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Abstract The volume of time series stream data grows rapidly in various applications. To
reduce the storage, transmission and processing costs of time series data, segmentation and
approximation is a common approach. In this paper, we propose a novel online segmenta-
tion algorithm that approximates time series by a set of different types of candidate func-
tions (polynomials of different orders, exponential functions, etc.) and adaptively chooses
the most compact one as the pattern of the time series changes. We call this algorithm the
Adaptive Approximation (AA) algorithm. The AA algorithm incrementally narrows the fea-
sible coefficient spaces (FCS) of candidate functions in coefficient coordinate systems to
make each segment as long as possible given an error bound on each data point. We pro-
pose an algorithm called the FCS algorithm for the incremental computation of the feasible
coefficient spaces. We further propose a mapping based index for similarity searches on the
approximated time series. Experimental results show that our AA algorithm generates more
compact approximations of the time series with lower average errors than the state-of-the-art
algorithm, and our indexing method processes similarity searches on the approximated time
series efficiently.

Keywords Time Series · Approximation · Indexing · Similarity search

1 Introduction

A time series is a sequence of data points where each data point is associated with a times-
tamp. There are rapidly increasing research interests in the management of time series data
due to its importance in a variety of applications such as Internet traffic management [17,39],
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transaction management [29,36], telecommunications [9], and finance [28]. These applica-
tions need to record the change of certain values (counts of network packets, temperature,
foreign exchange rates, etc.) over time and the recorded values form time series that grow
with high speed and continuously. For example:

– In telecommunication, AT&T’s call-detail time series contains roughly 300 million calls
per day generating approximately 7GBs data each day [13].

– In financial markets, the data vectors like Reuters transmit more than 275,000 prices per
day for foreign exchange spot rates alone [10].

Due to the rapid and continuous growth of data in the above applications, we usually
cannot afford to store the entire time series due to the huge volume [3]. This poses a new
challenge in data storage, transmission, and processing. Therefore, the need for more com-
pact representations of time series data is compelling. Another important characteristic of
the above applications is that the data points in the time series may arrive (or be generated)
continually. These applications require continuously monitoring the data and analyzing them
in almost real time. Therefore, we need to process the data points and provide answers on
the fly, i.e., the algorithms need to be “online”.

A common approach to address the problem of the large data volume is segmentation,
which provides more compact representations of time series by dividing time series data into
segments and using a high level representation to approximate each segment. The highly
compact segmentation can reduce both the space and the computational cost of storing and
transmitting such data, and also reduce the workload of data processing (e.g., more efficient
in mining the sequence ) [38]. Therefore, in this paper, we try to find a highly compact
segmentation scheme that each segment can be approximated by a high level representation
given an error bound on each data point and the amount of information (i.e., the number
of parameters) used to represent the time series is minimized. Furthermore, we require on-
line algorithms in order to accommodate the continuous nature of the data generated in the
applications described earlier.

Piecewise Linear Approximation (PLA) [24,27,35] has been one of the most widely
used segmentation methods for many practical applications because of its simplicity. PLA
divides a time series into segments and uses a linear function to approximate each segment.
Nonetheless, linear functions may not always be the best choice to approximate a time se-
ries due to the different kinds of patterns of the time series. Therefore, Piecewise Polynomial
Approximation (PPA) [15,26] is introduced to approximate the time series with polynomial
patterns more properly. PPA uses polynomial functions instead of linear functions to ap-
proximate segments.

However, the goal of most current PLA and PPA methods [15,24,26,35] is to minimize
the holistic approximation error (e.g., the Euclidean distance between the approximation
and the original time series) given a certain amount of information (e.g., the number of
segments [35] or the maximum error in a segment [24]), where the best approximation
result is the one with the lowest holistic error. This goal is different from that of our work:
minimizing the amount of information used to represent the time series given a certain error
bound on each data point, where the best approximation result should be the one using the
smallest amount of information. Therefore, these methods do not satisfy the requirement of
our problem and cannot be used to solve our problem.

A recent study [27] that has the same problem setting as ours uses the Feasible Space
Window (FSW) method to find the farthest segmenting point of each segment. Here, the
feasible space (FS) is a space where any straight line can approximate all the data points read
so far with a given error bound on each data point. As Fig. 1(a) shows, the area between the
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Fig. 2 Cup and handle in stock price time series

boundaries u1 and l1 is the feasible space for the approximation of p0 and p1. The feasible
space is incrementally narrowed when new data points arrive continuously and eventually
turns into an empty set at a certain data point so that the previous data point will be the
farthest data point that can be approximated by a straight line. Thereby, FSW can make
each approximation line as long as possible and minimize the amount of information used.
Since FSW is the state-of-the-art for the problem addressed in this paper, we use FSW as
the baseline in the experimental study and detail it in Section 3.2.

FSW approximates time series by linear functions only. However, in many real world
situations, the patterns of the time series do not follow a constant rule. Using only one type
of functions may not yield the best compaction. Take stock price time series as an example.
A typical stock price pattern called Cup and Handle [33] has two parts: a “cup” and a
“handle” as shown in Fig. 2. The cup is a round bottom and it is followed by the handle
part which is a straight line. Fig. 2(a) shows how this time series is approximated using only
linear functions and Fig. 2(b) shows how this time series is approximated using quadratic
and linear functions. Based on an equation used to calculate the number of parameters (i.e.,
Equation 2 in Section 3.1), the segmentation in Fig. 2(a) uses nine parameters to represent
the time series while the segmentation in Fig. 2(b) only uses six parameters. Therefore, using
multiple types of functions can yield more compact approximation.

Motivated by these observations, we propose an online time series segmentation algo-
rithm which approximates time series by a set of different types of functions (such as poly-
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nomials of different orders, exponential functions, etc.) and adaptively chooses the most
compact one as the pattern of the time series changes. We call this algorithm the Adaptive
Approximation (AA) algorithm and refer to the functions used to approximate the time se-
ries as the candidate functions. To achieve our algorithm, we need to solve the following
two subproblems: (i) for a candidate function, how to determine the values of its coefficients
so that it can approximate as many data points as possible given an error bound on each data
point; (ii) from a set of candidate functions, how to determine the one that generates the
most compact approximation of a certain part of a time series (a sub-sequence).

Although feasible space is an intriguing idea for determining the compact approximation
of time series data, it is difficult to apply the FSW algorithm to non-linear functions. The
idea of FSW is to use a starting point and a next data point to determine the boundaries of
the feasible space of the approximation on the fly. Nonetheless, most non-linear functions
have more than two coefficients and their approximation boundaries can not be determined
by only two data points. As shown in Fig. 1(a), two data points p0 and p1 can not uniquely
determine the upper and lower boundaries of the feasible space for the quadratic function.

We propose a novel method to address this challenge: instead of finding the boundaries
of feasible space as FSW does, we find the boundaries of the feasible values for the func-
tions’ coefficients – using two data points, we can uniquely identify such boundaries in the
coefficient coordinate system. Then we can determine a space where each point is a feasible
set of values for the coefficients of the candidate function. To distinguish our feasible space
from the feasible space in FSW, we call our feasible space the Feasible Coefficient Space
(FCS) and the algorithm used to generate FCS the FCS algorithm. Take a quadratic function
y = at2+bt+c as an example. A FCS (grey region in Fig. 1(b)) in a coefficient space using
coefficients a and b as axes is determined through uniquely obtaining the upper boundary
u by p0 and p⊤1 and the lower boundary l by p0 and p⊥1 . Note that the coefficient c in the
function is required so that the function can approximate a time series that has a non-zero
data point at time stamp 0, i.e., c is the time series’ data point value when t = 0.

Based on the FCS algorithm, we propose an adaptive mechanism to determine the most
compact candidate function for each part of a time series (a sub-sequence). Specifically,
given a starting point, we continuously use the corresponding FCS algorithm of each can-
didate function to segment and approximate the time series until a data point (denoted by
np) where each candidate function has obtained at least one segment. Then we compute the
numbers of parameters used by the candidate functions to represent the sub-sequence ending
at np and choose the candidate function with the smallest number of coefficients used as the
approximation function of this sub-sequence.

We further study similarity searches on the approximated time series. Computing the
similarity between two approximated time series requires “decompressing” (i.e., computing
the approximation function value for every data point) the two time series, which is too
costly considering the large amount of time series and data points. Indexing is a common
way to reduce the search cost. However, existing indexing techniques [8,22] treat every
sub-sequence as a dimension and do not apply. This is because, after approximation by the
AA algorithm, every time series has been segmented into a different set of sub-sequences.
Any two sub-sequences from two time series may not be represented by the same type of
function or with the same starting and ending points. There is no obvious way to define
a consistent multi-dimensional space on all approximated time series based on the sub-
sequences. To address this problem, we propose a mapping based indexing scheme. This
scheme maps every approximated time series into a γ-dimensional space by computing the
similarity between the approximated time series and γ reference time series. Here, γ is a
predefined small integer and the reference time series are chosen in a way that guarantees



Indexable Online Time Series Segmentation with Error Bound Guarantee 5

fast similarity computation between them and any approximated time series. We then index
the similarity values with an R-tree [18] and use it to achieve efficient similarity searches on
the approximated time series.

In summary, we make the following contributions in this paper.

– We propose an online time series segmentation algorithm called the Adaptive Approx-
imation (AA) algorithm which approximates time series by a set of candidate func-
tions (e.g., polynomials of different orders, exponential functions, etc.) and adaptively
chooses the most compact one as the pattern of the time series changes.

– We propose a novel algorithm called the Feasible Coefficient Space (FCS) algorithm
that can efficiently find the farthest segmenting data point for non-linear candidate func-
tions with more than two coefficients (e.g., mth-order polynomials where m is larger
than 1). It addresses the drawback of the FSW algorithm, which can only find the far-
thest segmenting data point for the functions with two coefficients. We also analyze the
complexities of the FCS algorithms for various candidate functions.

– We propose a mapping based indexing scheme to process similarity queries on the ap-
proximated time series. This indexing scheme overcomes the inefficiency of computing
the similarity between two approximation time series by precomputing and indexing the
similarity values between the approximated time series and a small set of reference time
series, which are chosen to guarantee fast similarity computation between them and any
approximated time series.

– We perform an extensive experimental study using both synthetic and real datasets. The
results validate the effectiveness of our AA algorithm. It outperforms the state-of-the-art
algorithm, FSW, in terms of the compression ratio. At the same time, the AA algorithm
usually results in much lower actual errors than those introduced by the FSW algorithm
given the same error bound. The results also show the high efficiency of our indexing
scheme. It outperforms a scan based method in processing kNN queries by at least an
order of magnitude.

This paper is an extended version of our earlier paper [41]. There we proposed the AA
algorithm and the FCS algorithm for online time series segmentation and approximation.
In this paper, we extend our work by investigating efficient similarity queries on the ap-
proximated time series. The challenge here is that, after approximation, every time series
has been segmented into a different set of sub-sequences. Any two sub-sequences from two
time series may not be represented by the same type of function or with the same starting and
ending points. Existing indexes that treat every sub-sequence as a dimension to define a con-
sistent multi-dimensional space on all approximated time series based on the sub-sequences
do not apply. To address this challenge, we propose a mapping based indexing scheme that
maps every approximated time series into a low dimensional space based on the similarity
between the approximated time series and a small set of reference time series. We then index
the similarity values with an R-tree to process similarity searches on the approximated time
series efficiently. We propose a way to choose the reference time series that guarantees fast
similarity computation between the reference time series and any approximated time series.

The rest of this paper is organized as follows. We first review related work in Section 2.
Then we provide the preliminaries in Section 3. We present the FCS algorithms in Section 4
and the AA algorithm in Section 5. We study indexing the approximated time series for
similarity searches in Section 6. In Section 7, we report the results of our experimental
study. We conclude the paper and discuss future work in Section 8.
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2 Related Work

2.1 Time Series Data Reduction

General lossless data compression techniques such as Huffman coding can yield data re-
duction, but they do not exploit the property that two consecutive values of a time series
are close. Therefore, they cannot achieve compaction rates as high as those of segmentation
methods, which are customized to the nature of time series.

