
Knowl Inf Syst
DOI 10.1007/s10115-014-0803-6

REGULAR PAPER

A safe region based approach to moving KNN queries
in obstructed space

Chuanwen Li · Yu Gu · Jianzhong Qi ·
Rui Zhang · Ge Yu

Received: 26 April 2013/Revised: 15 October 2014/Accepted: 1 November 2014
© Springer-Verlag London 2014

Abstract The moving k nearest neighbor (MkNN) query has been studied extensively. Most
of the studies assume no obstacle in the space. However, obstacles like rivers, buildings and
private properties commonly exist in the space, and one may need to go around the obstacles
to reach his/her nearest neighbors. In this paper, we study the moving kNN query in obstructed
space with no predefined query object trajectory. We take a safe region based approach to
solve this problem. In particular, we propose a method to compute a safe region w.r.t. a data
object. In this safe region, the query object can move freely, while the data object is kept
in the query object’s kNN set. By combining the safe regions of the data objects near the
query object, we formulate an overall safe region where the query object’s kNN set keeps
stable. We propose an algorithm based on the safe regions to process the moving kNN query
in obstructed space. Extensive experiments show that the proposed algorithm significantly
reduces the communication and the computation costs for query processing. Our algorithm
outperforms a baseline algorithm by up to two orders of magnitude under various settings.

Keywords Moving nearest neighbor query · Obstructed space · Safe region ·
Fixed-rank region

C. Li · Y. Gu (B) · G. Yu
The School of Information Science and Engineering, Northeastern University,
Shenyang, Liaoning, China
e-mail: guyu@ise.neu.edu.cn

C. Li
e-mail: lichuanwen@ise.neu.edu.cn

G. Yu
e-mail: yuge@ise.neu.edu.cn

J. Qi · R. Zhang
The Department of Computing and Information Systems,
University of Melbourne, Melbourne, VIC 3052, Australia
e-mail: jianzhong.qi@unimelb.edu.au

R. Zhang
e-mail: rui.zhang@unimelb.edu.au

123

C. Li et al.

1 Introduction

In recent years, there has been growing needs for Location-Based Services (LBS) and an
important application is finding nearest objects such as gas stations, ATMs, restaurants and
so on in mobile scenarios [10,13,15]. For example, a tourist driving a car wants to find a list
of nearest gas stations using a GPS-equipped mobile phone. The query is sent to a server and
needs to be answered continuously, while the position of the query object (i.e., the mobile
phone) changes. The server maintains a database of various spatial objects, which is used to
process the query, and the results are sent back to the mobile phone. This is a typical example
of the Moving k Nearest Neighbor query (MkNN) [22,23,35]. Given a set of data points
P (gas stations, restaurants, etc.) and a moving query point q (a car, a mobile phone, etc.),
an MkNN query retrieves the k nearest data points of q from P for every timestamp—this
means that the answer set may need to be updated as q moves. Figure 1a gives an example
where k = 2, and the curve s is the trajectory of q . When q moves to position q1, the 2NN
set of q is {p2, p3}, and at q2, the 2NN set of q becomes {p4, p6}.

There have been various studies on the MkNN query as well as its variants, such as the
moving visible NN query [11] and the MkNN query on predefined linear trajectories [9]. In
this paper, we study an important variant of the MkNN query, the MkNN query in obstructed
space. For simplicity, we call it the obstructed MkNN query. This query considers the obsta-
cles (such as rivers and buildings) in the space that the query point may need to go around,
which may result in different kNN answers. Figure 1b gives an example. It has the same data
points and query trajectory as those of Fig. 1a. In addition, it has two obstacles shown as the
shaded polygons. At location q1, the 2NN set of q is now {p1, p2} instead of {p2, p3}. This is
because now p3 is farther than p1 from q due to the distance added by the detour around the
obstacles. For the same reason, at location q2, the 2NN set of q is {p5, p6} instead of {p4, p6}.

A recent study [9] showed how to process the obstructed MkNN query assuming that the
query point moves along a predefined linear trajectory. This assumption is quite restrictive. In
practice, it is more common that the query point does not have a predefined trajectory, which
brings in a significant challenge to query processing. Specifically, in this case, we cannot
predict the kNN set of the query point based on its predefined trajectory. Instead, we have to
keep monitoring the movement of the query point and recomputing the kNN set repeatedly,
which may lead to high communication and computation costs.

In this paper, we address this challenge and propose an efficient algorithm to process the
obstructed MkNN query with no predefined query trajectory.

Our basic idea is inspired by V*-Diagram [22], the state-of-the-art method for the MkNN
query with no predefined query trajectory in unobstruced space (i.e., a space without obsta-

p4

p3
p5

p1

p6

p2

s q1

q2

p4

p3
p5

p1

p6

p2

s q1

q2

(a) (b)

Fig. 1 Example of MkNN and obstructed MkNN

123

A safe region based approach to moving KNN queries in obstructed space

cles). V*-Diagram is a safe region based technique. Its safe region is formed by two types
of regions, the safe region w.r.t. a data point and the fixed-rank region. We define similar
regions in obstructed space to address the obstructed MkNN query. However, our work is
not a trivial extension of V*-Diagram [22] because our work requires exploiting geometric
properties entailed by obstacles, which bring in significant difficulties in defining the safe
regions. In obstructed space, the distance between two objects has to take into account the
extra distance for bypassing the obstacles. Hence, the safe regions usually have irregular
shapes. We address these challenges and make the following contributions:

– This is the first work that addresses the obstructed MkNN query with no predefined query
trajectory. We formulate two types of regions, namely the obstructed safe region w.r.t. a
data point and the obstructed fixed-rank region, to form a safe region called the obstructed
integrated safe region for processing the query.

– We exploit the properties of the obstructed integrated safe region to reduce the query
processing cost and obtain a highly efficient algorithm to process the obstructed MkNN
query.

– We perform a comprehensive experimental study on the proposed algorithm. The results
show that our algorithm outperforms the baseline algorithm by up to two orders of mag-
nitude.

This paper is an extended version of our earlier paper [16]. There, we proposed a safe region
based approach to process the obstructed MkNN query. In this paper, we extend our work
by (1) significantly improving the performance of our obstructed MkNN query processing
algorithm through formalizing the obstructed disk and the essential auxiliary set, which are
used in the obstructed known region to reduce the number of obstacle vertices to be checked
in safe region computation (details are in Sects. 4.1 and 7); (2) conducting experiments on
the improved algorithm and comparing it with a baseline algorithm adapted from a related
study [9]; (3) handling more types of obstacles; (4) providing detailed theoretical foundations
to the proposed approach, including formal definitions and proofs to the key techniques and
complexity analysis; (5) improving the overall presentation of the paper, including more
explanatory figures and clarifications.

The remainder of this paper is organized as follows: We review related studies in Sect. 2.
In Sect. 3, we provide preliminaries of the study. We formulate the obstructed safe region w.r.t
a data point and the obstructed fixed-rank region in Sects. 4 and 5, respectively. We present
the obstructed integrated safe region and an algorithm to process the obstructed MkNN query
in Sect. 6. We discuss how to use the essential auxiliary set to constrain the search space
in Sect. 7. In Sect. 8, we extend the proposed algorithm to different types of obstacles. We
conduct an experimental study in Sect. 9 and conclude the paper in Sect. 10.

2 Related work

We first review studies on spatial queries over moving objects in general. Then, we review
MkNN queries in unobstructed space and obstructed space, respectively.

2.1 Spatial queries over moving objects

Spatial queries over moving objects have been studied extensively. For example, Šaltenis et
al. [28] propose the Time-Parameterized R-tree (TPR-tree), which indexes moving points as
linear functions of time. Tao et al. [26] use the TPR-tree to process the time-parameterized

123

C. Li et al.

queries, which query moving objects satisfying certain time-parameterized predicates. Hu
et al. [13] propose a safe region based framework to monitor spatial queries over moving
objects for client–server based systems. In such a system, each moving object is a client.
It knows the current query result and does not need to report its location updates to the
server until the updates may cause query result change. Mokbel et al. [19,20] also propose
frameworks to monitor spatial queries over moving objects. Their frameworks process the
queries incrementally by monitoring the effect of each object location update on the query
answer. Benetics et al. [2] study reverse nearest neighbor (RNN) queries over moving objects.
Xia et al. [32] propose a six-region approach for the query type. More recently, Cheema
et al. [3] propose a safe region based approach to process the reverse k nearest neighbor
(RkNN) query over moving objects. Li et al. [17] study moving kNN query in weighted
regions. Eunus Ali et al. [8] study moving range queries, and Zhang et al. [37] study predictive
range queries. Zhang et al. [38] propose the intersection join query over moving objects, and
Ward et al. [30] propose a GPU-based algorithm to process the query. This query finds the
intersecting pairs from two sets of moving objects. These studies have different problem
settings from ours, and their solutions are inapplicable.

2.2 MkNN queries in unobstructed space

As a major type of spatial queries, the kNN query has attracted a large body of studies
(e.g., [14]). In the past decade, kNN queries over moving objects, i.e, the MkNN queries,
have become more popular. Most of the existing studies on the MkNN queries consider
unobstructed space [13,15,22]. For example, Tao et al. [27] study finding the NNs for each
point on a line segment, which can be seen as finding the NNs of a point object moving on
the line segment. Song et al. [25] use a sampling-based approach to reduce the MkNN query
processing cost in the expense of query result accuracy.

Many studies use safe region based approaches to process the query. The kth-order Voronoi
diagram (kVD) [23] is an example. This method requires expensive precomputation and
updates for the safe regions. The Retrieve-Influence-Set kNN algorithm (RIS-kNN) [35]
alleviates the high precomputation cost of kVD by computing a kth-order Voronoi cell locally,
but it still has high update cost. Specifically, it requires issuing a number of (six on average)
expensive time-parameterized kNN queries every time the query point exits the current safe
region. Other studies (e.g., [27]) assume a predefined linear trajectory of the query point.
In this case, the safe region is reduced to a line segment on the predefined trajectory and
can be determined by the bisectors between the query point and its nearby data points with
low costs. Nutanong et al. [22] propose the V*-Diagram technique, which maintains some
extra nearest neighbors to formulate a safe region. As the extra nearest neighbors maintained
serve as a “cache,” this technique does not need to retrieve new data points every time the
query point exits the current safe region. It requires much less frequent data retrieval as well
as much cheaper data access cost per data retrieval, and it handles dynamically changing k
values. As V*-Diagram is closely related to our proposed technique, we will describe it in
detail in Sect. 3.3.

Besides the safe region based approaches, Li et al. [18] uses influential neighbor set to
bound kNN sets, which reduces kNN recalculation cost while retaining the lowest kNN
recalculation frequency. Yu et al. [34] use grid indexes for MkNN queries, which produce
exact query answers but with a delay in the time. Xiong et al. [33] also use grid indices.
They propose an incremental computation approach to maintain an answer region for each
query, which updates according to the object location updates. The answer region is then
used to derive the query answer. Mouratidis et al. [21] propose a threshold-based approach

123

A safe region based approach to moving KNN queries in obstructed space

for MkNN queries. This approach tries to reduce the communication overhead between the
query processor and the moving objects. Hsueh et al. [12] use Location Information Tables and
obtain a partition-based lazy update algorithm to reduce the object location update processing
costs.

Since these studies do not consider obstacles in the MkNN query, their methods do not
apply to our problem.

