can be applied for this example. In other words, that the X,, with
the proposed density p are inverse invariant. This follows from
the development after identities (22) and (23). Indeed, the ma-
trices As obtained for p are diagonal with exactly one nonzero
diagonal element as = ¢°. Since g is real, we have that Ay is
Hermitian for all § € Irr(SO(3)). Inverse invariance follows by
1 of Proposition 2.

We will present three sets of figures. Fig. 1 is concerned with
the compounding transformation of p. Fig. 2 illustrates the in-
fluence of n» on parametric and nonparametric estimation errors.
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Fig. 1. Compounding transformation of p (histograms). (a) Histogram of cos
under density p. (b) Histogram of cos  under distribution of Y (T').

Fig. 3 studies the influence of g on the nonparametric estimation
error for fixed n. For Figs. 1 and 2, we have g = 0.9. For Figs. 1
and 3, we have n = 50000. We now comment on each of these
figures.

Fig. 1 illustrates the relation between the distribution of the
X, as given by the density p and the distribution of Y (7). Both
these distributions are studied using histograms. The histogram
in Fig. 1(a) is for the cosine of the Euler angle § € [0, 7] asso-
ciated with the random variable X;. The histogram in Fig. 1(b)
is for the cosine of # associated with Y (7T').

Fig. 1 is concerned with the direct compounding transforma-
tion rather than the inverse decompounding transformation. It
is meant to show the histogram in Fig. 1(b) as function of the
one in Fig. 1(a). As expected, the latter histogram appears as a
wider version of the former. This corresponds to the content of
Proposition 5 of Section III. Note also that the dominant value
in Fig. 1(b) has moved away from § = 0.

For Fig. 2, the observations made of Y (T") are used to carry
out the decompounding approach of Section IV-C. Parametric
and nonparametric estimation errors are given graphically for
different values of n. Fig. 2(a) compares the estimated Legendre
coefficients of p to their theoretical values as = ¢° for § > 0.
In Fig. 2(b), a priori knowledge of the analytical form of the as
is supposed. This is used to estimate g. A different parametric
estimate is obtained from each estimated Legendre coefficient.
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Fig.2. Influence of n (O = 5%10%;0 = 5x10%; A = 5% 10*). (a) Estimated
Legendre coefficients @} from decompounding. (b) Corresponding estimates 7"
of g (anisotropy parameter).

In Fig. 2(a) and (b), theoretical values are represented by a solid
line.

In Fig. 2(a), we have the estimated first [ = 31 Legendre
coefficients for each value of n. Let us call these coefficients aj
for 0 < § < [ and the corresponding value of n. They can be
used to evaluate a nonparametric estimate of p as in formula (8).
This is done by replacing them in a truncated Legendre series
(22). We have the nonparametric estimate of p which we denote

A
-1
Pr(0) =1+ (26 + 1)ag Ps(cosf)
6=1

where for all values of n we have that 4 = a¢p = 1. Depending
on n, the random nonparametric estimation error from p;’ is
given by

D (28 +1) (a5 — as)® + Y (26 + 1)a3

s<l1 §>1

this is the squared L?(SO(3), R) distance between p7* and p. In
Fig. 2(a), the sum over 6 < [ appears as a weighted quadratic
deviation between estimated and theoretical values.

In Fig. 2(b), the estimates a§ are used to give naive estimates
g5 of g based on the analytical form of the as. The error in each
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Fig. 3. Influence of ¢ (0 = 0.85;0 = 0.9; A = 0.95; V = 0.99).

of these estimates ;' is directly related to the error in the esti-
mate ay . This latter error is shown for each ¢ and n in Fig. 2(a).
The influence of n is not important for small values of ¢. Visu-
ally, the a§ in Fig. 2(a) agree independently of n for 0 < 6 < 5.
For n = 50000, the ay appear to have a regular dependence
on §. For n = 5000 and n = 500, we have an irregular de-
pendence of the aj on ¢, especially for 6 > 20. Moreover, for
0 > 25, we have negative values of 4y, clearly inconsistent with
the form as = ¢°. These values do not allow the evaluation of
corresponding parametric estimates gy .