Lossy data reduction methods such as Discrete Fourier Transform (DFT) [37] focus on
the global patterns of time series instead of individual data point. In these methods, errors on
individual data points vary widely (i.e., unbounded) and unpredictably. Some recent studies
(e.g., [16]) provide error bounds on individual data points, but these methods have to know
the whole time series and work on the data offline.

Linear segmentation is another widely used lossy data reduction method due to its sim-
plicity. It approximate time series through Piecewise Linear Approximation (PLA) [24],
which divides a time series into segments and uses a linear function to approximate each seg-
ment. Linear segmentation based methods can be categorized into two classes: offline seg-
mentation and online segmentation. Offline segmentation methods, such as Top-down/Bottom-
up algorithm [24] and evolutionary computation [14], need to obtain the whole time series
before processing it. Online segmentation methods process each data point on the fly. Since
online segmentation methods need to process data in almost real time and continuously, they
have strong requirement on the efficiency of the algorithm.

An optimal solution for the linear segmentation is proposed by Bellman [4]: given a
number of segment k and a time series whose length is n, an optimal PLA result that mini-
mizes the holistic approximation error (i.e., the Euclidean distance between the approxima-
tion and the original time series) is found by dynamic programming with a cost of O(kn2).
To obtain this optimal result on the fly, we need to continuously rerun the dynamic program-
ming algorithm whenever a new data point arrives, which is very expensive for applications
whose data volume is large. As a result, greedy methods [2,24,35] are proposed.

The Sliding Window (SW) algorithm [2] is a classic online segmentation algorithm. It
uses the first data point of a time series as the starting data point of a segment and tries to
put the next data point into this segment. The straight line that connects the current data
point and the starting data point is used to approximate the current segment. Every time a
new data point arrives, the approximation error needs to be calculated again based on the
vertical deviation between all data points and the approximation line. Once the approxima-
tion error of the current segment exceeds a given error bound, the current segment ends (at
the previous data point) and a new segment starts. The above process repeats until the end
of the time series is reached. Subsequent studies have proposed some improvements to re-
duce the complexity of SW. For example, Keogh et al. [24] present a method called SWAB
which combines the SW algorithm with a Bottom-Up mechanism. Palpanas et al. [35] report
a technique to reduce the complexity of SWAB and SW to linear time.

The goal of the above-mentioned studies [2,4,24,35] is to minimize the holistic approx-
imation error (e.g., the Euclidean distance between the approximation and the original time
series) given a certain amount of information (e.g., the number of segments). This goal is
different from ours, i.e., minimizing the amount of information used to represent the time
series given an error bound on each data point (i.e., the number of parameters used to repre-
sent the time series), where the best approximation result should be the one with the lowest
amount of information used. Therefore, these methods do not satisfy the requirement of our
problem and cannot be used to solve our problem.
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Techniques Abbreviation
Discrete Wavelet Transform [37] DWT
Piecewise Aggregate Approximation [23] PAA
Piecewise Linear Approximation [8] PLA
Adaptive Piecewise Constant Approximation [22] APCA
Chebyshev Polynomials [6] CP
Euclidean distance [1,12]
Dynamic Time Warping [5] DTW
Lp norm [42]
Longest Common Subsequence [40] LCSS
Edit distance [7]
Weighted sub-trajectories similarity [25]
Match rewards and gap penalties [30]

Table 1 Techniques used in time series similarity search

A recent work with the same problem setting as ours proposes an online PLA segmen-
tation method named Feasible Space Window (FSW) [27], which uses the Feasible space
(FS) to find the farthest segmenting point to make each segment as long as possible given
an error bound on each data point. The FSW algorithm is the state-of-the-art for the prob-
lem addressed in this paper. Therefore, we use the FSW algorithm as the baseline in the
experimental study and will detail it in Section 3.2.

Lemire [26] and Fuchs et al. [15] introduce two Piecewise Polynomial Approximation
(PPA) methods to approximate time series data by polynomial functions. These two studies
aim to minimize the total approximation error given a certain number of information, i.e.,
the model complexity and the set of polynomial function orders {0, 1, 2, ..., k}, respectively.
In contrast, we aim to minimize the amount of information given a certain error bound on
each data point. Moreover, our method is more generic in terms of candidate functions,
i.e, besides polynomial functions, we also use other kinds of functions (e.g., exponential
functions, etc.) as the candidate functions.

O’Rourke [34] proposes to fit straight lines between data ranges through transferring
the problem into the coefficient space. There are two differences between this work and
ours: First, this early work only solves the problem in the case of straight lines, which
is the same as what FSW does. Fitting non-linear curves (especially, curves of high-order
polynomials) into a sequence of data ranges is the major challenge addressed by our FCS
algorithm. Second, the method of this work is also different from ours. Specifically, this
work directly constructs the coefficient space and obtains the boundaries based on the given
approximation function without any preprocessing such that its resultant coefficient space is
always one dimension higher than ours and hence the computation cost is higher.

2.2 Time Series Similarity Search

Studies of similarity searches on time series data can be roughly classified into two groups:
similarity search with different data reduction techniques and similarity search on different
similarity metrics, as summarized in Table 1. Our study falls in the first group.

Similarity search with different data reduction techniques: Most of the data reduc-
tion techniques reviewed above have their corresponding studies for similarity searches. For
example, DFT is used in similarity search by Rafiei and Mendelzon [37]. For piecewise
approximation based data reduction techniques, Keogh et al. [23] propose Piecewise Ag-
gregate Approximation (PAA) to achieve fast similarity searches. Chen et al. [8] propose a
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Symbol Meaning
δ A given error bound on each data point
P A time series
F A set of candidate functions
pi The ith data point in time series
pstart The starting point
pnext The next coming data point
pte The data point at which the FCS becomes empty
np The number of parameters used to represent a sub-sequence
ntp The number of parameters used to represent a time series
ns The number of segments
nc The number of coefficients of a function
fj(t) The jth approximation function
u An upper boundary line
l A lower boundary line
hp A hyperplane
hf A hyperface
hpm An m-dimensional hyperplane
hfm An m-dimensional hyperface
hpu An upper boundary hyperplane
hpl A lower boundary hyperplane

Table 2 Frequently used symbols

method to index time series approximated by PLA. In addition, Adaptive Piecewise Con-
stant Approximation (APCA) [22] divides a time series into segments and represent each
segment by its mean and length. CP [6] represents a time series using the coefficients of
Chebyshev polynomials. These studies are based on time series approximation techniques
that are different from ours and hence their similarity search approaches do not apply. In the
wider area of similarity search on spatio-temporal data, recent studies [31,32,43,44] focus
on indexing techniques for moving objects.

Similarity search on different similarity metrics: Early studies in the 1990s [1,12]
used Euclidean distance as the similarity metric. Since then various similarity metrics have
been studied. For example, Berndt and Clifford [5] studied the Dynamic Time Warping
(DTW) metric; Yi and Faloutsos [42] studied Lp norm metric; Vlachos et al. [40] studied
the distance based on Longest Common Subsequence (LCSS); Chen and Ng [7] studied Edit
distance. In more recent years, the similarity metrics studied have become more and more
sophisticated. Lee et al. [25] proposed a weighted similarity metric on sub-trajectories that
combined three types of distance, i.e., perpendicular distance, parallel distance, and angle
distance. Moose and Patel [30] proposed a time series similarity evaluation framework that
can include match rewards and gap penalties in similarity searches more freely. For a de-
tailed comparison of the various similarity metrics, readers are referred to [11]. In this study
we use Euclidean distance as the similarity metric because it is a basic similarity metric and
works well in many problems [11].

3 Preliminaries

We first provide a formal definition of our problem in Section 3.1 and then explain the
state-of-the-art algorithm for this problem, the Feasible Space Window algorithm (FSW), in
Section 3.2. We summarize the symbols frequently used in the discussion in Table 2.
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3.1 Problem Statement

Given a time series P = (p1, p2, . . . , pn), an error bound δ and a set of candidate functions
F , our problem is to divide P into k continuous segments S1, S2, . . . , Sk:

S1 = (p1, p2, . . . , pc1),

S2 = (pc1 , pc1+1, . . . , pc2),

· · ·

Sk = (pck−1 , pck−1+1, . . . , pck),

where ci ∈ [1..n], ci < ci+1 and ck = n. Here, the segments satisfy that (i) each segment
Sj is approximated by a candidate function fj(t) in F with the error bound δ on each data
point, formally,

p̃i =


f1(i) i = 1, . . . , c1,
f2(i) i = c1, . . . , c2,
· · ·

fk(i) i = ck−1, . . . , ck,

(1)

satisfying

distance(p̃i − pi) ≤ δ;

and (ii) the total number of parameters used to represent P (denoted as ntp) is minimized.
Intuitively, in order to represent the approximation result of a time series, not only the

values of coefficients of the approximation functions but also some other parameters, such
as, the value of the starting point and the timestamp of each segmenting point, should be
recorded as the approximation parameters of a time series. In this paper, in order to achieve
smooth approximation, which is an important property desired in subsequent mining phases
of the time series, we require the endpoint of the approximation function for the current
segment to be the starting point of the approximation function for the next segment.

Thereby, the number of parameters needed to represent the first segment, which is ap-
proximated by a function with nc1 coefficients, is nc1 + 2, including nc1 − 1 coefficient
values, a value of the starting point (which is used to derived the nth

c1 coefficient value), a
function type value, and a time timestamp of the first segmenting point. Since the following
segments do not need the value of the starting point any more, each of them only needs
nci + 1 parameters. Formally,

ntp = 1 +
k∑

i=1

(nci + 1), (2)

where nci is the number of coefficients of the ith approximation function.
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Fig. 3 Example of FSW algorithm

3.2 Feasible Space Window

Liu et al. [27] propose the Feasible Space Window (FSW) algorithm to achieve compact
segmentation by PLA. This algorithm finds the farthest segmenting point of each segment
with an error bound guarantee on each data point through a concept called Feasible Space
(FS). FS is an area in the data value space of a time series where any straight line in this area
can approximate each data point of the corresponding segment within a given error bound.

Fig. 3(a) shows an example of the FS. Suppose the error bound is δ, and p0 is the starting
data point of a time series which is also required to be the starting point of the approximation
line (i.e., the line that approximates the data points). When we read the second data point
p1(t1, y1), we know that the y-coordinate of the approximation line at timestamp t1 must be
between the points p⊤1 and p⊥1 which are the upper and lower boundary points of p1. Here,
|p⊤1 , p1| = |p1, p⊥1 | = δ. Therefore, any line between the upper line u1 and the lower line
l1 satisfies the error bound requirement for p1, and the region (the light grey region in the
figure) between these two lines is the FS after reading the data point p1.

The FS is incrementally updated when new data points are read. For example in Fig. 3(a),
we read the next data point p2 and similarly obtain two boundary lines u2 and l2. The area
between u2 and l2 is the FS for p2. The intersecting area of this FS and the previous FS
(the dark grey region in the figure) becomes the current FS, which is the region for any
approximation line that can satisfy the error bound requirement for both p1 and p2.

This FS update process repeats until the FS becomes empty at te, which means we
cannot approximate any more following data points (including the current data point) by
a straight line within the error bound. Hence, the previous data point pte−1 will be the
endpoint of the current segment and also the new starting data point of the next segment.

Fig. 3(b) shows the process of determining a segment by the FSW algorithm. After p2,
we read the next two data points p3 and p4 and update the new FS to be [u3, l2]. After we
read p5, the new FS becomes empty because the lowest upper line u5 is below the highest
lower line l2. Therefore, the previous data point p4 is the segmenting point and the line
connecting p0 and p4 is the approximation result of data points between p0 and p4. We use
p4 as the starting data point of the next segment and repeat this FS update process until the
end of the time series is reached. As we can see, the FSW algorithm provides the linear
approximation as each data point is read. Thus, it is an online algorithm.
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4 Feasible Coefficient Space

Feasible space is an intriguing idea for determining a compact approximation of time series.
However, it is difficult to apply the FSW algorithm to non-linear functions. The idea of
FSW is to use a starting data point and a next data point to determine the boundaries of the
feasible space. Nonetheless, most non-linear functions have more than two coefficients and
their approximation boundaries cannot be determined by only two data points.