2.3 MkNN queries in obstructed space

In computational geometry, shortest path problems in obstructed space are extensively stud-
ied [24]. The shortest path between two points in an obstructed space can be computed using
any conventional shortest path algorithm based on the visibility graph (detailed in Sect. 3.1).

Zhang et al. [36] propose the obstructed NN (ONN) query that finds the static nearest
neighbors of a static query point in obstructed space. Their proposed method is the state-of-
the-art solution to static obstructed kNN queries. It can be executed repeatedly as a sampling-
based approach to approximate a continuous answer to the obstructed MkNN query. A more
detailed discussion on the obstructed NN query on static objects can be found in [31].

Gao and Zheng [9] consider the MkNN queries in obstructed space. They assume that the
query point is moving on a predefined line segment. Gao et al. also study the reverse k nearest
neighbor query in the obstructed space with predefined query trajectory [10]. They assume
static data objects and a query object q moving along a given line segment and propose pruning
heuristics to reduce the query processing costs. These heuristics are based either on the dis-
tance between the static data objects and the line segment where q moves along, or on the posi-
tion relationship between the static data objects, an obstacle and q . They do not apply because
we assume no predefined query trajectory, which is more practical in real applications.

Wang et al. [29] study the continuous visible kNN queries where both the query object
and the data objects are moving. This work is less relevant and will not be discussed further.

3 Preliminaries

We assume a set of obstacles O (convex polygons with nonzero extents), a set of static
data points P and a moving query point q . All these objects are in an Euclidean space. The
obstructed MkNN query returns the kNN set of q continuously (i.e., at every timestamp),
where k is a given query parameter.

The distance between q and a data point p is defined as the length of the shortest path
from q to p without crossing any obstacle, denoted by dΔ(q, p). The shortest path may be a
series of connected line segments. For example, in Fig. 2, there are two obstacles ABC and
DE F . The shortest path between p1 and p2 consists of three line segments p1C , C D and
Dp2. Thus, dΔ(p1, p2) = |p1C |+ |C D|+ |Dp2|, where | · | denotes the line segment length.

Next, we describe three basic concepts to help compute dΔ(q, p) and process the obstructed
MkNN query, namely the visibility graph, the bisector of two points and the V∗-Diagram.
We summarize the frequently used symbols in Table 1, where “Δ” is used to indicate that
obstacles are involved in the definition of a symbol.

3.1 Visibility graph

The visibility graph is based on the visible region [23], which is the region visible to a point
p, denoted by θΔ(p). Here, “visible” means not being blocked by any obstacle. Formally,

123

C. Li et al.

Fig. 2 Visibility graph

Table 1 Frequently used symbols

Symbol Meaning

k The number of queried data points

O The set of obstacles

V The set of all vertices of the obstacles in O

P The set of data points

q The moving query point

qb The last location where the kNN set is updated

x The number of auxiliary data points

z The (k + x)th nearest data point of q

θΔ(p) The visible region of a point p

β(p1, p2) The unobstructed dominant region of p1 over p2

βΔ(p1, p2) The obstructed dominant region of p1 over p2

d(p, q) The unobstructed distance between p and q

dΔ(p, q) The obstructed distance between p and q

φ(p, l) The unobstructed disk with p as the center and l as the radius

φΔ(p, l) The obstructed disk with p as the center and l as the radius

W (qb, z) The unobstructed known region centered at qb corresponding to z

WΔ(qb, z) The obstructed known region centered at qb corresponding to z

ε(p1, p2, l) The ellipse with p1 and p2 as its two foci and l as its major axis length

εθ (p1, p2, l) The visible ellipse part

ω(qb, p, l) The unobstructed safe region w.r.t. a data point p

ωΔ(qb, p, l) The obstructed safe region w.r.t. a data point p

η(L) The unobstructed fixed-rank region w.r.t. a data point list L

ηΔ(L) The obstructed fixed-rank region w.r.t. a data point list L

Ω(qb, L) The unobstructed integrated safe region w.r.t. qb and L

ΩΔ(qb, L) The obstructed integrated safe region w.r.t. qb and L

θΔ(p) = {t |pt ∩ [o\∂o] = ∅,∀o ∈ O}, (1)

where pt denotes the line segment connecting two points p and t , and o\∂o denotes an
obstacle o excluding its boundary. This exclusion is because p and t can still be visible to
each other if pt intersects the boundary of o but does not cross the o.

123

A safe region based approach to moving KNN queries in obstructed space

The graph containing the visible regions of multiple data points is called a visibility graph.
Figure 2 shows an example, where the dotted area and the horizontal-lined area denote the
visible regions of p1 and p2, respectively. Based on this visibility graph, we can identify
the shortest path between p1 and p2 (i.e., p1C Dp2). This shortest path is computed by
constructing a graph on the vertices of the obstacles, the source point and the destination
point and then applying the Dijkstra’s algorithm. The detailed shortest path computation
process can be found in [23].

3.2 Bisector of two points

The bisector of two points pi and p j , denoted by b(pi , p j), is defined as a line or curve on
which a point t has the same distance to both pi and p j . Formally,

b(pi , p j) = {t | d(t, pi) = d(t, p j)} i �= j. (2)

When obstacles are involved, the definition becomes:

bΔ(pi , p j) = {t | dΔ(t, pi) = dΔ(t, p j)} i �= j. (3)

We illustrate bΔ(pi , p j) with Fig. 3, where a bisector bΔ(p1, p2) is formed by a series of

curve segments 〈̂b1b2, ̂b2b3, ̂b3b4, ̂b5b6, ̂b6b7, ̂b7b8〉 (the bold curve). This is different from
the bisectors in unobstructed space where they are usually straight lines, and the difference
is because of the “detoured” distance caused by the obstacles.

The bisector of pi and p j divides the space into two regions. In one region, every point
has a smaller distance to pi than to p j . This region is called the dominant region [23] of pi

over p j , denoted by β(pi , p j).

β(pi , p j) = {t | d(t, pi) < d(t, p j)} i �= j (4)

Similarly, in the other region, every point has a smaller distance to p j than to pi , and the
region is called the dominant region of p j over pi , denoted by β(p j , pi).

In obstructed space, the definition becomes:

βΔ(pi , p j) = {t | dΔ(t, pi) < dΔ(t, p j)} i �= j (5)

In Fig. 3, the gray region represents βΔ(p1, p2), and the white region represents
βΔ(p2, p1).

Fig. 3 The bisector of p1 and p2

123

C. Li et al.

3.3 V*-Diagram

V*-Diagram [22] is the state-of-the-art solution for MkNN queries. By fully exploiting the
knowledge of the query point location and the safe region, V*-Diagram significantly reduces
the number of times the query point exits the safe region (in other words, the number of times
the query is re-evaluated by the server) and the cost of re-evaluating the query (processing a
kNN query).

The safe region used in the V*-Diagram is called the Integrated Safe Region (ISR), which
is the intersection of two types of regions: (i) the safe region w.r.t. the kth nearest data point,
and (ii) the fixed-rank region of the k + x nearest data points, where x is the number of
auxiliary data points maintained in the query processor to reduce safe region recomputation.

The V*-Diagram MkNN algorithm computes the integrated safe region as follows. It first
finds the query point’s (k+x) nearest data points. Let qb denote the current position of q and z
denote its (k+x)th nearest data point. Then, a known region is computed as a disk centered at
qb with the radius being d(qb, z), where d(qb, z) denotes the unobstructed distance between
qb and z.

Step 1 The safe region w.r.t. a data point p, denoted by ω(qb, p, d(qb, z)), is then computed
as a region that, when the query point q moves inside the region, p is nearer to q than any
data point p′ outside the known region. Formally,

ω(qb, p, d(qb, z)) = {q ′|d(q ′, p) ≤ d(q ′, p′)} (6)

Since d(qb, q ′) + d(q ′, p′) ≥ d(qb, p′) (triangle inequality), the definition of ω(qb, p,

d(qb, z)) can be tightened by replacing d(q ′, p′) with d(qb, p′)− d(qb, q ′):

ω(qb, p, d(qb, z)) = {q ′|d(q ′, p) ≤ d(qb, p′)− d(qb, q ′)}. (7)

Point p′ is outside the known region, i.e., d(qb, p′) ≥ d(qb, z). Thus, the equation is
further simplified to be:

ω(qb, p, d(qb, z)) = {q ′|d(q ′, p) ≤ d(qb, z)− d(qb, q ′)}
= {q ′|d(q ′, p)+ d(qb, q ′) ≤ d(qb, z)}. (8)

This equation shows that the safe region w.r.t. p is effectively an ellipse in the Euclidean
space where qb and p are its two foci, and d(qb, z) is its major axis length (MAL). We denote
this ellipse by ε(qb, p, d(qb, z)).

As long as q is inside the intersection of the safe regions w.r.t. the k data points in the
known region, i.e.,

⋂k
i=1 ω(qb, pi , d(qb, z)), we guarantee that any data point p′ outside the

known region cannot be closer to q than any of those k data points.

Step 2 The V*-Diagram algorithm further computes a region called the fixed-rank region
where the order of distances of the k + x data points to q does not change, either. Formally,
the fixed-rank region of a list Lk+x of k + x ranked data points, η 〈p1, p2, . . . , pk+x 〉, is
defined as the intersection of the dominant region of pi over pi+1 (i ∈ [1..k + x − 1]):

η〈p1, p2, . . . , pk+x 〉 =
k+x−1⋂

i=1

β(pi , pi+1) (9)

123

A safe region based approach to moving KNN queries in obstructed space

Fig. 4 Integrated safe region
(k = 2, x = 2)

qb
q′

p1

p2

p3

p4 p5

p6

pppppppppppppppppppppp ppppp33

q

3

q

3

qqq

111111111111111111111111ppppppppppppppppppppppppppppppp

bbbbbbbbbbbbbbbbbbqqbbbbbbbbbbbbbbbbbb

pppppppppppppppppppppppppp111111111111111111

b(p3, p2)

b(p2, p6)

b(p1, p3)

qb
q′

p1

p2

p3

p4 p5

p6

Step 3 The intersection of the safe regions w.r.t. the k + x data points and the fixed-rank
region is the Integrated Safe Region (ISR), denoted byΩ(qb, Lk+x). Formally,Ω(qb, Lk+x) =
η(Lk+x)∩(

⋂k+x
i=1 ω(qb, pi , d(qb, z))), where pk denotes the kth nearest data point of q . This

computation can be simplified to the following Eq. [22]:

Ω(qb, Lk+x) = η(Lk+x) ∩ ω(qb, pk , d(qb, z)). (10)

Figure 4 shows an example where k = 2 and x = 2. When the query point q is at
the initial location qb, a 4NN search retrieves the four nearest data points 〈p1, p3, p2, p6〉.
The ellipses filled with horizontal lines and vertical lines denote ω(qb, p1, d(qb, p6))

and ω(qb, p3, d(qb, p6)), respectively. Then as long as q remains in the gray region
η〈p1, p3, p2, p6〉 ∩ω(qb, p3, d(qb, p6)), the 2NN of q will not change.

3.4 Solution framework

In V*-Diagram, the ISR is computed in unobstructed space. It can be expressed as a set
of ellipses and lines and hence can be easily maintained. When the space is obstructed,
substantial difficulties are added to the formulation of such regions. It is unclear what the
safe region is like and how it can be computed and maintained.