Let us remind that g is an important parameter in multiple
scattering applications. For multiple scattering media with
Henyey—Greenstein phase function (19), g is the main param-
eter characterizing the scattering process. Its estimation from
observations as the ones described in Section V-A is equivalent
to a physical inverse problem. This leads to the physical inter-
pretation of the parametric estimation problem represented in
Fig. 2(b).

For Fig. 3, we have n = 50000. For each value of g, we
simulated n observations of Y (T') and calculated estimates of
the Legendre coefficients of p as for Fig. 2(a). Estimated and
theoretical Legendre coefficients are respectively represented by
empty and filled in symbols. It is clear from this figure that the
nonparametric estimation error is smaller for larger values of
g. Estimation of the Legendre coefficients is virtually exact for
g = 0.99.

In order to understand this behavior, we note that g in (19)
gives the concentration of p near the value § = 0. Indeed, when
g = 0 the function p is constant and the random variables X, are
uniformly distributed on SO(3). In the limit g T 1, we have that
each random variable X, is almost surely equal to the identity
matrix. Conditionally on the event { N (") > 0}, the distribution
of Y/(T) is a mixture of distributions with Henyey—Greenstein
density. More precisely, for all n > 0 we have the conditional
probability density for the Euler angle 6 associated with Y (T')

1 _g2n
p(O|N(T) = n) = T
(14 g2 — 2g™ cosf)?

In particular, in the limit ¢ T 1 we have that Y(T") is almost
surely equal to the identity matrix. Conditionally on {N (7) >

0}, we have in the limit g | 0 that Y(7T') is uniformly distributed
on SO(3).

Let us note that in our example P(N(T) > 0) ~ 0.96.
Fig. 3 can be understood in light of the above discussion. For
greater values of g, observations of Y (7") are concentrated near
the identity matrix. This leads to fast convergence of our es-
timates for the Legendre coefficients of p. For smaller values
of g, observations of Y'(T") are more dispersed and the conver-
gence of estimates is slower. In the limit g | 0, the observations
are close to uniformly distributed on SO(3) and our approach
breaks down due to numerical problems.

VI. CONCLUSION

Nonparametric estimation on compact Lie groups, especially
using characteristic function methods, is by now a relatively fa-
miliar topic in relation to several engineering applications. It
has received comprehensive treatment in the case where estima-
tion is carried out directly from some stationary process. That
is, from i.i.d. observations of a group-valued random variable.
This paper has applied a characteristic function method to the
problem of decompounding on compact Lie groups. For this
problem, nonparametric estimation is required from indirect ob-
servations defined in terms of a nonstationary process.

A first approach of decompounding on compact Lie groups
was given. It was guided by existing characteristic function
methods for the classical problem of decompounding. These
methods were transposed directly to the setting of harmonic
analysis on compact Lie groups. Under a suitable symmetry
assumption, treatment of the indirect nature of observations
was simplified. The ensuing nonparametric estimation error
was characterized as depending on the whole spectrum of the
target density rather than just its smoothness class. In some as-
pects, our approach of decompounding on compact Lie groups
might appear summary. We hope, however, that is will attract
attention to various problems of the statistics of nonstationary
stochastic processes on groups.

This paper also discussed the importance of decompounding
on SO(3) to the physical inverse problem of multiple scat-
tering. Under a probabilistic interpretation of the theory of
radiative transfer, models based on compound Poisson pro-
cesses on SO(3) were found consistent with the results of the



SAID et al.: DECOMPOUNDING ON COMPACT LIE GROUPS

small angles approximation of radiative transfer. The possi-
bility of reformulating physical inverse problems of multiple
scattering as parametric or nonparametric statistical estimation
problems was discussed. The statistical nature of this new point
of view seems desirable given the high complexity of multiple
scattering situations. In practice, it might require considerably
more elaborate measurements.
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