We propose the FCS algorithm to address this problem: instead of finding the bound-
aries of the feasible space, we find the boundaries of the feasible values for the functions’
coefficients – using two data points, we can uniquely identify such boundaries in the coef-
ficient coordinate system. Then we determine a space called the Feasible Coefficient Space
(FCS) where each point is a feasible set of values for the coefficients of a candidate function.

Given a time series P , an error bound δ and a candidate function fj(t), the FCS algo-
rithm approximates P as follows. When the first next data point pnext arrives, we derive two
inequalities based on pstart (the starting data point), pnext and δ to determine two bound-
aries for the FCS of fj(t). Then we read another next data point to form two new boundaries
and intersect them with the existing FCS to obtain a new FCS. The FCS is incrementally
narrowed while the data points arrive continuously and finally becomes empty at a certain
data point pte , which means fj(t) cannot approximate any more following data points (in-
cluding pte ) with a given error bound on each data point. Therefore, we take the previous
data point pte−1 as the segmenting point of the current segment and start a new segment
(also with pte−1). The above process repeats until the time series is finished.

In this paper, we focus on the FCS algorithm for a few types of commonly used functions
(polynomial functions of different orders, exponential functions), although our method can
be extended to other types of functions (e.g., logarithmic functions) straightforwardly.

4.1 Second-order Polynomials

In this subsection, we present the FCS algorithm for the second-order polynomial function
(i.e., the quadratic function). A second-order polynomial function is in the form of Equa-
tion (3) where a, b and c are coefficients of the function:

y = at2 + bt+ c. (3)

According to our problem definition, the first data point p0(t0, y0) of the time series must
be on the approximation curve. Hence,

y0 = at20 + bt0 + c. (4)

When the second data point p1(t1, y1) arrives, if we approximate this data point by the
quadratic function, then the approximation value of y1 on the curve is

ỹ1 = at21 + bt1 + c. (5)

Combining Equations (4) and (5), we have

ỹ1 = y0 + a(t21 − t20) + b(t1 − t0). (6)

Since we require that the approximation error of each data point does not exceed a predefined
error bound δ, ỹ1 must fall in the interval [y1 − δ, y1 + δ]. Therefore, we have:

y0 + a(t21 − t20) + b(t1 − t0) ≤ y1 + δ; (7)



12 Jianzhong Qi et al.

a

3

3
2

2

 

4

3

2

1

Q

Q

Q

Q

1

l

l u

u

u

1

l

b

0

����
����
����
����

����
����
����
����

Fig. 4 Feasible coefficient space for quadratic functions

y0 + a(t21 − t20) + b(t1 − t0) ≥ y1 − δ. (8)

Using the above inequalities, we can construct a 2-dimensional FCS in the coefficient
coordinate system of the quadratic function with axes a and b (c is omitted when we combine
Equations (4) and (5) and can be obtained by c = y0 − at20 − bt0 based on a and b.).

As shown in Fig. 4, Inequalities (7) and (8) describe two parallel lines l1 and u1 in-
dicating the lower and upper boundaries, between which is the current FCS, where each
point is a feasible set of the coefficients’ values of the quadratic function. When we read a
new data point p2(t2, y2), we try to incorporate it in the current segment through similarly
obtaining two other parallel lines l2 and u2, between which is the FCS satisfying the error
bound requirement for p0 and p2. If l2 and u2 are not parallel to the previous lines l1 and
u1, the intersection of the previous FCS (area between l1 and u1) and the current FCS (area
between l2 and u2) is the new FCS (the shaded polygon area in Fig. 4).

If this new FCS is not empty, we continue to obtain the boundaries l3 and u3 for another
point p3(t3, y3) and narrow the FCS (a polygon) by these two lines. This process is repeated
until the FCS becomes empty at te when we cannot incorporate the new data point pte in
the current segment and approximate this segment by a quadratic function with the given
error bound on each data point. At this moment, we use the previous data point pte−1 as the
endpoint of the current segment as well as the starting point of the next segment, and then
continue the above process.

Algorithm: The FCS algorithm for quadratic functions is named FCSP2 and the pseudo-
code is shown in Algorithm 1, where the current FCS (a convex polygon), the starting data
point, the next data point and the error bound are denoted by g, pstart, pnext, and δ, re-
spectively. Whenever a new pnext arrives, Inequalities (7) and (8) define two lines u and l,
which are the upper and lower boundaries of the FCS for pnext, respectively. To obtain the
intersection of this FCS and g, for each edge of g, we calculate the intersecting points with
l. Since g is convex, at most two edges of g intersect with l and g is divided into two parts
by l. We remove the lower part of g and the other part is the new g (the lower and upper
parts will be defined in Section 4.2). Similarly, we use u to divide the newly computed g
and cut the upper part. Note that g is still a convex after it is cut by u and l, and the resultant
polygon g′ is the new FCS after processing the data point pnext.

Complexity Analysis: In algorithm FCSP2, the most frequently executed operation is
the computation of intersecting points between two generated boundary lines (l and u) and
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Algorithm 1: FCSP2(g, pstart, pnext, δ)
1 // g : the current polygon; pstart : the starting data point;
2 // pnext : the next data point; δ : the error bound;
3 Construct two lines l and u by pstart and pnext according to Inequalities (7) and (8);
4 if g is empty then
5 g′ ← the space between l and u;

6 else
7 I ← ∅;
8 for each edge ei of g do
9 I ← I∪ the intersection points between ei and l;

10 if I ̸= ∅ or g is lower than l then
11 Cut off the part lower than l from g based on I;

12 I ← ∅;
13 for each edge ej of g do
14 I ← I∪ the intersection points between ej and u;

15 if I ̸= ∅ or g is higher than u then
16 Cut off the part higher than u from g based on I;

17 g′ ← the remained part of g;

18 Return g′

the current FCS, which takes constant time. Suppose we have obtained n + 1 data points
before we get pnext, which means we have already generated n pairs of lines. In the worst
case, these lines could make up a polygon with 2n edges. The number of intersection com-
putation is 2n for either l or u and 4n in all. Therefore, the worst case computational cost
of the FCSP2 for one particular data point is

C2 = 4n ∈ O(n).

Further, based on the proof in [34], the amortized complexity of FCSP2 per data point is
only O(1).

4.2 M th-order Polynomials

In this subsection, we present the FCS algorithm of mth-order polynomials where m ≥ 3.
Firstly, we consider the case of m = 3. The 3rd-order polynomial function is also called the
cubic function which is in the form of Equation (9) where a, b, c and d are the coefficients.

y = at3 + bt2 + ct+ d (9)

Similar to the case of quadratic functions, we use the starting data point p0(t0, y0) and the
approximate value of the following data point p1(t1, y1) to obtain a pair of equations:

y0 = at30 + bt20 + ct0 + d, (10)

ỹ1 = at31 + bt21 + ct1 + d. (11)

Combining Equations (10) and (11), we have

ỹ1 = y0 + a(t31 − t30) + b(t21 − t20) + c(t1 − t0). (12)
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According to our problem definition, the approximate value ỹ1 should fall into the interval
[y1 − δ, y1 + δ]. Thus, we have

y0 + a(t31 − t30) + b(t21 − t20) + c(t1 − t0) ≤ y1 + δ, (13)

y0 + a(t31 − t30) + b(t21 − t20) + c(t1 − t0) ≥ y1 − δ. (14)

In the 3rd-order coefficient coordinate system with axes a, b and c, Inequalities (13)
and (14) describe two bounding planes and the space between these bounding planes is a
3-dimensional FCS. When we obtain a third data point p2(t2, y2), we use it to derive a new
pair of bounding planes and use these planes to cut the previous FCS and generate a new
FCS. In this case, the generated FCS is a 3-dimensional polyhedron. This process is repeated
for the following data points to incrementally update the FCS until the FCS becomes empty
at time te. We then segment the time series at the previous data point pte−1 and start a new
round of approximation (also at pte−1).

We generalize the quadratic and cubic polynomials to the case of mth-order polynomi-
als, which are in the following form:

y = amtm + am−1t
m−1 + ...+ a1t+ a0. (15)

Given the starting data point and the current data point, we can construct two (m − 1)-
dimensional hyperplanes in the mth-order coefficient coordinate system as the boundaries
of the m-dimensional FCS through the following inequalities:

ỹ1 = y0 + am(tm1 − tm0 ) + am−1(t
m−1
1 − tm−1

0 ) (16)

+...+ a1(t1 − t0) ≥ y1 − δ,

ỹ1 = y0 + am(tm1 − tm0 ) + am−1(t
m−1
1 − tm−1

0 ) (17)

+...+ a1(t1 − t0) ≤ y1 + δ.

The hyperhedron between these two boundaries is an m-dimensional FCS. When a new data
point is read, we generate a new pair of (m − 1)-dimensional hyperplanes and use them to
cut the current m-dimensional hyperhedron (the current FCS) and obtain the intersecting
hyperhedron as the new FCS.

Algorithm: When m > 3, the FCS of mth-order polynomials will become a high-
dimensional hyperhedron. We present an algorithm to generate this high-dimensional FCS
(denoted as FCSPm) in Algorithm 2. In this algorithm, we use h, h′, hyperfaces and
hyperplanes to denote the current FCS, the new FCS, the faces of hyperhedron and high-
dimensional planes generated by inequalities, respectively. The starting data point, the next
data point and the error bound are defined and denoted similarly to their counterparts in
Algorithm 1. When the new data point arrives, Inequalities (16) and (17) determine two
hyperplanes denoted as hpl and hpu which are used to update the current FCS. The update
process is similar to that of the FCSP2 algorithm.

To cut a m-dimensional FCS, we need determine a part of (m− 1)-dimensional hyper-
face is the lower or upper part regarding to a (m−1)-dimensional hyperplane. For example,
in the case of quadratic functions (m = 2), we need to determine the relative lower and up-
per parts of an edge (1-dimensional hyperface) regarding a line (1-dimensional hyperplane).
Given a (m− 1)-dimensional hyperplane in a m-dimensional coefficient coordinate system



Indexable Online Time Series Segmentation with Error Bound Guarantee 15

Algorithm 2: FCSPm(h, pstart, pnext, δ)
1 // h : the current (m-dimensional) hyperhedron, pstart : the starting data point;
2 // pnext : the next data point; δ : the error bound;
3 Construct two (m− 1)-dimensional hyperplanes hpl and hpu by pstart and pnext according to

Inequalities (16) and (17);
4 if h is empty then
5 h′ ← the space between hpl and hpu;

6 else
7 I ← ∅;
8 for each (m− 1)-dimensional hyperface hp of h do
9 I ← I∪ the (m− 2)-dimensional intersection hyperface between hpl and hp;

10 if I ̸= ∅ or h is lower than hpl then
11 Cut off the part lower than hpl from h based on I;

12 I ← ∅;
13 for each (m− 1)-dimensional hyperface hp of h do
14 I ← I∪ the (m− 2)-dimensional intersection hyperface between hpu and hp;

15 if I ̸= ∅ or h is higher than hpu then
16 Cut off the part higher than hpu from h based on I;

17 h′ ← the remained part of h;

18 Return h′

cutting the whole space into two parts, we define that a part of a (m−1)-dimensional hyper-
face is a lower (or upper) part regarding to this (m− 1)-dimensional hyperplane if this part
of the hyperface is contained in the lower (or upper) part of the space regarding the same
(m−1)-dimensional hyperplane. The lower and upper part of the space is defined according
to a selected coefficient axis called pilot axis: if am is the pilot axis, we define the upper part
of the space to be the part containing +∞ along the am axis, and the other part of this space
is the lower part of space. For example, in Fig. 4, choosing axis b as the pilot axis, the edge
Q1Q4 is the upper part regarding the line l2 because this edge is contained in the upper part
of the space.