In the following sections, we will address these difficulties and present obstructed versions
of the regions used in V*-Diagram, namely the obstructed known region, the obstructed safe
region w.r.t a data point, the obstructed fixed-rank region and the obstructed integrated safe
region. Based on these regions, we propose the Obstructed MkNN algorithm to process the
obstructed MkNN query as follows.

– Initialization. When an obstructed MkNN query is issued, the algorithm first computes a
list Lk+x of k+ x nearest data points of q , where the x extra data point serve as a “cache”
to reduce the number of safe region recomputation.

– Maintenance. At every timestamp, the new position of q arrives. The algorithm uses
the obstructed safe region and the obstructed fixed-rank region to determine whether a
safe region recomputation is required and which data points need to be accessed for the
recomputation. Specifically, if q is still in the obstructed safe regions w.r.t the data points in
Lk+x but not the fixed-rank region, then the recomputation can be done on only the points
in Lk+x . Otherwise, a kNN query is issued to update Lk+x and get the new kNN set of q .
The above process repeats, and the obstructed MkNN set of q is generated continuously.

123

C. Li et al.

4 Obstructed safe region w.r.t. a data point (OSRD)

4.1 Obstructed known region

When the query point q is at position qb and its (k+x)th nearest data point is z, the obstructed
known region of q , denoted by WΔ(qb, z), is defined as a region where the obstructed distance
from any point t to qb is less than or equal to the obstructed distance dΔ(qb, z). Figure 5 gives
an example, where the shaded polygon ABC D denotes an obstacle and the gray region
denotes an obstructed known region.

As can be seen from the figure, the obstructed known region is not a disk in Euclidean
space. Next, we describe how to compute the obstructed known region through a concept
called the “obstructed disk.”

We use φ(qb, r) to denote a disk with center qb and radius r in unobstructed space.
Similarly, we use φΔ(qb, r) to denote an obstructed disk in obstructed space where the
points’ distances to qb are less than or equal to r . Figure 6 shows an example, where the two
shaded triangles denote obstacles, and the gray region denotes an obstructed disk.

We have the following observations on an obstructed disk φΔ(qb, r).

1. In the visible region θΔ(qb) (i.e., the area not being blocked by any obstacle), φΔ(qb, r)

and φ(qb, r) cover the same area.

Fig. 5 Obstructed known region

Fig. 6 Obstructed disk

123

A safe region based approach to moving KNN queries in obstructed space

2. For an obstacle vertex v whose obstructed distance to qb, dΔ(v, qb), is less than r , the
obstructed disk φΔ(v, r − dΔ(v, qb)) is fully covered by φΔ(qb, r). This is because, for
any point t in φΔ(v, r−dΔ(v, qb)), its obstructed distance to qb is at most r−dΔ(v, qb)+
dΔ(v, qb) = r .
In Fig. 6, the gray region enclosed by the dotted circle centered at vertex A denotes
obstructed disk φΔ(A, r − dΔ(A, qb)). It is fully covered by φΔ(qb, r).

3. Let 〈qb, v1, . . . , vi , t〉 be the vertices on the shortest path from qb to t , where v1, . . . , vi

are some vertices of the obstacles in the space. Then, t must be in the visible region θΔ(vi),
where vi is the last obstacle vertex that the shortest path passes before reaching t . If t is
in φΔ(qb, r), then t must be in φΔ(vi , r − dΔ(vi , qb)) and hence φ(vi , r − dΔ(vi , qb)).
This is because dΔ(vi , t) = dΔ(qb, t)− dis(qb, vi) ≤ r − dΔ(vi , qb).
In Fig. 6, for point p3, vertex B is the last vertex on its shortest path from qb. Therefore,
it is in θΔ(B) and φΔ(B, r − dΔ(qb, B)) and hence in φ(B, r − dΔ(qb, B)), which is
denoted by the dotted circle centered at B.

Based on these observations, we can construct an obstructed disk φΔ(qb, r) by combining
the obstructed disks of the obstacle vertices enclosed by φ(qb, r) (i.e., a circular region
centered at qb with a radius of r), as formalized by Theorem 1.

Theorem 1 Let Vφ(qb,r) be the set of obstacle vertices enclosed by the unobstructed disk
φ(qb, r). We have:

φΔ(qb, r) =
⋃

v∈{qb}∪Vφ(qb ,r)

φ(v, r − dΔ(qb, v)) ∩ θΔ(v). (11)

Proof (i) “φΔ(qb, r) ⇒ ⋃
v∈{qb}∪Vφ(qb ,r)

φ(v, r − dΔ(qb, v)) ∩ θΔ(v)”. If a point t is in

φΔ(qb, r), then the last vertex v on the shortest path from qb to t must be in {qb}∪Vφ(qb,r).
Based on Observation 3, we have t in φ(v, r − dΔ(qb, v)) ∩ θΔ(v).

(ii) “φΔ(qb, r) ⇐ ⋃
v∈{qb}∪Vφ(qb ,r)

φ(v, r − dΔ(qb, v)) ∩ θΔ(v)”. If a point t is in region

φ(v, r − dΔ(p, v)) ∩ θΔ(v), where v ∈ {p} ∪ Vφ(qb,r), then by Observation 2 we know
it must be inside φΔ(qb, r). ��

Given Eq. (11), we can now compute the known region in an obstructed space, WΔ(qb, z),
as φΔ(qb, dΔ(qb, z)) (cf. Fig. 5).

4.2 Definition of OSRD

Based on the definition of the obstructed known region, we can define the Obstructed Safe
Region w.r.t. a Data point p (OSRD). OSRD is a region where the movement of q will not
cause p to be removed from the k + x nearest neighbors of q . As shown in Fig. 5, if q has
moved from qb to q ′, for p to stay as one of the k+ x NNs of q , the distance between p and q ′
must be less than or equal to the distance between q ′ and any point χ outside the obstructed
known region, i.e., dΔ(q ′, p) ≤ dΔ(q ′, χ). Since the obstructed known region is defined
by a “radius” of dΔ(qb, z), we have dΔ(q ′, χ) + dΔ(q ′, qb) ≥ dΔ(qb, z) ⇒ dΔ(q ′, χ) ≥
dΔ(qb, z)− dΔ(q ′, qb). Therefore, we need dΔ(q ′, p) ≤ dΔ(qb, z)− dΔ(q ′, qb) to guarantee
that p stays as one of the k + x NNs of q .

Formally, OSRD is defined as follows.

Definition 1 (Obstruct safe region w.r.t. a Data point) Given a data point p and the (k +
x)th nearest data point of qb, denoted by z, the obstructed safe region w.r.t. p, denoted by
ωΔ(qb, p, dΔ(qb, z)), is defined as:

123

C. Li et al.

ωΔ(qb, p, dΔ(qb, z)) = {q ′|dΔ(q ′, p) ≤ dΔ(qb, z)− dΔ(qb, q ′)}
= {q ′|dΔ(q ′, p)+ dΔ(qb, q ′) ≤ dΔ(qb, z)}. (12)

We can see that Eq. (12) is very similar to Eq. (8), which defines an elliptical shaped safe
region in obstructed space. We call it an obstructed ellipse. Even though ωΔ(qb, p, dΔ(qb, z))
is not a traditional ellipse, we still call qb and p its two foci, and dΔ(qb, z) its major axis
length (MAL). We replace dΔ(qb, z) by l in the following discussion for ease of presentation.

4.3 Computation of OSRD

The definition of OSRD specified a point set but does not provide a clear way to represent
the boundary of the set in closed forms such as an ellipse. In this subsection, we propose a
method to compute OSRD based on the following three lemmas.

The first lemma establishes that in the region visible to both qb and p, OSRD covers the
same region with or without considering the obstacles.

Lemma 1 In the intersection of the visible regions of qb and p, the obstructed safe region
ωΔ(qb, p, l) and the safe region ω(qb, p, l) computed by omitting the obstacles cover the
same area, i.e., ωΔ(qb, p, l) ∩ θΔ(qb) ∩ θΔ(p) = ω(qb, p, l) ∩ θΔ(qb) ∩ θΔ(p).

Proof In θΔ(qb)∩ θΔ(p), there is no obstacles. The shortest distance from any point to qb or
p in the obstructed space is the same as that without the obstacles. Therefore, the obstructed
safe region in θΔ(qb) ∩ θΔ(p) is the same as its unobstructed counterpart. ��

Recall that ω(qb, p, l) is an ellipse denoted by ε(qb, p, l). Thus, ω(qb, p, l) ∩ θΔ(qb) ∩
θΔ(p) is the part of ε(qb, p, l) that is visible from both qb and p. We call it the visible ellipse
part (VEP) and denote it by εθ (qb, p, l).

The second lemma establishes that the OSRD of p fully covers the OSRD of certain points
in the OSRD of p.

Lemma 2 Given two different points q ′ and p′ in ωΔ(qb, p, l), if dΔ(qb, q ′)+ dΔ(p, p′)+
dΔ(q ′, p′) ≤ l, then ωΔ(q ′, p′, l − dΔ(qb, q ′)− dΔ(p, p′)) ⊆ ωΔ(qb, p, l).

Proof If dΔ(qb, q ′) + dΔ(p, p′) + dΔ(q ′, p′) ≤ l, then l − dΔ(qb, q ′) + dΔ(p, p′) ≥
dΔ(q ′, p′) > 0. Therefore, it guarantees that ωΔ(q ′, p′, l − dΔ(qb, q ′) − dΔ(p, p′)) is an
OSRD.

Next, we prove that a point t in ωΔ(q ′, p′, l − dΔ(qb, q ′) − dΔ(p, p′)) must also be in
ωΔ(qb, p, l). By definition, we have dΔ(t, q ′)+dΔ(t, p′) ≤ l−dΔ(qb, q ′)−dΔ(p, p′). Thus,

l ≥ dΔ(t, q ′)+ dΔ(qb, q ′)+ dΔ(t, p)+ dΔ(p, p′) ≥ dΔ(t, qb)+ dΔ(t, p). (13)

Therefore, t is in ωΔ(qb, p, l). ��
Based on the two lemmas above, we have that ωΔ(qb, p, l) can be computed by the

intersection of the VEPs of all sub-OSRDs satisfying Lemma 2. Since the points satisfying
Lemma 2 are infinite, we need to identify a subset of such points whose OSRDs together
fully cover and hence form ωΔ(qb, p, l). The following lemma gives us such a subset.

Lemma 3 Let Vω(qb,p,l) be a set containing all obstacle vertices in ω(qb, p, l). Then for
any point t in ωΔ(qb, p, l), there exist two points v1 and v2 in {qb, p} ∪ Vω(qb,p,l) such that
t ∈ θΔ(v1) ∩ θΔ(v2).

123

A safe region based approach to moving KNN queries in obstructed space

Proof If t is visible to qb, we let qb be v1 and have t ∈ θΔ(v1). Otherwise, the shortest path
from qb to t must pass certain obstacle vertices. Let v1 be the last obstacle vertex that the
shortest path passes. Then, t ∈ θΔ(v1). Meanwhile, v1 is closer to qb than t . Thus, v1 is in
ω(qb, p, l) and hence in Vω(qb,p,l).