Complexity Analysis: For the case of mth-order polynomials, suppose we have ob-
tained n+1 data points before we get pnext and constructed n pairs of (m−1)-dimensional
hyperplanes. In the worst case, these (m − 1)-dimensional hyperplanes result in a m-
dimensional hyperhedron with 2n (m−1)-dimensional hyperfaces. Each (m−1)-dimensional
hyperface is described by 2(n − 1) (m − 2)-dimensional hyperfaces and, similarly, each
(m− 2)-dimensional hyperfaces can be described by 2(n− 2) (m− 3)-dimensional hyper-
faces if m > 3. This process keeps on going until it reaches the 1-dimensional hyperfaces
(i.e., lines).

Calculating the intersection of two (m − 1)-dimensional hyperplanes is denoted as
Costm−1, which takes constant time. In FCSPm, the processes of using the lower (m− 1)-
dimensional hyperplane (hplm−1

) to cut one of the (m−1)-dimensional hyperfaces (hfm−1)
of h is as follows: Firstly, we calculate the intersection of hplm−1

and hfm−1 resulting a
(m− 2)-dimensional hyperplane denoted by hpm−2 and the cost is suppose to be constant
denoted as Costm−1. Then, for each (m − 2)-dimensional hyperface hfm−2 describing
the previous (m− 1)-dimensional hyperface hfm−1, we calculate the intersection of it and
hpm−2, which is a (m−3)-dimensional hyperplane. We further use this (m−3)-dimensional
hyperplane to cut (m−3)-dimensional hyperfaces describing the hfm−2 and get a (m−4)-
dimensional hyperfaces. This process is executed iteratively until it reaches the calculation
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of the intersection of two lines and we have the total cost (denoted as Cm) as follows:

Cm = 2nCostm−1 + 2n ∗ 2(n− 1)Costm−2+
· · ·
+2n ∗ 2(n− 1) ∗ ... ∗ 2(n− (m− 2))Cost1,

where Cost1, Cost2, ... and Costm−1 are different constant values. When n >> m, Cm

is dominated by the last term, which has the worst case complexity of O(nm−1). Although
the complexity is polynomial, when m is large, the computation and implementation cost
will also become very large. Therefore, we do not use polynomials with orders higher than
two if it is not essential.

4.3 Exponential Functions

In this subsection we present the FCS algorithm for exponential functions:

y = beat.

It can be transformed into the linear approximation function using logarithmic rules. When
b > 0, we take the natural logarithms of both sides of the equation and get

ln(y) = ln(b) + at. (18)

Similarly, the starting data point p0(t0, y0) should be on the curve such that

y0 = beat0 , (19)

namely,

ln(y0) = ln(b) + at0 (y > 0, b > 0). (20)

When we get another data point p1(t1, y1), for the approximate value of y1, we have

ln(ỹ1) = ln(b) + at1 (ỹ1 > 0, b > 0). (21)

Combining Equations (20) and (21), we obtain

ln(ỹ1) = ln(y0) + a(t1 − t0). (22)

We know that ỹ1 is within the error bound, i.e., ỹ1 ∈ [y1 − δ, y1 + δ]. Here we assume
y1 − δ > 0 (if not, we iteratively multiply δ by 0.5 until it stands). Note that the natural
logarithmic function is a monotonic increasing function with (0,+∞) as the definitional
domain. Thus, we combine the previous two inequalities and obtain

ln(y0) + a(t1 − t0) ≤ ln(y1 + δ) (y0, y1 > 0), (23)

ln(y0) + a(t1 − t0) ≥ ln(y1 − δ) (y0, y1 − δ > 0). (24)

Then we have

ln(y1 − δ)− ln(y0)

t1 − t0
≤ a ≤ ln(y1 + δ)− ln(y0)

t1 − t0
. (25)
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This inequality defines a pair of boundary points for the coefficient a. Every time a new
data point arrives, we obtain a new pair of such boundary points and incrementally update
the feasible value range (a 1-dimensional FCS) for coefficient a until the FCS becomes
empty. This is similar to the linear segmenting problem. The only difference is that, in the
linear segmenting case, Inequality (25) becomes

y1 − y0 − δ

t1 − t0
≤ a ≤ y1 − y0 + δ

t1 − t0
. (26)

Therefore, the FCS algorithm used for the exponential function is the same as that for the
linear function. Furthermore, the aforementioned FCS algorithm FCSPm is applicable for
both the linear function and the exponential function because the linear function is a 1st-
order polynomial whose high-dimensional coefficients are zero.

Complexity Analysis: In the complexity aspect, the exponential function is also sim-
ilar to the linear function. No matter how many data points have been processed, we only
need to maintain two points to indicate the current feasible value range of coefficient a (1-
dimensional FCS). Therefore, when the next data point arrives, we only need to compare
the values of two pairs of boundary points to obtain the new FCS. Thus, the computation
complexity of exponential function is Ce = C1 = O(1)

5 Adaptive Approximation Algorithm

The objective of our method is to minimize the number of parameters used to represent
the time series given an error bound on each data point. Suppose there is a given starting
data point pstart and an appropriate FCS algorithm for each candidate function. The AA
algorithm approximates a time series as follows: we read the data points one by one and
approximate these points through the respective FCS algorithms of the candidate functions.
For each candidate function, the corresponding FCS is incrementally narrowed while the
data points arrive continuously and turns into empty at te, so we take pte−1 as the seg-
menting point of the current segment and the new starting data point of the next segment,
and then we continue to read and approximate the following data points. This process is re-
peated by all the candidate functions until each candidate function has encountered at least
one segmenting point. At this moment, for each candidate function, we compute the num-
ber of parameters used for approximating the current sub-sequence (denoted as np), then
compare and choose the function with the smallest np as the approximation function of the
current sub-sequence. We repeat the above process until the whole time series is processed.

Similar to Equation (2), the number of parameters used to represent a sub-sequence
approximated by a candidate function fj(t) can be obtained by np = ncj ∗ nsj , where
ncj is the number of coefficients of fj(t) and nsj is the number of segments generated
and approximated by fj(t). However, when we compute np at the data point pt where
each candidate function has encountered at least one segmenting point, pt−1 must be the
segmenting point for some candidate functions but it may not be the segmenting point for
other candidate functions. The latter type of functions can approximate more data points
without increasing np. For fair comparison, we heuristically tune np for these functions to
be np = nc ∗ (ns − 1) + nc ∗ α, where α ranges from 0 to 1.

We call the segments obtained by each candidate function the local segments of the
corresponding function and the segments obtained by the final chosen approximation func-
tion global segments of the corresponding sub-sequence. Thereby, each data point belongs
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to many different local segments (generated by different candidate functions) but only one
global segment (generated by the chosen approximation function).

The algorithm complexity of our method depends on the candidate function with the
highest complexity. For example, if we choose the quadratic function, the linear function
and the exponential function as the candidate functions, then the complexity is dominated
by the quadratic function and the worst case complexity and the amortized complexity of
the AA algorithm will be O(n) and O(1), respectively. We provide the pseudo-code of the
AA algorithm in Algorithm 3 and detail it in the following subsections.

5.1 Initialization

As Algorithm 3 shows, we use lists to store the function coefficients used to represent the
time series: the function coefficients of the global segments of the time series and those
of the local segments are stored in lists lg and llj , respectively, where j indicates that this
list is used to store the coefficients of the local segments generated by the jth candidate
function (line 2). At start, we initialize the AA algorithm with the first data point p0 of the
time series P to be the first data point of the first global segment of P (denoted by pfirst)
and also the starting data point of the first local segment of each candidate function (denoted
by pstartj ) (line 3). We set every list and the feasible coefficient space of every candidate
function (denoted by FCSj) to be empty (line 4). We also set two flags Frv and Fcf to be
false (line 5). Here, Fcf indicates whether there has been a candidate function chosen as the
approximation function and Frv indicates whether the chosen approximation function is no
longer feasible for further approximation.

5.2 Finding the Segmenting Point

When the next data point pnext comes (lines 6 and 7), we firstly need to check the value
of flag Fcf . If Fcf is false, it means there is no chosen approximation function (line 8).
Hence, we iteratively update the FCS of each candidate function to choose an approximation
function (lines 9 to 24). Otherwise, we simply use the chosen function to approximate the
coming data point and only update its FCS (lines 25 to 32). Therefore, the process of finding
the segmenting data point can be divided into two cases as follows:

Case One: If Fcf is false, for each candidate function fj(t) in F , we firstly update its
feasible coefficient space FCSj through the corresponding FCS algorithm FCSAj (lines
10 and 11). If the FCS becomes empty after the update, then the previous data point pnext−1

is the segmenting point of fj(t). Thus, we save the approximation parameters of this gen-
erated local segment into the local segment list llj , update the starting data point of this
function pstartj to be the previous data point pnext−1, and then re-construct the FCS for
pnext based on the new starting data point through re-invoking the corresponding FCS al-
gorithm FCSAj (lines 12 to 15).

After we finish the FCS update of each candidate function, we further check whether
all local segment lists are non-empty (line 16). If so, it means each candidate function has
met at least one segmenting point and we need to choose an approximation function for the
sub-sequence from pfirst to pnext−1. we compute the number of parameters used by each
candidate function to represent the sub-sequence (denoted as np) and choose the function
with the smallest np as the approximation function fa(t) (lines 17 to 19).
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Algorithm 3: AA(P , δ, F )
1 // P = (p0, p1, ...pn, ...); δ : error bound; F = {f1(t),f2(t),. . .fj(t),. . .fm(t)};
2 lg = ll1 = ll2 =. . .= llm = ∅; // coefficient lists of the approximation functions
3 pfirst = pstart1 = pstart2 =. . .= pstartm = p0; // starting points of the approximation

functions
4 FCS1 = FCS2 =. . .= FCSm = ∅; // feasible coefficient spaces of the approximation functions
5 Frv = Fcf = false; // re-initialization flags
6 while P not completed do
7 Fetch the next data point pnext from P ;
8 if Fcf = false then
9 // have not chosen the approximation function;

10 for each candidate function fj(t) in F do
11 FCSAj (fj(t), FCSj , pstartj , pnext);
12 if FCSj = ∅ then
13 Append new local segment to llj ;
14 pstartj ← pnext−1;
15 FCSAj (fj(t), FCSj , pstartj , pnext);

16 if all llj ̸= ∅ then
17 for each fj(t) in lf do
18 Calculate np for points between pfirst and pnext−1;

19 Choose the function with the smallest np as fa(t);
20 if pstarta ̸= pnext−1 then
21 Fcf ← true;

22 else
23 Frv ← true;
24 Append lla to lg ;

25 else
26 // have chosen the approximation function;
27 FCSAa (fa(t), FCSa, pstarta , pnext);
28 if FCSa = ∅ then
29 Append new local segment to lla ;
30 Append lla to lg ;
31 Fcf ← false;
32 Frv ← true;

33 if Frv = true then
34 // re-initialization;
35 pfirst ← pnext−1;
36 for j from 1 to m do
37 llj ← ∅;
38 pstartj ← pnext−1;
39 FCSAj (fj(t), FCSj , pstartj , pnext);

40 Frv ← false;

41 Return lg ;

Then, we check whether the previous data point pnext−1 is the segmenting point of
fa(t). If not, we will use this function to approximate more subsequent data points until its
FCS becomes empty, i.e., we change the value of Fcf to be true (lines 20 and 21). Otherwise,
we directly append the approximation parameters in its local segment list lla to the global
segment list lg and change Frv to be true to do re-initialization (lines 22 to 24).
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Fig. 5 A running example

Case Two: If Fcf is true, then we only need to update the FCS of the chosen approxi-
mation function for the coming data point pnext and check whether its FCS becomes empty
after the update (lines 25 to 28). If not, we continue to process the next data point. Other-
wise, it indicates that the chosen approximation function has met a new segmenting point
pnext−1. Hence, we add the approximation parameters of this newly generated segment to
the local segment list of this function (denoted by lla ) and append the information in this list
to the global segment list lg (lines 29 and 30). Finally, we set Fcf to be false and Frv to be
true, respectively (lines 31 and 32).

5.3 Re-initialization

If Frv becomes true after the processes as described in Section 5.2, the re-initialization
step is invoked (lines 33 to 34): (i) we use the previous data point pnext−1 as the starting
data point of the next global segment pfirst and the next local segment for each candidate
function (line 35); (ii) for each candidate function, we set the corresponding local segment
list to be empty and re-construct the FCS for pnext based on the new starting data point
(lines 36 to 39).

We repeat the above process until the whole time series is completed. Given the same ap-
proximate error bound, the AA algorithm can achieve better extent of compactness through
always finding the most compact candidate function, which has the smallest np, as the ap-
proximation function. As we can see, the approximation process only relies on the coming
data point. Therefore, it is an online segmentation algorithm.

5.4 A Running Example

We illustrate the AA algorithm with a running example. Fig. 5 depicts the cases of ap-
proximating a time series by two candidate functions: the quadratic function and the linear
function. Starting from the data point p0, both functions incrementally read and approximate
the coming data points one by one through their FCS algorithms. When p4 comes, the FCS
of the linear function becomes empty so p3 is the segmenting point of the linear function.
However, the FCS of the quadratic function is not empty at p4. Thus, we only start a new
local segment for the linear function. This means, we save p3 in the local segment list for
the linear function, change the starting data point to be p3, re-construct the FCS based on p4
and p3, and continue to approximate the next data point p5. The approximation process is re-
peated by both functions until p11 where the FCS of the quadratic function becomes empty.
At this moment, both functions have had at least one segmenting point. Then we compute



Indexable Online Time Series Segmentation with Error Bound Guarantee 21

the np (the number of parameters used to represent the sub-sequence) of both functions and
obtain np = 3 for the quadratic function and np = 6 for the linear function. Since the
quadratic function has a smaller np value, it is chosen as the approximation function for the
sub-sequence between p0 and p10. For both candidate functions, the approximation restarts
at p10 and the same process repeats until the end of the time series.

6 Similarity Search on Approximated Time Series

Given a set of n time series P̃ = {P̃1, P̃2, ..., P̃n} and a query time series Q̃, each of which
has been approximated by the AA algorithm, we study two basic types of similarity queries
on P̃ , i.e., range queries and k nearest neighbour (kNN) queries.

Definition 1 (Range Query on Approximated Time Series) Given a query time series Q̃
and a real number as the query range r, the range query rq(Q̃, r) on approximated time
series P̃ returns every approximated time series whose distance to Q̃ is less than or equal
to r. Formally,

rq(Q̃, r) = {P̃ ∈ P̃|dist(P̃ , Q̃) ≤ r}.

Definition 2 (kNN Query on Approximated Time Series) Given a query time series Q̃
and a query parameter k, the kNN query knn(Q̃, k) on approximated time series P̃ returns
a subset P̃ ′ of P̃ with k approximated time series, where each time series has a distance to
Q̃ that is less than or equal to any time series in P̃ \ P̃ ′. Formally,

knn(Q̃, k) = {P̃ ∈ P̃ ′||P̃ ′| = k, ∀P̃ ′ ∈ P̃ \ P̃ ′, dist(P̃ , Q̃) ≤ dist(P̃ ′, Q̃)}.

In the definitions, P̃ = (< f1, ts1 >,< f2, ts2 >, ..., < fi, tsi >, ..., < fd, tsd >) de-
notes an approximated time series generated by AA from a time series P = (p1, p2, ..., pN ),
where fi and tsi denote the approximation function and starting timestamp of the ith sub-
sequence of P . Function dist(P̃ , Q̃) returns the distance between two approximated time
series. In this study we use Euclidean distance since it is a basic similarity metric and it
works well in many problems [11]. For simplicity we assume that the approximated time
series are generated from time series of the same number of data points N , although our
analysis and proposed methods also apply on time series of different lengths.

A scan based solution to the queries is to first “decompress” every approximated time
series (i.e., compute a value for each data point from the approximation functions), and then
compute its distance to the query time series by comparing each pair of data points of the two
time series. By this method processing a rang query on a set of n approximated time series
takes O(nN) time, and processing a kNN query takes O(nN log k) time, where “log k”
is for maintaining a heap for the kNN found so far. Considering the large amount of time
series data being generated continuously, the scan based method is too slow.

To improve query efficiency, indexing is a natural choice. In previous studies [8,22], a
commonly used approach is to view the original time series as points in an N -dimensional
space, and the approximated time series as points in a βd-dimensional space, where d de-
notes the number of sub-sequences in an approximated time series and β denotes the num-
ber of parameters used to represent a sub-sequence. Then effectively, the approximation
process becomes a mapping process that maps an m-dimensional point to a relatively low
βd-dimensional point, and a multi-dimensional index is used to index the approximated
time series in the βd-dimensional space. Note that this method requires each original time
series to be segmented into the same number (d) of equi-length sub-sequences, and each
sub-sequence to be represented by the same number (β) of parameters.
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To apply the above approach, an inherent difficulty is that our AA algorithm segments
different time series into different sets of sub-sequences. Any two sub-sequences from two
time series may not be represented by the same type of function or with the same starting
and ending points. There is no obvious way to define a consistent βd-dimensional space for
all time series approximated by the AA algorithm.

To overcome this difficulty, we propose an alternative mapping approach as follows.
This approach involves a small set of γ predefined reference time series. It uses the distances
of an approximated time series P̃ to the reference time series as the coordinates of the ap-
proximated time series in a γ-dimensional space. As a result, we map the approximated time
series into a γ-dimensional space and can index them with a traditional multi-dimensional
index (we use an R-tree due to its popularity). When a query is issued, we first map the
query to the γ-dimensional space, and then perform a search on the multi-dimensional in-
dex to find the query result. This way we can take advantage of the pruning capability of the
multi-dimensional index and improve query processing efficiently.

Next we elaborate how we choose the reference time series, map the approximated time
series, and process queries using the index.

6.1 Choosing the Reference Time Series

When choosing the reference time series there are two main goals to achieve:

– The distance from the reference time series to any approximated time series should be
computed efficiently, since the distance will be computed frequently for a large number
of approximated time series.

– The distance between the reference time series themselves should be large enough so
that approximated time series that are close to different reference time series can be
differentiated by their distances to different reference time series.

First we consider the distance computation efficiency. If a random time series is
chosen, then for distance computation we will have to decompress every approximated time
series, which takes too much time. To avoid the decompression, we propose to use a time
series with a constant value at each data point. Let R = (v, v, ..., v) be such a time series,
where v is a constant value. Then for an approximated time series P̃ ,

P̃ = (< f1, ts1 >,< f2, ts2 >, ..., < fi, tsi >, ..., < fd, tsd >),

we can define a segmentation R̃ for R that matches P̃ :

R̃ = (< f ′
1, ts1 >,< f ′

2, ts2 >, ..., < f ′
i , tsi >, ..., < f ′

d, tsd >).

Here, for i ∈ [1..d], f ′
i(t) = v.

Then dist(P̃ , R̃) can be computed on the pairs of sub-sequences, whose number is
usually much smaller than the number of pairs of data points:

dist(P̃ , R̃) =

√√√√ d∑
i=1

dist2(< fi, tsi >,< f ′
i , tsi >). (27)

Here, dist2(< fi, tsi >,< f ′
i , tsi >) denotes the distance square of the ith pair of

sub-sequences.
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dist2(< fi, tsi >,< f ′
i , tsi >) =

tei∑
t=tsi

(fi(t)− v)2. (28)

In the equation, tei denotes the ending point of the ith sub-sequence. We observe
that, since tsi, tsi + 1, tsi + 2, ..., tei − 1, tei is an arithmetic sequence, (fi(t) − v)2 =
f2
i (t)−2vfi(t)+v2, t ∈ [tsi...tei] will be a combination of a set of well-defined sequences,

each of which has an equation for fast sum computation. The sum in Equation (28) can be
computed as a combination of the sums of these well-defined sequences, which avoids de-
compressing the sub-sequences. Next we explain how to compute the sum for the different
types of functions used in the AA algorithm including mth order polynomials (m = 1, 2)
and exponential functions.

1th order polynomial (linear function): If fi(t) is a linear function ỹ = at+ b, then,

dist2(< fi, tsi >,< f ′
i , tsi >)

=
∑tei

t=tsi
(at+ b− v)2

= a2
∑tei

t=tsi
t2 + 2a(b− v)

∑tei
t=tsi

t+
∑tei

t=tsi
(b− v)2.

(29)

In the equation, t2, t, (b− v)2, t ∈ [tsi...tei] are well-defined sequences. Their sums can be
computed efficiently with basic arithmetic computation, e.g.,

∑tei
t=tsi

t = (tsi+tei)(tei−tsi+1)
2 .

2th order polynomial (quadratic function): If fi(t) is a quadratic function ỹ = at2 +
bt+ c, then,

dist2(< fi, tsi >,< f ′
i , tsi >)

=
∑tei

t=tsi
(at2 + bt+ c− v)2

= a2
∑tei

t=tsi
t4 + 2ab

∑tei
t=tsi

t3 + [b2 − 2a(c− v)]
∑tei

t=tsi
t2

−2b(c− v)
∑tei

t=tsi
t+

∑tei
t=tsi

(c− v)2.

(30)

Here, t4, t3, t2, t, (c− v)2, t ∈ [tsi...tei] are well-defined sequences. Note that when m in-
creases, the sums of the well-defined sequences become more complex and the computation
efficiency decreases. When m > 2 the computation becomes very inefficient. This is similar
to the AA algorithm. Therefore, we do not consider polynomials of higher orders.

Exponential function: If fi(t) is an exponential function ỹ = beat, then,

dist2(< fi, tsi >,< f ′
i , tsi >)

=
∑tei

t=tsi
(beat − v)2

= b2
∑tei

t=tsi
e2at − 2bv

∑tei
t=tsi

eat +
∑tei

t=tsi
v2.

(31)

In the equation, e2at, eat, t ∈ [tsi...tei] are geometric sequences and their sums can be
computed efficiently.

Next we consider distance between the reference time series. Due to the “curse of di-
mensionality”, distance-to-reference-point based high-dimensional indexes (e.g., [20]) work
better when the data are clustered and the reference points are the cluster centers, so that data
points belonging to different clusters can be identified efficiently based on their different dis-
tances to the reference points. However, clustering is a very expensive operation, and as time
series data are being generated continuously, we may need to re-cluster the data frequently
to maintain high-quality clusters, which may be infeasible due to the high cost. Therefore,
in this study, instead of the cluster centers, we heuristically choose the reference time series
as follows.
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We first determine the number of reference time series. Let γ be the number. Then ev-
ery approximated time series will be mapped to an γ-dimensional space. We propose to use
γ = 3 due to the fact that if γ > 3, then the approximated time series will be mapped
to a relatively high dimensional space, which requires dimension reduction again for in-
dexing. Specifically, we choose the following 3 reference time series to achieve large dis-
tances between the reference time series and hence good pruning performance in query
processing: R1 = (vmin, vmin, ..., vmin), R2 = (vmax, vmax, ..., vmax) and R3 =
(vmax, vmin, ..., vmin), where vmin and vmax denote the minimum and maximum val-
ues of all data points in the time series dataset. Note that in R3, the first element is different
from the rest of the elements. For computing the distance to R3, the distance contributed by
the first element needs to be computed separately. These 3 reference time series represent
3 corners of the N -dimensional data domain that the approximated time series data lie in,
as shown in Fig. 6 (assuming that N = 3). In our experiments, we will show that an in-
dex based on these reference time series achieves good query processing efficiency and it
outperforms the scan based approach constantly.