Similarly, we can identify v2 on the shortest path from p to t . Thus, we have two points
v1, v2 ∈ {qb, p} ∪ Vω(qb,p,l), t ∈ θΔ(v1) ∩ θΔ(v2). ��

Lemma 3 gives every point t in ωΔ(qb, p, l) points from {qb, p} ∪ Vω(qb,p,l) to form
ellipses to enclose t . There is at least one of such ellipses whose VEP is part of ωΔ(qb, p, l).
We use Lemma 2 to filter out those points whose ellipses’ VEPs are not part of ωΔ(qb, p, l),
and the rest of the points are used to compute ωΔ(qb, p, l) as the following theorem suggests.

Theorem 2 Let v1, v2 be two points from {qb, p} ∪ Vω(qb,p,l). If dΔ(v1, qb) + dΔ(v2, p) +
dΔ(v1, v2) ≤ l, then ε(v1, v2, l − dΔ(v1, qb) − dΔ(v2, p)) ∩ θΔ(v1) ∩ θΔ(v2) is part of
ωΔ(qb, p, l). Formally,

ωΔ(qb, p, l) =
⋃

v1,v2∈{qb,p}∪Vω(qb ,p,l)

ε(v1, v2, l̂(v1, v2)) ∩ θΔ(v1) ∩ θΔ(v2), (14)

where dΔ(v1, qb)+ dΔ(v2, p)+ dΔ(v1, v2) ≤ l and l̂(v1, v2) = l − dΔ(v1, qb)− dΔ(v2, p).

Proof The correctness of the theorem is guaranteed by the lemmas above straightforwardly.
��

Theorem 2 suggests that ωΔ(qb, p, l) consists of several VEPs. The foci of these VEPs
can be qb, p or the obstacle vertices enclosed by ω(qb, p, l), i.e., the safe region computed
without considering the obstacles.

The combination of the VEPs can have three different cases.

– Case 1 There is no obstacle in ωΔ(qb, p, l) and thus, ωΔ(qb, p, l) and ω(qb, p, l) cover
exactly the same area. (cf. Fig. 7a, ωΔ(qb, p1, l)).

– Case 2 There are obstacles intersecting ωΔ(qb, p, l)’s corresponding safe region computed
without considering the obstacles, ω(qb, p, l), but there is no obstacle vertex in ω(qb, p, l).
In this case, ωΔ(qb, p, l) = ω(qb, p, l) ∩ θΔ(qb) ∩ θΔ(p) (cf. Fig. 7a, ωΔ(qb, p2, l)).

(a) (b)

Fig. 7 Obstructed safe regions

123

C. Li et al.

– Case There are obstacle vertices in ω(qb, p, l). Then, we need Eq. (14) to compute
ωΔ(qb, p, l) as a combination of VEPs. In Fig. 7a, OSRD ωΔ(qb, p3, l) illustrates this
case. We show the detailed computation of ωΔ(qb, p3, l) in Fig. 7b, where we first com-
pute three VEPs εθ (qb, p3, l̂(qb, p3)), εθ (qb, D, l̂(qb, D)), εθ (p3, D, l̂(p3, D)) and then
compute their union to form ωΔ(qb, p3, l).

We further simplify the computation of ωΔ(qb, p, l) for the regions that are visible to more
than two vertices that satisfy the conditions in Theorem 2. As the following corollary suggests,
in the overlapping visible region of three points v1, v2 and v3 satisfying the conditions in
Theorem 2, if the obstructed shortest path of v2 and v3 passes v1 (i.e., the shortest path
of v2 and v3 is v2 . . . v1 . . . v3), then εθ (v2, v3, l̂(v2, v3)) covers εθ (v1, v2, l̂(v1, v2)) and
εθ (v1, v3, l̂(v1, v3)). An example is in Fig. 7b. Among qb, p3 and D, the obstructed shortest
path between qb and p3 passes D. Thus, in the overlapping visible region J DK , ellipse
ε(qb, p3, l̂(qb, p3)) fully covers ε(qb, D, l̂(qb, D)) and ε(p3, D, l̂(p3, D)). Therefore, we
can avoid computing parts of ωΔ(qb, p, l) covered by more than one VEPs based on the
following corollary.

Corollary 1 Given three points v1, v2 and v3 in {qb, p} ∪ Vω(qb, p, l), where v2 lies on the
shortest path from v1 to qb and v3 lies on the shortest path from v1 to p. We have:

{
ε(v2, v3, l̂(v2, v3)) ∩ ε(v1, v3, l̂(v1, v3)) = ε(v1, v3, l̂(v1, v3))

ε(v2, v3, l̂(v2, v3)) ∩ ε(v1, v2, l̂(v1, v2)) = ε(v1, v2, l̂(v1, v2)),
(15)

which means ε(v2, v3, l̂(v2, v3)) contains ε(v1, v2, l̂(v1, v2)) and ε(v1, v3, l̂(v1, v3)).

Proof Let t be a point in ε(v1, v3, l̂(v1, v3)). Since d(t, v2) ≤ d(t, v1) + dΔ(v1, v2) and
dΔ(v1, qb) = dΔ(v1, v2)+dΔ(v2, qb), we have d(t, v2)+dΔ(v2, qb)+d(t, v3)+dΔ(v3, qb) ≤
d(t, v1)+dΔ(v1, qb)+d(t, v3)+dΔ(v3, qb) ≤ l, which ensures that t is in ε(v2, v3, l̂(v2, v3)).

Similarly, we can prove that a point in ε(v1, v2, l̂(v1, v2)) is in ε(v2, v3, l̂(v2, v3)). ��
4.4 Algorithm for computing OSRD

In this subsection, we present our OSRD computing algorithm OSRDC based on Theorem 2,
as shown in Algorithm 1. The algorithm starts with computing the visibility graph and
identifying the obstructed known region (lines 1 to 3). Then, all vertices in the obstructed
known region plus qb and p are added to a list Vall , which is to be used to compute the VEPs
to form ωΔ(qb, p, l) (line 4). The points in Vall are sorted by their obstructed distances to qb

(line 6) to reduce the computation based on Corollary 1. Then, the algorithm uses a two-layer
for-loop to evaluate every pair of points in Vall that can contribute to ωΔ(qb, p, l) (lines 7
to 12) based on Theorem 2. The VEPs that form ωΔ(qb, p, l) are computed and added to
ωΔ(qb, p, l) during this process. When the for-loop ends, ωΔ(qb, p, l) has been computed
and is returned by the algorithm.

An example Figure 8 shows how an OSRD is computed through computing the VEPs, where
the gray region and the horizontal-lined region in each subfigure denote the visible regions
of the two points selected for VEP computation. The points selected for VEP computation
are sorted by their distances to qb. The first point selected by the outer layer for-loop is
qb, since it has 0 distance to qb. Then, the first point selected by the inner for-loop is D,
which is the closest to qb. The VEP w.r.t. qb and D, εθ (qb, D, l̂(qb, D)), is computed and
shown by the gray ellipse part in Fig. 8a. Point C is the next point selected by the inner
for-loop and εθ (qb, C, l̂(qb, C)) is computed and shown in Fig. 8b. Then, the inner for-loop

123

A safe region based approach to moving KNN queries in obstructed space

Algorithm 1: Computing OSRD
Input : Obstacles O , data point p, latest query position qb
Output: ωΔ(qb, p, l)

1 Compute the visibility graph based on O
2 Compute the (k + x)th nearest data point z
3 l ← dΔ(qb, z)
4 Vall ← VφΔ(qb,l) ∪ {qb, p}
5 ωΔ(qb, p, l)← ∅
6 Sort the vertices in Vall by their obstructed distances to qb in an ascending order
7 foreach vi in Vall except the last one do
8 foreach v j in Vall after vi do
9 if dΔ(vi , qb)+ dΔ(v j , p)+ dΔ(vi , v j) ≤ l then

10 l̂(vi , v j) = l − dΔ(vi , qb)− dΔ(v j , p)

11 εθ ← ε(vi , v j , l̂(vi , v j)) ∩ θΔ(vi) ∩ θΔ(v j)

12 ωΔ(qb, p, l)← ωΔ(qb, p, l) ∪ εθ

13 return ωΔ(qb, p, l)

(a) (b) (c)

(d) (e) (f)

Fig. 8 Computation of OSRD

ends, and the outer for-loop gets to point D (and the inner for-loop restarts at C). The above
process repeats, and VEPs εθ (D, C, l̂(D, C)), εθ (D, p, l̂(D, p)) and εθ (C, p, l̂(C, p)) are
computed as shown in Fig. 8c–e, respectively. The combination of all VEPs computed gives
us ωΔ(qb, p, l) (cf. Fig. 8f).

Complexity In the algorithm, we first add the vertices in φΔ(qb, l) to Vall . Identifying the
obstacle vertices in φΔ(qb, l) with a spatial index (e.g., R*-tree) takes O(log n) time on

123

C. Li et al.

average [5], where n denotes the number of all obstacle vertices. We denote the number of
vertices in Vall by |Vall |, which is determined by the obstacle density, the data point density
and the query parameter k. Then, the two-layer for-loop has a time complexity of O(|Vall |2).
In all, the algorithm takes O(log n + |Vall |2) time.

5 Obstructed fixed-rank region

In this section, we present the obstructed fixed-rank region (OFR) to guarantee that the order
of distances of the k + x data points in the obstructed known region to q does not change.

Definition 2 (Obstructed fixed-rank region) The obstructed fixed-rank region of a list Lk+x

of k + x data points ordered ascendingly by their distances to the query point at qb, denoted
by ηΔ〈p1, p2, . . . , pk+x 〉, is a region in an obstructed space that, when q moves inside the
region, the distance rank of the data points in Lk+x to q is fixed. It is computed as the
intersection of the obstructed dominant region of pi over pi+1 (i ∈ [1..k + x − 1]):

ηΔ〈p1, p2, . . . , pk+x 〉 =
k+x−1⋂

i=1

βΔ(pi , pi+1) (16)

Figure 9 shows an example. There are three data points p1, p2 and p3 and two obstacles
ABC and DE F . The three bisectors bΔ(p1, p2), bΔ(p2, p3) and bΔ(p1, p3) divide the data
space into six OFRs. Each OFR corresponds to a distance rank of the three data points. For
instance, for any point in ηΔ1 = ηΔ〈p3, p1, p2〉 = βΔ(p3, p1) ∩ βΔ(p1, p2) ∩ βΔ(p3, p2),
p3 is the nearest data point, while p2 is the second and p1 is the third.

If we compute the OFR for the k+x data points in the obstructed known region, then unless
q moves out of this OFR, we do not need to recompute the kNN set. However, computing and
storing an exact OFR is too costly due to the curve bisectors caused by obstacles (cf. Fig. 9).
Therefore, instead of computing and storing the OFR, we check whether the dominating
relationship of the k + x data points, i.e., dΔ(q, pi) ≤ dΔ(q, pi+1), holds for every pair of
data points 〈pi , pi+1〉 in Lk+x . If it does, then q is still in the current OFR; otherwise, q has
moved out of the OFR and reordering for the k + x data points is needed.

Dominating relationship check Next, we present an algorithm to check whether dΔ(q, pi)

≤ dΔ(q, pi+1) holds. We call it the dominating relationship check (DRC) algorithm, as
summarized in Algorithm 2. The algorithm has two stages: (i) initialization and (ii) evaluation.

Fig. 9 OFR

123

A safe region based approach to moving KNN queries in obstructed space

The initialization stage (lines 1 to 3) computes a visibility graph on pi and pi+1.
First, it computes the obstructed distance dΔ(pi , pi+1). Then, the obstructed disks
φΔ(pi , dΔ(pi , pi+1)) and φΔ(pi+1, dΔ(pi , pi+1)) are computed. The visibility graph is com-
puted based on the obstacles whose vertices are in both disks because these are the only
obstacles whose vertices can contribute to dΔ(q, pi) or dΔ(q, pi+1). This way the visibility
graph computation cost is constrained.