After the mapping, each approximated time series is represented by a 3-element tuple.
We use an R-tree to index all the 3-element tuples due to its popularity, although any tradi-
tional multi-dimensional index could be used. In the R-tree, the MBR of a node, denoted by
< lb1, ub1, lb2, ub2, lb3, ub3 >, bounds the distances to the 3 reference time series of all
approximated time series indexed in the node, as shown in Fig. 6.

6.2 Processing Queries

When a query is issued, we first map the query time series to a 3-dimensional point. Then
this 3-dimensional point is used to perform a search on the R-tree index, which returns a
set of approximated time series as the candidate query answers. We check each candidate
query answer against the query time series by first decompressing the two time series and
then computing the exact distance to identify the final query result.

Range queries: For a range query we also need to map the query range r into the 3-
dimensional space. Given the query time series Q̃, the query range r defines a hyper-sphere
S centred at Q̃, as shown in Fig. 7. We need a query MBR in the 3-dimensional space that
encloses S to guarantee no false dismissal. As shown in the figure, on S, the closest and



Indexable Online Time Series Segmentation with Error Bound Guarantee 25

B

A3

B2

2A

1B

A1

~
Q

Query MBR

R2

3RR1

r

3

S

Fig. 7 Query range mapping

Algorithm 4: RQ(P̃ , RP̃ , Q̃, r)

1 // P̃: the approximated time series dataset; RP̃ : an R-tree on the mapped data points of P̃;
2 // Q̃: the approximated query time series; r: the query range;
3 Query MBR M ← map Q̃, r;
4 rq(Q̃, r)← range query(RP̃ , M ); // filtering
5 for each P̃ ∈ rq(Q̃, r) do
6 // refinement
7 if dist(P̃ , Q̃) > r then
8 Remove P̃ from rq(Q̃, r);

9 Return rq(Q̃, r);

farthest points to a reference point R1 are the two points where the line R1Q̃ intersects
S (the proof is straightforward and hence omitted), denoted by A1 and B1, respectively.
Similarly, we can determine the closest and farthest points to R2 and R3, as denoted by A2,
B2, A3 and B3, respectively. Further, we can get the distances from these 6 points to the 3
reference points as dist(Q̃, R1)− r, dist(Q̃, R1) + r, dist(Q̃, R2)− r, dist(Q̃, R2) + r,
dist(Q̃, R3) − r, and dist(Q̃, R2) + r. The 6 distances form the mapped query range (an
MBR) for a range query on the R-tree to retrieve the candidate query answers. As can be
seen from Fig. 7, this query range guarantee no false dismissal straightforwardly, but it also
introduces some false positives, which will be removed in the refinement stage. The above
range query processing procedure is summarized in Algorithm 4, where RP̃ denotes the
R-tree to index the mapped approximated time series.

Complexity Analysis: Let d be the number of sub-sequences in Q̃. Then mapping Q̃
to the 3-dimensional space takes O(d) time. Obtaining the mapped query range from the
mapped query time series takes O(1) time, and performing a range query on an R-tree takes
O(logn) time on average, where n denotes the number of approximated time series. Let
θ ∈ [0, 100%] be the percentage of approximated time series returned by the range query as
the candidate query answers. Then checking the candidate query answers in the refinement
stage takes O(θnN) time. As a result, processing a range query takes O(d + 1 + log n +
θnN) time. The superiority of the proposed algorithm over the straightforward solution
relies on the value of θ, which in return is determined by the clustering property of the
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approximated time series. As our experiments will show, θ is usually below 40%, which
means the proposed algorithm saves at least 60% of the query processing time.

kNN queries: For a kNN query, we first map the query Q̃ to a point q in the 3-
dimensional space and then perform a best-first traversal on the R-tree using an adapted
version of the best-first R-tree kNN search algorithm [19], as shown in Algorithm 5. The
adaptation is in that a kNN of q found during the traversal must be checked against Q̃ di-
rectly to filter false positives. The reason is that, the best-first kNN search algorithm relies
on the distances between the data points and q in the 3-dimensional space, which does not
equal to the distance between the approximated time series and Q̃ in the original space.

Meanwhile, we observe that the distance between a data point and q is a lower bound
of the distance between the approximated time series represented this data point and Q̃.
Intuitively, two approximated time series that are closer should have smaller difference in
their distances to the reference time series. A strict proof is as follows.

Theorem 1 Let P̃ , Q̃ be two approximated time series and p, q be the two data points
that P̃ , Q̃ are mapped to in the 3-dimensional space, respectively. We have dist(P̃ , Q̃) >
1√
3
dist(p, q).

Proof According to triangular inequality,

dist(P̃ , Q̃) > |dist(P̃ , R̃1)− dist(Q̃, R̃1)|

dist(P̃ , Q̃) > |dist(P̃ , R̃2)− dist(Q̃, R̃2)|
dist(P̃ , Q̃) > |dist(P̃ , R̃3)− dist(Q̃, R̃3)|.

Thus,

3dist2(P̃ , Q̃) > [dist(P̃ , R̃1)− dist(Q̃, R̃1)]
2 + [dist(P̃ , R̃2)− dist(Q̃, R̃2)]

2

+[dist(P̃ , R̃3)− dist(Q̃, R̃3)]
2.

(32)

By definition,
p = ⟨dist(P̃ , R̃1), dist(P̃ , R̃2), dist(P̃ , R̃3)⟩,
q = ⟨dist(Q̃, R̃1), dist(Q̃, R̃2), dist(Q̃, R̃3)⟩.

Thus,

dist2(p, q) = [dist(P̃ , R̃1)− dist(Q̃, R̃1)]
2 + [(dist(P̃ , R̃2)− dist(Q̃, R̃2)]

2

+[dist(P̃ , R̃3)− dist(Q̃, R̃3)]
2.

(33)

Combining Inequality (32) and Equation (33), we have, dist(P̃ , Q̃) > 1√
3
dist(p, q).

Based on the theorem, we can compute a distance lower bound between a data point and
q to prioritize the data points for the traversal. Once a data point traversed has a distance
lower bound to q that is larger than or equal to the distance between Q̃ and its currently
found kth NN, we can early terminate the traversal and return the current kNN.

Complexity Analysis: Mapping Q̃ to the 3-dimensional space takes O(d) time. A best-
first search on the R-tree takes O(n log n) time on average. Let ωn be the number of ap-
proximated time series checked during the traversal. Then the checking takes O(ωnN) time,
and using a heap of size k to identify the kNN from these ωn time series takes O(ωn log k)
time. As a result, processing a kNN query takes O(d+n logn+ωnN +ωn log k) time in
total. As our experiments will show, ω is usually very small and our indexed based algorithm
can achieve very high query processing efficiency. On average our algorithm saves 90% of
the query processing time when compared with the scan based method.
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Algorithm 5: KNNQ(P̃ , RP̃ , Q̃, k)

1 // P̃: the approximated time series dataset; RP̃ : an R-tree on the mapped data points of P̃;
2 // Q̃: the approximated query time series; k: the query parameter;
3 A sized k max-heap H ← ∅;
4 Query point q ← map Q̃;
5 A priority query pq ← RP̃ .root.entries;
6 while not pq.empty() do
7 e← pq.dequeue();
8 if distancelowerbound(e, q) ≥ dist(P̃ ,H.top) then
9 break;

10 if e.childnode then
11 // e is a non-leaf node entry;
12 pq.enqueue(e.childnode.entries);

13 else
14 // e is a leaf node entry;
15 if dist(e.P̃ , Q̃) < dist(P̃ ,H.top) then
16 Remove H.top;
17 Insert e.P̃ into H;

18 knn(Q̃, k)← H;
19 Return knn(Q̃, k);

7 Experimental Study

In this section, we first evaluate the compression performance of our time series approxi-
mation algorithm in Section 7.1, and then evaluate the query efficiency of our approximated
time series indexing scheme in Section 7.2. All experiments are performed on a desktop
computer with a 3.20 GHz 6-core Intel R⃝ Xeon R⃝ CPU and 6 GB memory. Both synthetic
and real datasets are used in the experiments.

7.1 Time Series Approximation

We compare our AA algorithm with the state-of-the-art algorithm FSW [27]. We use the lin-
ear function, the quadratic function and the exponential function as the candidate functions
in our implementation.

Our goal is to obtain a more compact approximation with a user-specified error bound
on each data point. Therefore, we measure the performance by the compression ratio, which
is defined as the size (in terms of bytes) of a time series P divided by the size of its corre-
sponding approximated time series P̃ :

Compression ratio =
sizeof(P )

sizeof(P̃ )

Here, sizeof(P ) is computed as the number of data points m in P multiplied by the size of
a data point. We use an 8-byte double precision floating point number for every data point.
Hence, sizeof(P ) = 8m. The value of sizeof(P̃ ) is computed as follows. As discussed
in Section 3.1, a function of nci coefficients used to approximate a segment is represented
by nci − 1 coefficients (8-byte double precision floating point numbers) plus the starting
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timestamp of the segment (a 4-byte integer). In addition, P̃ needs to store the first data point
in P . Thus, for FSW, sizeof(P̃ ) = 8 +

∑kfsw

i=1 (8(nci − 1) + 4), where kfsw denotes the
number of segments in P̃ approximated by FSW. AA uses multiple types of functions in the
approximation. Therefore, it also needs to store the function types. In the experiments, we
use 3 function types and hence AA needs 2 extra bits (0.25 bytes) for every function. Thus,
for AA, sizeof(P̃ ) = 8 +

∑kaa

i=1(8(nci − 1) + 4 + 0.25), where kaa denotes the number
of segments in P̃ approximated by AA.

We also measure the average (absolute) approximation error, which indicates how ac-
curate the approximation is. It is defined as the sum of individual absolute approximation
errors on the data points divided by the number of data points.

The error bounds are expressed as relative values in comparison to the maximum value
of the data points of the time series.

7.1.1 Synthetic Datasets

In this subsection, we evaluate the AA algorithms using four synthetic time series datasets: a
linear time series dataset, a quadratic time series dataset, a exponential time series dataset
and a mixed time series dataset. Each dataset is generated by first generating a function
of random valued coefficients and then using the function to generate a random number
(between 1 and 80) of data points. We repeat the generation until we have obtained 1000
data points in each dataset. For the linear, quadratic and exponential time series datasets, the
functions are linear, quadratic and exponential synthetic functions, respectively. For the mix
time series dataset, each function is randomly chosen among the aforementioned three kinds
of synthetic functions. The definitions of these synthetic functions are as follow:

(1) Linear Function
f(t) = at+ b+ ϵ,

where the values of the coefficients a and b are randomly chosen from [−10, 10] and
[−20, 20], respectively.

(2) Quadratic Function
f(t) = at2 + bt+ c+ ϵ,

where the values of the coefficients a, b and c are randomly chosen from [−1, 1],
[−10, 10] and [−20, 20], respectively.

(3) Exponential Function
f(t) = beat + ϵ,

where the values of the coefficients a and b are randomly chosen from [0.05, 1] and
[10, 20], respectively.

In these functions, ϵ is a random noise in the range of [−0.5, 0.5].
To evaluate the effect of the error bound on the compression ratio and the average ap-

proximation error, we use five different error bound values: 0.001, 0.002, 0.003, 0.004 and
0.005. We record the compression ratio and the average approximation error of both the AA
algorithm and the FSW algorithms. In addition, we record the “Segment Accuracy”, which
is the percentage of segments in the approximated time series that share the same start-
ing points with those in the original time series generated by the synthetic functions. This
measurement indicates the capability of an approximation algorithm to identify the turning
points of a time series, i.e., the timestamps where data point values change trends.
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Fig. 8 Error bound: quadratic time series

Quadratic time series: Fig. 8 shows the experimental result of the quadratic time series
dataset. We observe that the AA algorithm outperforms the FSW algorithm in all measure-
ments for all error bound values. In terms of compression ratio, the improvement factor
of the AA algorithm over the FSW algorithm is more than twice when the error bound is
0.001, while the approximation error produced by the AA algorithm is only 25% of that by
the FSW algorithm. Meanwhile, the segment accuracy of AA is close to 50%, which is more
than twice of that of FSW. The reason is that, for the dataset with quadratic patterns, the AA
algorithm can accommodate these patterns and approximate the time series through adap-
tively choosing quadratic functions while the FSW algorithm can only approximate the time
series by linear functions. Furthermore, when the error bound becomes larger, the average
approximation error of the FSW algorithm increase dramatically with a relatively slow rise
in the compression ratio. In comparison, the AA algorithm keeps steady in all three mea-
surements because it has already accommodated to the patterns of the time series very well
since a small error bound. This shows the robustness of the AA algorithm.

Note that the 50% segment accuracy of AA indicates that about half of its segments
have the same starting points as those generated by the synthetic functions. This effectively
means that the AA algorithm has successfully identify almost all the turning points in the
original time series. The reason is as follows. In the original time series, two consecutive
synthetic segments are generated by different synthetic functions. There is usually a large
gap between the ending point of a synthetic segment and the starting point of its following
synthetic segment, and the time series starts a new trend at a new synthetic segment. The
AA algorithm requires smooth segmentation, i.e., the ending point of a segment must be the
starting point of its following segment. As a result, the AA algorithm needs a “smoothing”
segment to bridge the gap between the ending point and the starting point of two consecutive
synthetic segments. These smoothing segments will not have the same starting points as
those of the synthetic segments. Meanwhile, the AA algorithm needs to generate segments
to approximate the synthetic segments themselves, which can have the same starting points
as those of the synthetic segments. As the results show, the AA algorithm usually needs to
generates only 1 segment to approximate each synthetic segment plus 1 segment to smooth
the approximation between two segments, and hence achieves near 50% segment accuracy.

Exponential time series: Fig. 9 shows the experimental result of the exponential time
series dataset. The comparative performance of the AA algorithm and the FSW algorithm is
similar to that of the quadratic time series datasets. The compression ratio and the segment
accuracy of the AA algorithm is twice as large as that of the FSW algorithm on average and
the approximation error of the AA algorithm is smaller than that of the FSW algorithm.

Linear time series: The time series with linear patterns is the best case for the FSW
algorithm. From Fig. 10, we observe that the AA algorithm is very close to the FSW algo-
rithm in all three measurements. This is because the AA algorithm adapts to linear functions
to approximate the linear time series such that its approximation results are mostly the same
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Fig. 9 Error bound: exponential time series
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Fig. 10 Error bound: linear time series
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Fig. 11 Error bound: mixed time series

as those of the FSW algorithm. The slightly smaller compression ratio of the AA algorithm
is due to the space used to store the types of the functions used in the approximation.

Mixed time series: In real world scenarios, time series data do not follow a constant
pattern. We use the mixed time series dataset to simulate time series of varying patterns and
evaluate the adaptive mechanism of the AA algorithm. As shown in Fig. 11, the compression
ratio and segment accuracy of the AA algorithm are constantly larger than those of the FSW
algorithm while the average approximation error of AA is smaller. The result confirms that
the AA algorithm can adapt to the change of patterns far better than the FSW does through
adaptively choosing appropriate approximation functions.

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

500 1000 1500 2000 2500

C
om

pr
es

si
on

 r
at

io

# data points

AA
FSW

(a) Compression ratio

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

500 1000 1500 2000 2500

A
pp

ro
xi

m
at

io
n 

er
ro

r

# data points

AA
FSW

(b) Average approximation error

 20

 25

 30

 35

 40

 45

 50

500 1000 1500 2000 2500

S
eg

m
en

t a
cc

ur
ac

y 
(%

)

# data points

AA
FSW

(c) Segment accuracy

Fig. 12 Length: mix time series



Indexable Online Time Series Segmentation with Error Bound Guarantee 31

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3

0 0.005 0.01 0.015 0.02 0.025 0.03

C
om

pr
es

si
on

 r
at

io

Error bound

AA
FSW

(a) Compression ratio

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

0 0.005 0.01 0.015 0.02 0.025 0.03

A
pp

ro
xi

m
at

io
n 

er
ro

r

Error bound

AA
FSW

(b) Average approximation error

Fig. 13 Error bound: speech time series
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Fig. 14 Error bound: memory time series

Time series length: We vary the lengths of the time series from 500 to 2500 data points
and set the relative error bound at 0.002. The experimental result of the mixed time series
is shown in Fig. 12. Again, the AA algorithm outperforms the FSW algorithm in all mea-
surements constantly. This demonstrates that the AA algorithm scales well with the length
of the time series. Results of other synthetic time series datasets show similar behavior and
hence are omitted.

7.1.2 Real Datasets

In this subsection, we evaluate the algorithms using two real time series datasets: the Mem-
ory dataset and the Speech dataset, which have irregular patterns (e.g., neither polynomial
nor exponential patterns), from the UCR Time Series Data Mining Archive [21].

Error bound: To evaluate the effect of the error bound, we vary its value from 0.005 to
0.025 and keep the length of the time series at 500 data points. We show the experimental re-
sults of the Speech and Memory datasets in Figs. 13 and 14, respectively. For both datasets,
the AA algorithm obtains larger compression ratio values than those of the FSW algorithm.
This is because the AA algorithm can adapt to different patterns using different candidate
functions. This finding asserts that the AA algorithm can achieve more compact approxima-
tion than the FSW algorithm does in practical workloads. The approximation errors of the
two algorithms are similar because the patterns of these real datasets are irregular and no
candidate function in the AA algorithm can perfectly accommodate these patterns.

Time series length: We also evaluate the algorithms when the lengths of the real time
series are varied. Due to the limited data points in the real time series, we vary the lengths
from 200 to 1000 data points. We set the error bound at 0.02. The experimental results are
plotted in Figs. 15 and 16. We observe that: (i) the AA algorithm outperforms the FSW
algorithm in terms of the compression ratio constantly, and (ii) the changes in the average
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approximation error of both methods have quite different patterns, but the values of both
methods are always similar (note the scale). Overall, for real datasets, the AA algorithm
also scales well with the length of the time series.

7.1.3 Summary

Experiments in this section verified that the AA algorithm achieves more compact repre-
sentation of time series than the FSW algorithm does for almost all the time series datasets
except the linear case. When the time series follows linear patterns, the performance of the
AA algorithm is very close to that of the FSW algorithm. Meanwhile, the average error
produced by the AA algorithm is smaller than that by the FSW algorithm in most cases.

7.2 Similarity Search on Approximated Time Series

We now verify the effectiveness and efficiency of our mapping based indexing scheme in
processing similarity searches.

In the experiments we use the exchange rate data from the Reserve Bank of Australia 1,
which contains daily exchange rates of different currencies based on the Australian Dollar
in the past 30 years. Due to reasons like introducing new currencies (e.g. the Euro (EUR)) or
discontinuing existing currencies (e.g., the Deutsche Mark (DEM)), the data is not complete
for every currency. We preprocess the data and extract a total of 308 time series, each of

1 http://www.rba.gov.au/statistics/hist-exchange-rates/
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Parameter Values
Dataset cardinality 3080, 15400, 30800, 154000, 308000
Error bound 0.005, 0.01, 0.015, 0.02, 0.025
r 0.001%, 0.002%, 0.01%, 0.02 %, 0.1%
k 1, 5, 10, 50, 100

Table 3 Experimental settings

Currency (2010) NN Currency (Year) NN Normalized Currency (Year)
United States Dollar Canada Dollar (2010) UAED (2010)
Chinese Renminbi Chinese Renminbi (1995) Hong Kong Dollar (2010)
Japanese Yen Japanese Yen (2004) Singapore Dollar (2010)
Euro United States Dollar (1987) UK Pound Sterling (2003)
South Korean Won Italian Lira (1988) Canada Dollar (2010)
Singapore Dollar New Zealand Dollar (2010) New Zealand Dollar (2010)
Thai Baht New Taiwan Dollar (2010) Malaysian Ringgit (2010)
New Zealand Dollar Singapore Dollar (2010) Singapore Dollar (2010)
New Taiwan Dollar Thai Baht (2010) Singapore Dollar (2010)
Malaysian Ringgit Malaysian Ringgit (2007) Singapore Dollar (2010)
Indonesian Rupiah Indonesian Rupiah (2008) Chinese Renminbi (2010)
Vietnamese Dong Vietnamese Dong (2011) Hong Kong Dollar (2010)
United Arab Emirates Saudi Arabian Riyal (2010) United States Dollar (2010)
Dirham (UAED)
Papua New Guinea Kina Chinese Renminbi (1987) Singapore Dollar (2010)
Hong Kong Dollar South African Rand (2010) Saudi Arabian Riyal (2010)
Canada Dollar United States Dollar (2010) Chinese Renminbi (2010)
South African Rand Swedish Krona (2011) Thai Baht (2010)
Saudi Arabian Riyal UAED (2010) United States Dollar (2010)
Swiss Franc Canada Dollar (1999) Swedish Krona (2010)
Swedish Krona Chinese Renminbi (2010) Chinese Renminbi (1991)

Table 4 Currencies with similar exchange rates or exchange rate changing patterns

which contains the exchange rates of a currency of 365 days. We call this the Base dataset
and each time series in the dataset a Base time series. For scalability tests we generate
synthetic datasets from the Base dataset by adding a random noise to each of the data points.
The random noise range varies from 0.5% to 2.5% of the data domain. We generate synthetic
datasets with the cardinality ranging from 3,080 (generating 10 synthetic time series from
each Base time series) to 308,000 (generating 1000 synthetic time series from each Base
time series). We apply the AA algorithm on the real and synthetic datasets to obtain datasets
of approximated time series, varying the error bound from 0.005 to 0.025. In the experiments
we vary the range query parameter r from 0.001% to 0.1% of the data domain and the kNN
query parameter k from 1 to 100. When an R-tree is used, we set the page size at 4 KB.
Table 3 summarizes the parameters, where values in bold denote the default values.

7.2.1 Validity

In this subsection we verify the validity of using Euclidean distance as the similarity metric.
We first perform an NN query for every Base time series and check whether the two curren-
cies represented by a time series and its NN have similar exchange rates. Then we normalize
the time series by dividing the mean value of a time series at its each data point and perform
NN queries on the normalized time series. By doing so our aim is to find the time series with
similar value changing patterns.
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Fig. 17 Range query costs vs. dataset cardinality

Table 4 shows the NN results for 20 currencies’ time series of year 2010. By examining
the exchange rates of the currencies listed in the table, we find that the NN searches using
Euclidean distance as the similarity metric successfully identify the currencies with similar
exchange rates and/or exchange rate changing patterns in certain periods.

In terms of exchange rates, United States Dollar and Canada Dollar are similar (ranging
between 0.8 and 1.0) in 2010. Similarly, Singapore Dollar and New Zealand Dollar have
close exchange rates in 2010, and so are Thai Baht and New Taiwan Dollar. Some curren-
cies have similar exchange rates to other currencies in different periods (e.g., Euro (2010)
and United States Dollar (1987)). Others have similar exchange rates to themselves but in
different periods (e.g., Chinese Renminbi (2010) and Chinese Renminbi (1995)).

In terms of exchange rate changing patterns, most NN pairs appear in the same year, i.e.,
90% (18 out of 20). Among them, some currencies have fixed exchange rates to some other
currencies. For example, United Arab Emirates Dirham and Saudi Arabian Riyal both have
fixed exchange rates to United States Dollar. For the other currencies, the similar exchange
rate changing patterns in the same year are probably because some countries are closely
related and have mutual economic influence on each other. The reasons for the 2 exceptions
are to be explored. These findings may help reveal patterns in exchange rate variation and
support business or financial decision marking for financial organizations and governments.