The evaluation stage (lines 4 to 6) uses Dijkstra’s algorithm [7] to compute shortest paths
from q to pi and pi+1 and hence dΔ(q, pi) and dΔ(q, pi+1). Whether dΔ(q, pi) is less than
or equal to dΔ(q, pi+1) is returned.

Complexity The initialization stage can be computed once at the start, and then, the visibility
graph can be reused in the following dominating relationship check. Therefore, the cost is
amortized. For line 1, computing φΔ(pi , dΔ(pi , pi+1)) and φΔ(pi+1, dΔ(pi , pi+1)) requires
O(nV log nV) time, where nV denotes the number of all obstacle vertices. Identifying all
vertices in φΔ(pi , dΔ(pi , pi+1)) and φΔ(pi , dΔ(pi , pi+1)) by an R*-tree takes O(log nV)

time. Let the number of these vertices be nV 1. Then, constructing a visibility graph with
them takes O(n2

V 1 log nV 1) time [6]. In all, the initialization stage takes O(nV log nV +
log nV + n2

V 1 log nV 1) time.
The evaluation stage involves two shortest path computation using Dijkstra’s algorithm

whose time complexity is O(nE+nV 1 log nV 1). Here, nE denotes the number of vertex pairs
visible to each other.

Algorithm 2: Dominating Relationship Check
Input : Obstacles O , data points pi and pi+1, query point q
Output: Whether q is in the dominant region of pi over pi+1, βΔ(p1, p2)

1 Ψ ← {v | v is an obstacle vertex v ∈ φΔ(pi , dΔ(pi , pi+1))v ∈ φΔ(pi+1, dΔ(pi , pi+1))}
2 Φ ← {o | o ∈ O at least one vertex of o is in Ψ }
3 Compute the visibility graph on pi and pi+1 with the obstacles in Φ

4 Compute dΔ(q, pi)
5 Compute dΔ(q, pi+1)

6 return dΔ(q, pi) ≤ dΔ(q, pi+1)

6 Obstructed integrated safe region

In this section, we combine OSRD and OFR to form a region where the movement of q does
not cause its kNN set to change. We call this region the Obstructed Integrated Safe Region
(OISR).

OSRD ωΔ(qb, pi , l) (pi ∈ Lk+x) guarantees that pi is nearer to q than any data point not
in Lk+x . Thus,

⋂k
i=1 ωΔ(qb, pi , l) guarantees that the first k data points in Lk+x are nearer to

q than any point not in Lk+x . OFR ηΔ(Lk+x) guarantees that the distance rank of the points
in Lk+x does not change, and that the first k points in Lk+x are nearer to q than the (k+ 1)th
to the (k + x)th points in Lk+x . Thus, the intersection of

⋂k
i=1 ωΔ(qb, pi , l) and ηΔ(Lk+x)

guarantees that the first k points in Lk+x form the kNN set of q , and this kNN set does not
change by the movement of q . This intersection is the obstructed integrated safe region.

Definition 3 (Obstructed integrated safe region) The obstructed integrated safe region of
Lk+x , denoted by ΩΔ(qb, Lk+x), is a region that, when q moves inside the region, the first
k data points in Lk+x are always the kNN of q , and the distance ranks of these k points do
not change. It is the intersection of

⋂k
i=1 ωΔ(qb, pi , l) and ηΔ(Lk+x). Formally,

123

C. Li et al.

Fig. 10 Obstructed integrated
safe region

ΩΔ(qb, Lk+x) = ηΔ(Lk+x) ∩
k⋂

i=1

ωΔ(qb, pi , l). (17)

An example is shown in Fig. 10, where k = 2, x = 1, L3 = 〈p1, p2, p3〉 and the
query point is at qb. The OISR ΩΔ(qb, L3) is formed by the intersection of ωΔ(qb, p1, l),
ωΔ(qb, p2, l), βΔ(p1, p2) and βΔ(p2, p3), as shown by the dotted gray region.

Computation In Eq. (17), computing the intersection of multiple safe regions is too expensive.
In what follows, we prove that ηΔ(Lk+x)∩⋂k

i=1 ωΔ(qb, pi , l) = ηΔ(Lk+x)∩ωΔ(qb, pk, l).
Then, we just need to compute one safe region for ΩΔ(qb, Lk+x).

Theorem 3 Let Lk+x = 〈p1, p2, . . . , pk+x 〉be a list of data points ordered by their distances
to qb. Then,

ηΔ(Lk+x) ∩
k⋂

i=1

ωΔ(qb, pi , l) = ηΔ(Lk+x) ∩ ωΔ(qb, pk, l). (18)

Proof (i) “ηΔ(Lk+x)∩⋂k
i=1 ωΔ(qb, pi , l)⇒ ηΔ(Lk+x)∩ωΔ(qb, pk , l)” is straightforward

since the left part of the equation is a subset of the right part.
(ii) “ηΔ(Lk+x) ∩ ⋂k

i=1 ωΔ(qb, pi , l) ⇐ ηΔ(Lk+x) ∩ ωΔ(qb, pk , l)”. Let t be a point in
ηΔ(Lk+x) ∩ ωΔ(qb, pk, l). Then t is in ηΔ(Lk+x) and dΔ(t, pk) + dΔ(qb, t) ≤ l. Also,
t in ηΔ(Lk+x) guarantees that dΔ(t, pi) ≤ dΔ(t, pk),∀i ∈ [1..k − 1]. Thus, dΔ(t, pi)+
dΔ(qb, t) ≤ l,∀i ∈ [1..k − 1] and t is in

⋂k
i=1 ωΔ(qb, pi , l). ��

As Fig. 10 shows, the intersection of ωΔ(qb, p1, l), ωΔ(qb, p2, l), βΔ(p1, p2) and
βΔ(p2, p3) is the same as that of ωΔ(qb, p2, l), βΔ(p1, p2) and βΔ(p2, p3).

Based on Theorem 3, the computation of ΩΔ(qb, Lk+x) is simplified to be: ΩΔ(qb, Lk+x)

= ηΔ(Lk+x) ∩ ωΔ(qb, pk, l).

Obstructed MkNN algorithm. Since the OFR part of an OISR is not precomputed or stored
but replaced by the dominating relationship check, the OISR cannot be precomputed or
stored. Thus, the obstructed MkNN algorithm only uses the OISR conceptually to process
the obstructed MkNN query as follows. When an obstructed MkNN query is issued and the
query point q is at qb, the algorithm first computes the list Lk+x . Then, the algorithm starts
the maintenance process. At every timestamp, the new position of q arrives. The algorithm
applies Algorithm 2 to perform dominating relationship checks for the data points in Lk+x

123

A safe region based approach to moving KNN queries in obstructed space

Algorithm 3: Obstructed MkNN processing
Input : Obstacles O , query point q, query parameter k and system parameter x
Output: Obstructed MkNN of q

1 while true do
2 Compute a list Lk+x of the k + x nearest data points of q
3 Compute the known region on Lk+x
4 foreach timestamp do
5 foreach pi in Lk+x , i < k do
6 if not DRC(O, pi , pi+1, q) then
7 Sort the data points in Lk+x
8 qb ← q
9 ωΔ(qb, pk , l)← O S R DC(O, pk , qb)

10 break

11 if q /∈ ωΔ(qb, pk , l) then
12 Compute a list Lk+x of the k + x nearest data points of q
13 Compute the known region on Lk+x

14 Output the first k points in Lk+x

to see whether q is still in ηΔ(Lk+x). If it is not, then the algorithm re-sorts the data points in
Lk+x to determine the new kNN of q . Next, the algorithm checks whether q is in the OSRD
of pk (computes the OSRD if it has not been computed yet). If it is, then q is still in its current
OISR and no further processing is required. Otherwise, the current OISR is deprecated, and
a new Lk+x list needs to be computed. The above process repeats, and the obstructed MkNN
set of q is generated continuously (i.e., at every timestamp).

Algorithm 3 summarizes the process.

7 Essential auxiliary set

In this section, we discuss how to choose the x extra data points when we compute the k+ x
data points for safe region computation. Our aim is to (i) obtain safe regions as large as
possible, so that recomputation can be less frequent, and (ii) constrain the search space for
the x extra data points, so that the cost of each recomputation is reduced. Note that the x
extra data points do not have to be the current (k+ 1)th to (k+ x)th nearest data points. This
is because an extra data point only needs to be able to validate the current safe region. It does
not have to be (and we cannot predict anyway) the next nearest data point if the current safe
region becomes invalid.

We introduce a concept called the essential auxiliary set (EAS) to constrain our search of
the x extra data points. First, we define the data points that will not affect the size of an OISR
whether or not they are used as the extra data points. The remaining data points form the EAS,
i.e., the EAS contains data points that may affect the size of the OISR, and the extra data points
should only be chosen from the EAS. Then, we present a way to compute the EAS efficiently.

7.1 Determination of inessential data points

If a data point p does not affect the size of an OISR whether or not it is used as an extra
data point, then we say p is inessential to the OISR and call it an inessential data point.
Otherwise, we say that p is essential to the OISR and call it an essential data point.

123

C. Li et al.

The following lemma gives a basic requirement that an essential data point must satisfy.
If a data point does not satisfy the following lemma, then it is an inessential data point.

Lemma 4 If a data point p is essential to an OISR, then there exists a point q ′ in the OISR
where p is its (k + 1)th nearest neighbor.

Proof Since we are considering the possible extra data points, p must not be one of the
current kNNs. Let it be the current (k + α)th nearest neighbor of the query point q , where
α ≥ 1. If p is essential, then the OISR is different computed with or without it. This implies
that when q moves, p would become one of the kNNs, which means the nearness rank of p
would become less than k. Since the distance from q to any data point changes continuously,
the nearness rank of p has to change continuously from the original k + α to less than k,
which encloses the rank k + 1. When p is the (k + 1)th neighbor, the point where q is at is
the point q ′. ��

This lemma gives a way to determine whether p is essential. However, it is too difficult
to compute if possible at all, because potentially we need to check every possible point q ′ to
see if p is its (k + 1)th nearest neighbor.

To simplify the determination process, we consider the bisectors between p and the current
kNNs.

Lemma 5 A data point p is inessential to an OISR if and only if the OISR does not overlap
any bisector between p and a current kNN.

Proof (i) “p is inessential ⇒ the OISR does not overlap any bisector between p and a
current kNN.”

Suppose the OISR overlaps a bisector between p and a current kNN, denoted by r . Then
when the query point q moves from one side of the bisector to the other side within the OISR,
p would become nearer to q than r does. This violates the condition that p is inessential.
Therefore, if p is inessential to the OISR, then the OISR must not overlap the bisector between
p and r .

(ii) “the OISR does not overlap any bisector between p and a current kNN⇒ p is inessential.”

Suppose p is essential, then there exists a point q ′ satisfying Lemma 4. When the query
point moves from q ′ to p along their shortest obstructed path, p will become the kth nearest
neighbor when the query point is at some point q ′′. At this moment, we have (1) q ′′ must be
at the border of the OISR, since p is becoming one of the kNNs, and the current OISR will
become invalid, and (2) there is a current kNN r that has the same obstructed distance to q ′′
as p does, since otherwise p would have already become one of the kNNs. As a result, the
OISR must overlap the bisector between p and r .