7.2.2 Efficiency

Next we verify the query processing efficiency of the proposed mapping based index. We
use 308 approximated time series generated from the Base dataset as the query time series
and measure the average query processing time and number of page accesses per query.
As existing techniques requires that every sub-sequence in the approximated time series is
represented by the same type of function and with the same length, they do not apply in
our approximated time series. Thus, we compare our index based query processing scheme
(denoted by “Indexed”) with the scan based query processing approach (denoted by “Scan”)
as described in Section 6.

Cardinality: Figs. 17 and 18 show the query processing costs when the dataset cardi-
nality is varied. From the figures we can see that the costs of both methods increase with
the dataset cardinality, and that our proposed algorithm outperforms the baseline algorithm
constantly in terms of both query processing time and number of page accesses constantly.

For range queries the costs of our indexed based method increases slightly faster than
those of the scan method. This is because as the number of synthetically generated time
series increases, the distribution of the time series becomes less clustered gradually. Even so,
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Fig. 18 kNN query costs vs. dataset cardinality
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Fig. 19 Range query costs vs. approximation error bound

our indexed based method still outperforms the scan method significantly when the dataset
gets large (please note the logarithmic scale). It reduces the query processing time by at least
44%, and the number of page accesses by at least 80%. Here, the save in page access is more
than that in query processing time. This is because our indexing based method has a different
processing time cost per page access from that of the scan method. Our method requires
distance computations on the R-tree pages, while the scan method requires decompressing
computations on the approximated time series data pages.

For kNN queries our proposed method outperforms the scan method by at least an order
of magnitude in both measures. This demonstrates the pruning capability of our mapping
based index. For a dataset of 308,000 time series our algorithm can provide the query answer
in 0.43 seconds, while the scan method requires 4.3 seconds. In real applications, queries
are issued in hundreds or even thousands simultaneously. The scan method is obviously too
slow to process queries in such scales. On contrast, our method can process hundreds of
kNN queries in just a few seconds on a commodity desktop computer. With an upgrade in
the hardware, the query processing time of our method can be further reduced to within a
second, which should be an acceptable time for the users.

Error bound: Figs. 19 and 20 show the query processing costs when the approximated
time series are generated with different approximation error bounds. When the error bound
is at 0.025 (which is quite large for a meaningful approximation), our proposed method
outperforms the scan method by more than an order of magnitude in terms of both query
processing time and number of page accesses for range and kNN query processing.

We observe that when the approximation error bound increases the costs of our method
increase slightly because the approximated time series get distributed more evenly. The num-
ber of page accesses of the scan method, on the other hand, drops gradually. This is because
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Fig. 20 kNN query costs vs. approximation error bound
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Fig. 21 Range query costs vs. r

when the approximation error bound increases, a function can approximate a longer sub-
sequence. It takes less functions to approximate a time series and the data file size decreases.
Few page accesses are required for the scan method to read all the approximate time series.
However, the query processing time of the scan method stays stable because the number of
approximate time series and data points in each time series do not change. Similar amount
of time is still needed to decompress and compare all the time series.

Range query parameter r: Fig. 21 shows the query processing costs when we vary
r. From the figure we can see that our indexed based method outperforms the scan method
under various values of r. As expected, when r increases the costs of our method increase
gradually because the pruning capability of the index decreases. Meanwhile, the increase
of r affects little of the scan method since it has to scan the whole dataset anyway. As a
result, the performance of our method approaches the scan method gradually. However, until
r = 0.1%(vmax − vmin), which is a very large query range as the dimensionality is high,
our proposed method still saves at least 56% of the query process costs, which demonstrates
the robustness of our method.

kNN query parameter k: Fig. 22 shows the query processing costs when k is varied.
Our method outperforms the scan method by at least an order of magnitude. This demon-
strates the scalability of our index based method in processing kNN queries. Meanwhile,
the query processing time of both methods has a slight increase when k increases, which is
because a larger heap needs to be maintained for a larger k. Note that the processing time
of a kNN query when k increases does not increase as much as that of a range query when
r increases. This is because when k increases, the increase in query selectivity is far slower
than that when the query range r increases due to the high dimensionality.
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8 Conclusions

We proposed an online segmentation algorithm that approximates time series by a set of
candidate functions (polynomials of different orders, exponential functions, etc.) and adap-
tively chooses the most compact one as the pattern of the time series changes. We further
proposed a novel method to efficiently generate the compact approximation of a time series
in an online fashion for several types of candidate functions. This method incrementally
narrows the feasible coefficient space of candidate functions in the coefficient coordinate
system and find the farthest data point a segment can approximate given an error bound on
each data point. To support efficient similarity searches on the approximated time series, we
proposed an indexing scheme that indexes the similarity values between the approximated
time series and a set of reference time series. We proposed an efficient method to compute
the similarity values for indexing, which overcame the difficulty in computing the similarity
between two approximated time series directly. Extensive experimental results show that
our approximation algorithm achieves higher compression ratio than the state-of-the-art al-
gorithm FSW does, and our indexing scheme outperforms a scan based search method by at
least an order of magnitude in processing kNN queries and 40% in processing range queries.

References

1. Agrawal, R., Faloutsos, C., Swami, A.N.: Efficient similarity search in sequence databases. In: FODO,
pp. 69–84 (1993)

2. Appela, U., Brandta, A.V.: Adaptive sequential segmentation of piecewise stationary time series. In:
Information Science, pp. 27–56 (1983)

3. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems.
In: PODS, pp. 1–16 (2002)

4. Bellman, R.: On the approximation of curves by line segments using dynamic programming. In: Com-
mun. ACM, p. 284 (1961)

5. Berndt, D.J., Clifford, J.: Finding patterns in time series: A dynamic programming approach. In: Ad-
vances in Knowledge Discovery and Data Mining, pp. 229–248. American Association for Artificial
Intelligence (1996)

6. Cai, Y., Ng, R.T.: Indexing spatio-temporal trajectories with chebyshev polynomials. In: SIGMOD, pp.
599–610 (2004)

7. Chen, L., Ng, R.T.: On the marriage of lp-norms and edit distance. In: VLDB, pp. 792–803 (2004)
8. Chen, Q., Chen, L., Lian, X., Liu, Y., Yu, J.X.: Indexable pla for efficient similarity search. In: VLDB,

pp. 435–446 (2007)
9. Cortes, C., Fisher, K., Pregibon, D., Rogers, A., Smith, F.: Hancock: A language for extracting signatures

from data streams. In: SIGKDD, pp. 9–17 (2000)
10. Dacorogna, M., Gencay, R., Muller, U.A., Pictet, O.V., Olsen, R.: An Introduction to High-Frequency

Finance. Academic Press (2001)



38 Jianzhong Qi et al.

11. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.J.: Querying and mining of time series
data: experimental comparison of representations and distance measures. PVLDB 1(2), 1542–1552
(2008)

12. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time-series databases.
In: SIGMOD, pp. 419–429 (1994)

13. Fisher, K., Gruber, R.: Pads: Processing arbitrary data streams. In: Workshop of AT&T Labs (June 2003)
14. Fu, A.C., Chung, F.L., Ng, V., Luk, R.: Evolutionary segmentation of financial time series into subse-

quences. In: Evolutionary Computation, pp. 426–430 (2001)
15. Fuchs, E., Gruber, T., Nitschke, J., Sick, B.: Online segmentation of time series based on polynomial

least-squares approximations. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2232–2245 (2010)
16. Garofalakis, M., Kumar, A.: Deterministic wavelet thresholding for maximum-error metrics. In: PODS,

pp. 166–176 (2004)
17. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.J.: Quicksand: Quick summary and analysis of

network data. Tech. Rep. 2001-43, DIMACS (2001)
18. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIGMOD, pp. 47–57 (1984)
19. Hjaltason, G.R., Samet, H.: Ranking in spatial databases. In: SSD, pp. 83–95 (1995)
20. Jagadish, H.V., Ooi, B.C., Tan, K.L., Yu, C., Zhang, R.: idistance: An adaptive b+-tree based indexing

method for nearest neighbor search. ACM Trans. Database Syst. 30(2), 364–397 (2005)
21. Keogh, E., Folias, T.: The UCR time series data mining archive. In: http://www.cs.ucr.edu/ ea-

monn/TSDMA (2002)
22. Keogh, E.J., Chakrabarti, K., Mehrotra, S., Pazzani, M.J.: Locally adaptive dimensionality reduction for

indexing large time series databases. In: SIGMOD, pp. 151–162 (2001)
23. Keogh, E.J., Chakrabarti, K., Pazzani, M.J., Mehrotra, S.: Dimensionality reduction for fast similarity

search in large time series databases. Knowl. Inf. Syst. 3(3), 263–286 (2001)
24. Keogh, E.J., Chu, S., Hart, D., Pazzani, M.J.: An online algorithm for segmenting time series. In: ICDM,

pp. 289–296 (2001)
25. Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group framework. In: SIGMOD,

pp. 593–604 (2007)
26. Lemire, D.: A better alternative to piecewise linear time series segmentation. In: SIAM Data Mining,

pp. 545–550 (2007)
27. Liu, X., Lin, Z., Wang, H.: Novel online methods for time series segmentation. TKDE 20(12), 1616–

1626 (2008)
28. Liu, X., Wu, X., Wang, H., Zhang, R., Bailey, J., Ramamohanarao, K.: Mining distribution change in

stock order streams. In: ICDE, pp. 105–108 (2010)
29. Lomet, D.B., Hong, M., Nehme, R.V., Zhang, R.: Transaction time indexing with version compression.

PVLDB 1(1), 870–881 (2008)
30. Morse, M.D., Patel, J.M.: An efficient and accurate method for evaluating time series similarity. In:

SIGMOD, pp. 569–580 (2007)
31. Nutanong, S., Tanin, E., Zhang, R.: Incremental evaluation of visible nearest neighbor queries. TKDE

22(5), 665–681 (2010)
32. Nutanong, S., Zhang, R., Tanin, E., Kulik, L.: Analysis and evaluation of v*-knn: an efficient algorithm

for moving knn queries. VLDB J. 19(3), 307–332 (2010)
33. O’Neil, W.: How to Make Money in Stocks (4 edition). McGraw-Hill (2009)
34. O’Rourke, J.: An on-line algorithm for fitting straight lines between data ranges. Commun. ACM 24,

574–578 (1981)
35. Palpanas, T., Vlachos, M., Keogh, E.J., Gunopulos, D.: Streaming time series summarization using user-

defined amnesic functions. TKDE 20(7), 992–1006 (2008)
36. Papazoglou, M.P.: Web services and business transactions. World Wide Web 6(1), 49–91 (2003)
37. Rafiei, D., Mendelzon, A.O.: Efficient retrieval of similar time sequences using dft. In: FODO, pp.

249–257 (1998)
38. Shatkay, H.: Approximate queries and representations for large data sequences. In: ICDE, pp. 536–545

(1996)
39. Sullivan, M., Heybey, A.: Tribeca: A system for managing large databases of network traffic. In:

USENIX Technical Conference, pp. 13–24 (1998)
40. Vlachos, M., Gunopulos, D., Kollios, G.: Discovering similar multidimensional trajectories. In: ICDE,

pp. 673–684 (2002)
41. Xu, Z., Zhang, R., Ramamohanarao, K., Parampalli, U.: An adaptive algorithm for online time series

segmentation with error bound guarantee. In: EDBT, pp. 192–203 (2012)
42. Yi, B.K., Faloutsos, C.: Fast time sequence indexing for arbitrary lp norms. In: VLDB, pp. 385–394

(2000)
43. Yu, C., Zhang, R., Huang, Y., Xiong, H.: High-dimensional knn joins with incremental updates. GeoIn-

formatica 14(1), 55–82 (2010)
44. Zhang, R., Jagadish, H.V., Dai, B.T., Ramamohanarao, K.: Optimized algorithms for predictive range

and knn queries on moving objects. Inf. Syst. 35(8), 911–932 (2010)