Therefore, if the OISR does not overlap any bisector between p and a current kNN, then
p is inessential. ��

So far, we have assumed the existence of an OISR for the computation of an inessential
data point. However, we do not have an OISR until we have identify the EAS and further the
x extra data points. To bypass this dilemma, we use a region that is guaranteed to enclose
any OISR that is computed using the current kNNs. Since this region is larger than any of
the OISRs, using it in Lemma 5 will guarantee no false positive in identifying the inessential
data points.

Lemma 6 Any OISR of a kNN set R resides in an order-k obstructed Voronoi cell w.r.t. R.

123

A safe region based approach to moving KNN queries in obstructed space

Fig. 11 Essential auxiliary set

Proof The correctness of the lemma is guaranteed by the definition of an order-k obstructed
Voronoi cell [23]. ��

Now, we can use the order-k obstructed Voronoi cell to identify the inessential data points:

Theorem 4 Given a kNN set R and a data point p, if for every data point r ∈ R, the
obstructed bisector between r and p is not overlapped by the order-k obstructed Voronoi cell
w.r.t. R, then p is inessential to any OISR of R.

Proof By Lemma 6, any OISR of R is fully contained in the order-k Voronoi cell w.r.t. R.
Therefore, if the bisectors are not overlapped by the order-k Voronoi cell, then they will not
be overlapped by any of the OISRs. Then by Lemma 5, p is inessential to R. ��

Figure 11 gives an example, where k = 2, x = 3 and the query point is at q . The current
kNN set R = {p1, p2}. Let three randomly chosen extra data points be {p3, p4, p5}. The
known region is enclosed by φΔ(q, dΔ(q, p5)) (denoted by the densely dashed curve). The
gray region is the order-2 Voronoi cell w.r.t. {p1, p2}. Then, p5 is actually inessential to R
since its bisectors with p1 and p2 (denoted by the dotted curves) are not overlapped by the
Voronoi cell. On the other hand, p6 and p7 are essential to R since the bisectors of p1 with
p6 and p7 contribute as parts of the Voronoi cell boundary.

The aim of EAS is to eliminate points like p5 from being considered as the extra data
points, so that we could have more effective extra data points and a larger known region (e.g.,
φΔ(q, dΔ(q, p6)), denoted by the loosely dashed curve.

7.2 Computation of the essential auxiliary set

Theorem 4 gives a more computable definition of the inessential data points. However, the
order-k Voronoi cell involved in the theorem is impracticable to be used due to its complex-
ity [23]. In this subsection, we use the obstructed Delaunay triangulation (ODT) to replace
the order-k Voronoi cell, which can be precomputed easily for a given set of objects and
obstacles without sacrificing the algorithm correctness. We also compute the EAS based on
the obstructed Delaunay triangulations.

Definition 4 The Delaunay triangulation for a set P of points is a triangulation DT (P) such
that no point in P is inside the circumcircle of any triangle in DT (P) [23].

123

C. Li et al.

Fig. 12 Obstructed Delaunay
triangulation

When obstacles are involved, the obstructed Delaunay triangulation (ODT) is defined by
substituting the edges of the triangles by the obstructed shortest paths and the circumcircles
by “circum-obstructed disks”. Figure 12 gives an example, where the dashed circle indicates
the circum-obstructed disk w.r.t. p2, p6 and p7, and the gray-obstructed disk indicates the
circum-obstructed disk w.r.t. p2, p7 and p9.

Next, we generalize Theorem 4 based on the ODT.

Lemma 7 Given a 1NN data point r , a data point p is inessential to r if p and r are not
directly linked by an edge in the ODT.

Proof We need to prove that if p and r are directly linked by an edge in the ODT then the
bisector between r and p is not overlapped the Voronoi cell of r .

Suppose the bisector is overlapped by the Voronoi cell. Let a moving point d be in the
Voronoi cell, then we can draw an obstructed disk φΔ(d, dΔ(d, p)). This disk encloses r and
p on the border and no object inside, since no object in the Voronoi cell of r can be nearer
to d than r . Next, we move d along the bisector until φΔ(d, dΔ(d, p)) encounters another
object o on its border. At this moment, we have p, r and o all on the border of an obstructed
disk and no other object inside, which means that p, r and o define a triangle in the ODT,
and we encounter a contradiction that p and r are directly linked by an edge in the ODT. ��
Lemma 8 Given a kNN set R, if for data point r ∈ R, a data point p is not directly linked
by an edge to r in the ODT ignoring all other data points in R, then p is inessential to R.

Proof Every Delaunay triangulation has a corresponding dual Voronoi diagram [23]. We
prove this lemma through the properties of the Voronoi diagram. The order-k Voronoi cell
for a set R is intersected by the order-1 Voronoi cell of each data point r ∈ R computed
when the other objects in R are ignored. If p is not directly linked to r , then by Lemma 7
and Lemma 5, the bisector between p and r is not overlapped by the Voronoi cell of r . As
a result, the bisectors between p and any data point in R is not overlapped by the order-k
Voronoi cell of R. Therefore, p is inessential to R. ��

Lemma 8 needs different ODT’s, which are constructed by ignoring different sets of
objects. The following lemma allows us to eliminate the need of these different ODT’s.

Lemma 9 Given the O DT w.r.t. a data point set R (denoted by O DTR), and the O DT w.r.t.
a subset P of R (denoted by O DTP), for data point p ∈ P, if p is not directly linked by an
edge to any data point in R\P in O DTR, then the edges linked to p are exactly the same in
both ODT’s.

123

A safe region based approach to moving KNN queries in obstructed space

The correctness of Lemma 9 can be proved straightforwardly based on the the unobstructed
version of the lemma in [23], and hence, the proof is omitted. Based on the lemmas above,
we have the following conclusion.

Theorem 5 Given a kNN set R, a data point p is inessential to R if there is no edge in the
obstructed Delaunay triangulation between p and any data point in R.

Proof The correctness of the theorem is guaranteed by the lemmas above straightforwardly.
��

Theorem 5 suggests that data points not directly linked to the data points in R are inessential
and can be pruned from consideration when choosing the extra data points. Therefore, we
can keep the data point that linked to the data points in R as the EAS. Formally:

Definition 5 The essential auxiliary set (EAS) for a kNN set R is a set of data points that are
directly linked to at least one of the data points in R in the obstructed Delaunay triangulation.

The definition suggests an efficient way to construct the EAS when the extra data points
are needed. Note that the extra data points are needed after the kNN retrieval and before
constructing the OISR. Therefore, the EAS can be constructed as follows:

1. In the initialization phase, precompute the obstructed Delaunay triangulation based on
all data points and obstacles, by using the technique presented in [4].

2. For each data point p, store a set of references to the other data points, denoted by L p ,
that are directly linked to p by the edges in the Delaunay triangulation.

3. When processing a MkNN query, after the retrieval of the current kNN set R, compute
the EAS as the following union:

EAS =
(

⋃

r∈R

Lr

) ∖

R. (19)

4. Sort EAS by based on the distance of the data points to the query point and take the x
nearest ones as the x extra data points for safe region computation.

Note that the EAS may contain false positives, i.e., inessential data points, since a data
point directly linked to the data points in R can still be inessential to R. However, we have
the following theorem that guarantee that on average the number of data points in EAS is
constrained, i.e., less than or equal to 6k.

Theorem 6 The average number of data points in an EAS is less than or equal to 6k.

Proof In the dual Voronoi diagram of a Delaunay triangulation, an order-k Voronoi cell is
constructed by k order-1 Voronoi cells. Since on average each Voronoi cell has six neigh-
bors [23], for a set R of k data points, it has no more than 6k neighbors in total. ��

8 Other types of obstacles

Until now, our discussion has assumed convex polygons with nonzero extents as the obstacles.
In this section, we discuss how our techniques can be applied on other types of obstacles.

Concave polygons with nonzero extents In this case, we can simply divide each obstacle into
multiple convex polygons. Then, our techniques can be applied straightforwardly.

123

C. Li et al.

Fig. 13 Line segments as obstacles

Line segments A typical use case of line segments as obstacles is shopping recommendation
in large shopping malls. As shown in Fig. 13, line segments AB, BC, . . . , T A form the
outline of a shopping mall. A customer in the mall is represented by q . She may issue a
query to the shopping recommendation server about the types of shops she is interested in.
Then, the server can identify the relevant shops (as the data points) and make continuous
recommendation based on the distance between the customer and the shops as the customer is
moving. In this case, the walls (i.e., the line segments) need to be considered when computing
the distance between the customer and a shop. They form the obstacle set and their endpoints
form the obstacle vertex set. Then, our techniques can be applied to process the obstructed
MkNN queries for this case.

9 Experiments

In this section, we present a detailed performance study of our obstructed MkNN algo-
rithm. We first describe the experimental settings in Sect. 9.1, then we evaluate our proposed
algorithm under different values of the algorithm parameter x in Sect. 9.2. We compare
our algorithm with a baseline algorithm in Sect. 9.3. In the experiments, we measure the
number of page accesses, the communication cost (by counting the number of safe region
recomputation) and the average response time.

9.1 Experimental setup

All experiments were conducted on a desktop computer with a 2.4 GHz Intel i5 CPU and 8
GB main memory.

Datasets We use real datasets as the obstacles and generate synthetic data as the data
points and the query point. The real datasets used are the Hypsography dataset and the Census
Blocks dataset from the R-tree Portal.1 The Hypsography dataset contains 76,999 MBRs of
hypsography data from Germany, and the Census Blocks dataset contains 556,696 MBRs of
census blocks from the USA. We map these MBRs to a data domain of 200,000× 200,000
units.

We generate two types of synthetic datasets around the obstacles: (i) uniform dataset
(denoted by “U”), where the data points follow uniform distribution; (ii) Zipfian dataset

1 http://www.chorochronos.org/.

123

http://www.chorochronos.org/

A safe region based approach to moving KNN queries in obstructed space

(denoted by “Z”), where the data points follow Zipfian distribution with α = 0.85 as the
skew coefficient.

We use the R*-tree [1] to index the obstacles and the data points independently, where the
page size is set to be 2 KB and the buffer size is set to be 16 pages.

We generate two types of query point trajectories: (i) random (denoted by “R”), where the
movement of the query point follows the Random Waypoint model; (ii) directional (denoted
by “D”), where the query point moves in straight lines until reaching an obstacle and the
movement is reflected by the obstacle.

Parameters To evaluate the algorithms under various settings, we vary the value of x from
2 to 20, the value of k from 5 to 50, the value of |P|/|O| from 0.1 to 10 and the query
point moving speed vq from 100 to 500 units per timestamp. By default, we set x at 10, k
at 5, |P|/|O| at 5 and vq at 250. We run each experiment for 200 timestamps and report the
average cost per timestamp.

Baseline algorithm In the comparative study, we adapt the Continuous Obstructed kNN
(COkNN) algorithm [9] as the baseline algorithm. As discussed in Sect. 2.3, this algorithm
assumes predefined linear trajectories for the query object. To use it in our problem, we treat
each short trajectory segment from the last timestamp to the current timestamp as a predefined
trajectory and feed it into the algorithm. This means the COkNN algorithm will be run at
each timestamp.

9.2 Effect of x

We maintain x extra nearest neighbors chosen based on the essential auxiliary set as a cache to
reduce the frequency of safe region recomputation. In this set of experiments, we evaluate the
algorithm performance when the value of x is varied to choose the best value of x . As shown in
Fig. 14, when x increases from 2 to 20, the I/O cost of query processing decreases. The reason
is that when x becomes larger, the obstructed known region becomes larger, and hence, the
valid periods of the safe regions become longer. The frequency of safe region recomputation
becomes smaller, and thus, the number of page accesses to retrieve the positions of the data
points and the obstacles as well as the communication cost to report the updated kNN set
decrease. Meanwhile, the computation cost to maintain the safe regions of k + x data points
increases as x increases. As a result, the average response time increases when the value of
x becomes too large. As shown in Fig. 14e, f, different data sets have different best x values.
Overall, our proposed algorithm performs best when x = 10. Therefore, we will use this
value in our algorithm in the following experiments.

9.3 Comparative study

In this subsection, we compare our obstructed MkNN algorithm with a baseline algorithm
COkNN [9]. In the result figures, we denote our algorithm by “OMkNN” while the baseline
algorithm by “COkNN.”

9.3.1 Varying the query parameter k

Figures 15, 16 and 17 show the comparative performance when the value of k is varied. From
the figures, we can see that our algorithm outperforms COkNN in the three measurements
by up to two orders of magnitude (please note the logarithmic scale).

123

C. Li et al.

 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400

2 4 6 8 10 12 14 16 18 20

pa

ge
 a

cc
es

se
s

x

CD (U)
CD (Z)
CR (U)
CR (Z)

 0

 200

 400

 600

 800

 1000

 1200

 1400

2 4 6 8 10 12 14 16 18 20

pa

ge
 a

cc
es

se
s

x

HD (U)
HD (Z)
HR (U)
HR (Z)

 10

 20

 30

 40

 50

 60

 70

 80

2 4 6 8 10 12 14 16 18 20

co

m
m

un
ic

at
io

ns

x

CD (U)
CD (Z)
CR (U)
CR (Z)

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

2 4 6 8 10 12 14 16 18 20

co

m
m

un
ic

at
io

ns

x

HD (U)
HD (Z)
HR (U)
HR (Z)

 10
 20
 30
 40
 50
 60
 70
 80
 90

2 4 6 8 10 12 14 16 18 20

tim
e

(m
ili

se
co

nd
)

x

CD (U)
CD (Z)
CR (U)
CR (Z)

 5
 10
 15
 20
 25
 30
 35
 40
 45

2 4 6 8 10 12 14 16 18 20

tim
e

(m
ili

se
co

nd
)

x

HD (U)
HD (Z)
HR (U)
HR (Z)

(a) (b)

(c) (d)

(e) (f)

Fig. 14 Effect of x

Figure 15 shows the numbers of page accesses. Our algorithm has much smaller numbers
because our safe region based algorithm keeps the number of kNN recomputation low, and
hence, it does not require to access the data point as frequently as the COkNN does. The
same reason applies, and thus, the communication cost of our algorithm is also much smaller
than that of COkNN (cf. Fig. 16).

The above two effects together result in a smaller average response time for our algorithm.
As Fig. 17 shows, for COkNN, the average response time is almost one second per timestamp,
which means COkNN is too slow to generate valid query results for more than just one query at
the same time. On the contrary, the response time of our algorithm is below 10 milliseconds for
most cases, which means our algorithm can provide timely query results for tens of queries
simultaneously (Please note that the experiments were conducted on an average desktop
computer rather than a high performance server machine). This demonstrates the scalability
of our algorithm.

123

A safe region based approach to moving KNN queries in obstructed space

 100

 1000

 10000

 100000

 1e+06

5 10 15 20 25 30 35 40 45 50

pa

ge
 a

cc
es

se
s

k

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 100

 1000

 10000

 100000

 1e+06

5 10 15 20 25 30 35 40 45 50

pa

ge
 a

cc
es

se
s

k

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 100

 1000

 10000

 100000

5 10 15 20 25 30 35 40 45 50

pa

ge
 a

cc
es

se
s

k

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 100

 1000

 10000

 100000

5 10 15 20 25 30 35 40 45 50

pa

ge
 a

cc
es

se
s

k

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

(a) (b)

(c) (d)

Fig. 15 Page accesses versus k

 10

 100

 1000

 10000

 100000

5 10 15 20 25 30 35 40 45 50

co

m
m

un
ic

at
io

ns

k

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 10

 100

 1000

 10000

 100000

5 10 15 20 25 30 35 40 45 50

co

m
m

un
ic

at
io

ns

k

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 10

 100

 1000

 10000

 100000

5 10 15 20 25 30 35 40 45 50

co

m
m

un
ic

at
io

ns

k

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 10

 100

 1000

 10000

 100000

5 10 15 20 25 30 35 40 45 50

co

m
m

un
ic

at
io

ns

k

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

(a) (b)

(c) (d)

Fig. 16 Communications versus of k

9.3.2 Varying data point–obstacle ratio |P|/|O|

Next, we compare our algorithm with COkNN when the ratio of the number of data points
over the number of obstacles (|P|/|O|) is varied.

123

C. Li et al.

 0.1

 1

 10

 100

 1000

5 10 15 20 25 30 35 40 45 50

tim
e

(m
ili

se
co

nd
)

k

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 1

 10

 100

 1000

5 10 15 20 25 30 35 40 45 50

tim
e

(m
ili

se
co

nd
)

k

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 1

 10

 100

 1000

5 10 15 20 25 30 35 40 45 50

tim
e

(m
ili

se
co

nd
)

k

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 1

 10

 100

 1000

5 10 15 20 25 30 35 40 45 50

tim
e

(m
ili

se
co

nd
)

k

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

(a) (b)

(c) (d)

Fig. 17 Response time versus of k

 10

 100

 1000

 10000

 100000

 1e+06

50 100 150 200 250 300 350

pa

ge
 a

cc
es

se
s

|P|/|O|

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 100

 1000

 10000

 100000

 1e+06

50 100 150 200 250 300 350

pa

ge
 a

cc
es

se
s

|P|/|O|

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 10

 100

 1000

 10000

 100000

50 100 150 200 250 300 350

pa

ge
 a

cc
es

se
s

|P|/|O|

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 10

 100

 1000

 10000

 100000

50 100 150 200 250 300 350

pa

ge
 a

cc
es

se
s

|P|/|O|

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

(a) (b)

(c) (d)

Fig. 18 Page accesses versus |P| / |O|

Figures 18, 19 and 20 give the result. Our algorithm again outperforms COkNN by more
than one order of magnitude in the three measurements. We can see from Fig. 20 that as
the ratio grows, the average response time of our algorithm first drops and then increases

123

A safe region based approach to moving KNN queries in obstructed space

 10

 100

 1000

 10000

 100000

0.1 0.2 5 1 2 5 10

co

m
m

un
ic

at
io

ns

|P|/|O|

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 10

 100

 1000

 10000

 100000

0.1 0.2 5 1 2 5 10

co

m
m

un
ic

at
io

ns

|P|/|O|

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 10

 100

 1000

 10000

0.1 0.2 5 1 2 5 10

co

m
m

un
ic

at
io

ns

|P|/|O|

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 10

 100

 1000

 10000

 100000

0.1 0.2 5 1 2 5 10

co

m
m

un
ic

at
io

ns

|P|/|O|

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

(a) (b)

(c) (d)

Fig. 19 Communications versus |P| / |O|

 0.1

 1

 10

 100

 1000

50 100 150 200 250 300 350

tim
e

(m
ili

se
co

nd
)

|P|/|O|

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 0.1

 1

 10

 100

 1000

50 100 150 200 250 300 350

tim
e

(m
ili

se
co

nd
)

|P|/|O|

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 0.1

 1

 10

 100

 1000

50 100 150 200 250 300 350

tim
e

(m
ili

se
co

nd
)

|P|/|O|

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 0.1

 1

 10

 100

 1000

50 100 150 200 250 300 350

tim
e

(m
ili

se
co

nd
)

|P|/|O|

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

(a) (b)

(c) (d)

Fig. 20 Response time versus |P| / |O|

again. This is because, when |P|/|O| is small, the data points are sparse, and the obstructed
known region is large, and it encloses more obstacles. As a result, the maintenance cost of
the safe regions is high. As |P|/|O| grows, the density of data points increases, the size of

123

C. Li et al.

 0.1

 1

 10

 100

 1000

100 200 300 400 500

tim
e

(m
ili

se
co

nd
)

Moving speed

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 0.1

 1

 10

 100

 1000

100 200 300 400 500

tim
e

(m
ili

se
co

nd
)

Moving speed

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 0.1

 1

 10

 100

 1000

100 200 300 400 500

tim
e

(m
ili

se
co

nd
)

Moving speed

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 0.1

 1

 10

 100

 1000

100 200 300 400 500

tim
e

(m
ili

se
co

nd
)

Moving speed

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

(a) (b)

(c) (d)

Fig. 21 Page accesses versus vq

 100

 1000

 10000

 100000

100 200 300 400 500

pa

ge
 a

cc
es

se
s

Moving speed

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 100

 1000

 10000

 100000

100 200 300 400 500

pa

ge
 a

cc
es

se
s

Moving speed

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 100

 1000

 10000

 100000

100 200 300 400 500

pa

ge
 a

cc
es

se
s

Moving speed

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 100

 1000

 10000

 100000

100 200 300 400 500

pa

ge
 a

cc
es

se
s

Moving speed

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

(a) (b)

(c) (d)

Fig. 22 Communications versus vq

the obstructed know region drops and it encloses less obstacles. Thus, the maintenance cost
of the safe regions drops. However, when the size of the obstructed known region drops, the
frequency of safe region recomputation also increases. This effect becomes the dominating
effect and the costs of query processing grow again when |P|/|O| is larger than two.

123

A safe region based approach to moving KNN queries in obstructed space

 10

 100

 1000

 10000

100 200 300 400 500

co

m
m

un
ic

at
io

ns

Moving speed

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 10

 100

 1000

 10000

100 200 300 400 500

co

m
m

un
ic

at
io

ns

Moving speed

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 10

 100

 1000

 10000

100 200 300 400 500

co

m
m

un
ic

at
io

ns

Moving speed

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

 10

 100

 1000

 10000

100 200 300 400 500

co

m
m

un
ic

at
io

ns

Moving speed

COkNN (U)
COkNN (Z)
OMkNN (U)
OMkNN (Z)

(a) (b)

(c) (d)

Fig. 23 Response time versus vq

Note that the communication cost of COkNN stays unchanged when |P|/|O| is varied
(cf. Fig. 19). This is because COkNN has to be rerun and sends the new kNN set at every
timestamp regardless of the value of |P|/|O|. The communication cost is only related to the
size of the kNN set, which is decided by k and x .

9.3.3 Varying query point speed vq

We also vary the query point speed vq . Figure 23 shows the response time. OMkNN again
outperforms COkNN significantly. It can provide query answers within 0.01 s when vq

is 500 units per timestamp. Assume that the 200,000 × 200,000 data space represents
a 1,000 km×1,000 km area. Then, OM kNN provides query answers within 0.01 seconds
when vq is 180 km/h, which is fast enough for most daily life applications. This shows the
applicability of OMkNN (Figs. 21, 22).

The comparative performance in I/O cost and communication cost is similar to that of
previous experiments.

In summary, our obstructed MkNN algorithm outperforms the adapted baseline algorithm
COkNN by up to two orders of magnitude in computation and communication costs under
various settings.

10 Conclusion

In this paper, we studied the problem of processing the obstructed MkNN query, i.e., the kNN
query for a moving query point in space with obstacles. We proposed a safe region based
algorithm to process the query. The safe region used is a combination of two types of regions,

123

C. Li et al.

i.e., the obstructed safe region w.r.t a data point (OSRD) and the obstructed fixed-rank region
(OFR). The OSRD guarantees that the objects in the kNN set do not change, while the OFR
guarantees that the closeness order of the objects in the kNN set to the query object also
does not change. Together, they guarantee that, as long as the query object stays in their
intersection, the query result does not need recomputation. Using these two types of regions,
we obtained an efficient algorithm to process the MkNN query. We further optimized the
algorithm through the essential auxiliary set which help determine the possible new kNNs
when the kNN set needs to be updated. As the experiments show, our algorithm outperforms
an adapted baseline algorithm by up to two orders of magnitude under various settings.

Compared with an earlier conference version of the paper [16] where a preliminary query
processing algorithm was proposed, this journal article significantly enhanced the query
processing efficiency by introducing the obstructed disk and the essential auxiliary set, which
reduce the number of obstacle vertices and objects checked in safe region computation. We
renewed the experiments comparing the enhanced algorithm with a more advanced baseline
algorithm [9]. In addition, more types of obstacles are considered, and detailed theoretical
foundations are provided, including formal definitions and proofs to the key techniques and
complexity analysis.

Acknowledgments This work is supported by the National Basic Research Program of China under Grant
Nos. 2012CB316201 and 2014CB360509, the National Natural Science Foundation of China under Grant Nos.
61300021, 61472071 and 61472072, Australian Research Council (ARC) Discovery Project DP130104587,
Australian Research Council (ARC) Future Fellowships Project FT120100832, the Fundamental Research
Funds for the Central Universities of China Nos. N120304003 and N130404010 and China Scholarship
Council.

References

1. Beckmann N, Kriegel H, Schneider R, Seeger B (1990) The r*-tree: an efficient and robust access method
for points and rectangles. SIGMOD Record 19(2):322–331

2. Benetis R, Jensen S, Karčiauskas G, čaltenis S (2006) Nearest and reverse nearest neighbor queries for
moving objects. VLDB J 15(3):229–249

3. Cheema MA, Lin X, Zhang Y, Wang W, Zhang W (2009) Lazy updates: an efficient technique to contin-
uously monitoring reverse knn. PVLDB 2(1):1138–1149

4. Chew LP (1989) Constrained delaunay triangulations. Algorithmica 4(1–4):97–108
5. De Berg M, Gudmundsson J, Hammar M, Overmars M (2003) On r-trees with low query complexity.

Comput Geom 24(3):179–195
6. De Berg M, Cheong O, Van Kreveld M, Overmars M (2008) Computational geometry: algorithms and

applications. Springer, Berlin
7. Dijkstra E (1959) A note on two problems in connexion with graphs. Numerische Mathematik 1(1):

269–271
8. Eunus Ali M, Zhang R, Tanin E, Kulik L (2008) A motion-aware approach to continuous retrieval of 3d

objects. In: ICDE, pp 843–852
9. Gao Y, Zheng B (2009) Continuous obstructed nearest neighbor queries in spatial databases. In: SIGMOD,

pp 577–590
10. Gao Y, Yang J, Chen G, Zheng B, Chen C (2011) On efficient obstructed reverse nearest neighbor query

processing. In: ACM SIGSPATIAL, pp 191–200
11. Gao Y, Zheng B, Chen G, Li Q, Guo X (2011) Continuous visible nearest neighbor query processing in

spatial databases. VLDB J 20(3):371–396
12. Hsueh YL, Zimmermann R, Wang H, Ku WS (2007) Partition-based lazy updates for continuous queries

over moving objects. In: GIS, pp 1–8
13. Hu H, Xu J, Lee DL (2005) A generic framework for monitoring continuous spatial queries over moving

objects. In: SIGMOD, pp 479–490
14. Jagadish HV, Ooi BC, Tan K, Yu C, Zhang R (2005) idistance: an adaptive b+-tree based indexing method

for nearest neighbor search. ACM Trans Database Syst 30(2):364–397

123

A safe region based approach to moving KNN queries in obstructed space

15. Kolahdouzan M, Shahabi C (2004) Voronoi-based k nearest neighbor search for spatial network databases.
In: Very Large Data Bases, pp 840–851

16. Li C, Gu Y, Li F, Chen M (2010) Moving k-nearest neighbor query over obstructed regions. In: Asia-Pacific
Web Conference, pp 29–35

17. Li C, Gu Y, Yu G, Li F (2011) wneighbors: a method for finding k nearest neighbors in weighted regions.
In: DASFAA, Springer, pp 134–148

18. Li C, Gu Y, Qi J, Yu G, Zhang R, Yi W (2014) Processing moving knn queries using influential neighbor
sets. Proc VLDB Endow 8(2):113–124

19. Mokbel MF, Aref WG (2008) Sole: scalable on-line execution of continuous queries on spatio-temporal
data streams. VLDB J 17(5):971–995

20. Mokbel MF, Xiong X, Aref WG (2004) Sina: scalable incremental processing of continuous queries in
spatio-temporal databases. In: SIGMOD, pp 623–634

21. Mouratidis K, Papadias D, Bakiras S, Tao Y (2005) A threshold-based algorithm for continuous monitoring
of k nearest neighbors. TKDE 17:1451–1464

22. Nutanong S, Zhang R, Tanin E, Kulik L (2008) The v*diagram: a query dependent approach to moving
knn queries. In: Very Large Data Bases, pp 1095–1106

23. Okabe A, Boots B, Sugihara K, Chiu SN (2000) Spatial tessellations. Wiley, NY
24. Preparata F, Shamos M (1985) Computational geometry: an introduction. Springer, Berlin
25. Song Z, Roussopoulos N (2001) K-nearest neighbor search for moving query point. In: SSTD, pp 79–96
26. Tao Y, Papadias D (2002) Time-parameterized queries in spatio-temporal databases. In: SIGMOD,

pp 334–345
27. Tao Y, Papadias D, Shen Q (2002) Continuous nearest neighbor search. In: Very Large Data Bases,

pp 287–298
28. Šaltenis S, Jensen CS, Leutenegger ST, Lopez MA (2000) Indexing the positions of continuously moving

objects. In: SIGMOD, pp 331–342
29. Wang Y, Zhang R, Xu C, Qi J, Gu Y, Yu G (2014) Continuous visible k nearest neighbor query on moving

objects. Inf Syst 44:1–21
30. Ward PG, He Z, Zhang R, Qi J (2014) Real-time continuous intersection joins over large sets of moving

objects using graphic processing units. The VLDB J, 1–21
31. Xia C, Hsu D, Tung AK (2004) A fast filter for obstructed nearest neighbor queries. In: Williams H,

MacKinnon L (eds) Key Technologies for Data Management, Springer, pp 203–215
32. Xia T, Zhang D (2006) Continuous reverse nearest neighbor monitoring. In: ICDE, pp 77–86
33. Xiong X, Mokbel MF, Aref WG (2005) Sea-cnn: scalable processing of continuous k-nearest neighbor

queries in spatio-temporal databases. In: ICDE, pp 643–654
34. Yu X, Pu KQ, Koudas N (2005) Monitoring k-nearest neighbor queries over moving objects. In: ICDE,

pp 631–642
35. Zhang J, Zhu M, Papadias D, Tao Y, Lee DL (2003) Location-based spatial queries. In: SIGMOD,

pp 443–454
36. Zhang J, Papadias D, Mouratidis K, Zhu M (2004) Spatial queries in the presence of obstacles.

In: International conference on extending database technology, pp 366–384
37. Zhang R, Jagadish HV, Dai BT, Ramamohanarao K (2010) Optimized algorithms for predictive range

and knn queries on moving objects. Inf Syst 35(8):911–932
38. Zhang R, Qi J, Lin D, Wang W, Wong RCW (2012) A highly optimized algorithm for continuous inter-

section join queries over moving objects. VLDB J 21(4):561–586

123

C. Li et al.

Chuanwen Li received his B.E., M.E., and Ph.D. degree in Computer
Software and Theory from Northeastern University of China, in 2005,
2008 and 2011, respectively. He is a lecture at Northeastern University,
China. Recently, he has been a visiting researcher at Uppsala Univer-
sity, Sweden. His current research interests include spatial data man-
agement and realtime scheduling. He is a member of CCF.

Yu Gu received his B.E., M.E., and Ph.D. degree in Computer Soft-
ware and Theory from Northeastern University of China, in 2004, 2007
and 2010, respectively. Currently, he is an associate professor in North-
eastern University, China. His current research interests include spatial
data management and graph data management. He is a senior member
of CCF.

Jianzhong Qi received his Ph.D. degree in the Department of Comput-
ing and Information Systems at the University of Melbourne, in 2014.
Currently, he is a research fellow at the University of Melbourne. He
has been an intern at Toshiba China R&D Center and Microsoft Red-
mond in 2009 and 2013, respectively. His research interests include
spatial databases, location-based social networks, information extrac-
tion and web data mining.

123

A safe region based approach to moving KNN queries in obstructed space

Rui Zhang is an Associate Professor and Reader in the Department of
Computing and Information Systems at the University of Melbourne.
He obtained his bachelor’s degree from Tsinghua University in 2001
and his Ph.D. from National University of Singapore in 2006. He has
been a visiting research scientist at AT&T labs-research in New Jer-
sey and at Microsoft Research in Redmond, Washington. Since Janu-
ary 2007, he has been a faculty member in the Department of Comput-
ing and Information Systems at the University of Melbourne. Recently,
he has been a visiting researcher at Microsoft Research Asia in
Beijing regularly collaborating on his ARC Future Fellowship project.
His research interest is data and information management in general,
particularly in areas of indexing techniques, moving object manage-
ment, web services, data streams and sequence databases.

Ge Yu received his Ph.D. degree in Computer Science from Kyushu
University of Japan in 1996. He is now a professor in Northeastern Uni-
versity of China. His research interests include distributed and parallel
database, data integration, graph data management, etc. He is a member
of IEEE, ACM and CCF.

123

	A safe region based approach to moving KNN queries in obstructed space
	Abstract
	1 Introduction
	2 Related work
	2.1 Spatial queries over moving objects
	2.2 MkNN queries in unobstructed space
	2.3 MkNN queries in obstructed space

	3 Preliminaries
	3.1 Visibility graph
	3.2 Bisector of two points
	3.3 V*-Diagram
	3.4 Solution framework

	4 Obstructed safe region w.r.t. a data point (OSRD)
	4.1 Obstructed known region
	4.2 Definition of OSRD
	4.3 Computation of OSRD
	4.4 Algorithm for computing OSRD

	5 Obstructed fixed-rank region
	6 Obstructed integrated safe region
	7 Essential auxiliary set
	7.1 Determination of inessential data points
	7.2 Computation of the essential auxiliary set

	8 Other types of obstacles
	9 Experiments
	9.1 Experimental setup
	9.2 Effect of x
	9.3 Comparative study
	9.3.1 Varying the query parameter k
	9.3.2 Varying data point--obstacle ratio |P|/|O|
	9.3.3 Varying query point speed vq

	10 Conclusion
	Acknowledgments
	References

