
Continuous Visible k Nearest Neighbor Query on Moving Objects

Yanqiu Wanga, Rui Zhangb, Chuanfei Xua, Jianzhong Qib, Yu Gua, Ge Yua,∗

aDepartment of Computer Software and Theory, Northeastern University, China.
bDepartment of Computing and Information Systems, University of Melbourne, Australia.

Abstract

A visible k nearest neighbor (VkNN) query retrieves k objects that are visible and nearest to the query object, where “visible” means
that there is no obstacle between an object and the query object. Existing studies on the VkNN query have focused on static data
objects. In this paper we investigate how to process the query on moving objects continuously. We propose an effective filtering-and-
refinement framework for evaluating this type of queries. We exploit spatial proximity and visibility properties between the query
object and data objects to prune search space under this framework. A detailed cost analysis and a comprehensive experimental
study are conducted on the proposed framework. The results validate the effectiveness of the pruning techniques and verify the
efficiency of the proposed framework. The proposed framework outperforms a straightforward solution by an order of magnitude
in terms of both communication and computation costs.

Keywords: Spatio-temporal databases, continuous visible k nearest neighbor queries, safe region, invisible time period

1. Introduction

The visible k nearest neighbor (VkNN) query has attracted
great research interest [12, 11, 19, 20] recently due to emerging
applications such as security camera placement and sightseeing
site recommendation. This query assumes a set P of data ob-
jects, a set O of obstacles (represented by line segments) and a
query object q. Then it retrieves k data objects from P that are
visible and nearest to q. Figure 1 gives an example. Suppose
k = 2. The data objects are listed according to their Euclidean
distance to q as: p5, p6, p4, p3, p1, p2. Since p5, p4 and p1 are
blocked by the obstacles and invisible to q, they are not answers
to the VkNN query. The VkNN set of q, denoted by VkNN(q),
is {p6, p3}.

In this paper we study a continuous version of the VkNN
query, namely, the continuous VkNN query, which computes
the VkNN from a set of moving objects for a moving query
object continuously (i.e., for every timestamp).

The continuous VkNN query has various applications. For
example, in a military simulation, there can be more than
100,000 moving objects [35] such as soldiers and military ve-
hicles interacting with each other. A soldier needs to keep
track of his/her nearest visible enemies, so that he/she can at-
tack or avoid them. As the soldier and the enemies are mov-
ing constantly, the simulator needs to monitor them contin-
uously and report to the soldier his/her nearest visible ene-
mies. In another example, massively multiplayer online first-

∗Corresponding author. Tel.: +86 2483683113
Email addresses: wangyanqiu@ise.neu.edu.cn (Yanqiu Wang),

rui@csse.unimelb.edu.au (Rui Zhang),
chuanfeixu@research.neu.edu.cn (Chuanfei Xu),
jiqi@csse.unimelb.edu.au (Jianzhong Qi), guyu@ise.neu.edu.cn (Yu
Gu), yuge@ise.neu.edu.cn (Ge Yu)

p1

p2

p3
p4

p5

p6q

o1

o2

o3
p1

p2

p3
p4

p5

p6q

Figure 1: VkNN(q) = {p6, p3, p2} (k = 2)

person shooter (MMOFPS) games like CrossFire1 need to show
a player his/her nearby visible players so that he/she can shoot
them. Again, as the players are moving constantly, the game
system needs to monitor the players continuously and report to
the player his/her nearest visible players. There may be mil-
lions of players [9] online at the same time. Therefore, a highly
efficient algorithm is required to provide nearest-visible-player
monitoring in real time.

The continuous VkNN query is interesting not only for its
real applications but also for the technical challenges it raises.
To the best of our knowledge, there is no existing work consid-
ering the query on moving objects. The main challenge here is
that the query result needs to be up-to-date at every timestamp,
which incurs significant communication and computation costs.
To mitigate the costs, we propose a filtering-and-refinement
query processing framework, and exploit spatial proximity and
visibility properties between the query object and the data ob-
jects to prune search space under the framework. For spatial
proximity based pruning, we use the safe region, which is a cir-
cular region centered at an object and is defined to bound the

1http://crossfire.z8games.com/

Preprint submitted to Information Systems July 31, 2013

movement of the object for a certain period of time T (cf. Fig-
ure 2). The safe regions that are close and visible to the query
object further define a pruning region, which can be used to rule
out objects that are too far away to be in the VkNN set within
T timestamps. For objects that survive the safe region based
pruning, their distance to the query object is not too far, but
they may still be invisible to the query object due to obstacles.
This motivates the visibility based pruning, which utilizes sub-
periods within T that an object is invisible to the query object,
so that the object can be excluded from the VkNN candidates
during those sub-periods. We call such sub-periods the invisible
time periods. All pruning techniques together keep the number
of objects that pass the filtering stage small, and hence substan-
tially reduce the costs of the refinement stage. As a result, we
achieve a highly efficient query processing framework.

o3
p1

p2

p3 p4

p5

p6q

o1

o2

safe regions

Figure 2: Safe regions

We summarize the contributions of this paper as follows.

• This is the first study that addresses the continuous VkNN
query on moving objects. We propose a filtering-and-
refinement framework that can process the query effec-
tively.

• We develop two pruning strategies, namely, safe region
based pruning and invisible time period based pruning, to
reduce the search space for query processing under the
proposed framework.

• We conduct a detailed cost analysis for the proposed prun-
ing techniques. Extensive experiments using both real and
synthetic data sets demonstrate the high efficiency of the
pruning techniques as well as the proposed query process-
ing framework.

The rest of this paper is structured as follows. We first review
related work in Section 2. Then we formalize the continuous
VkNN query on moving objects and present the filtering-and-
refinement framework in Section 3. In Section 4, we present
two pruning strategies under the framework and in Section 5 we
provide a cost analysis for algorithms based on these pruning
strategies. We report the experimental results in Section 6 and
conclude the paper in Section 7.

2. Related Work

We review three classes of related studies, namely, contin-
uous spatial queries in general, continuous k nearest neigh-

bor queries on moving objects and visible k nearest neighbor
queries on static objects.

2.1. Continuous Spatial Queries in General
There is a large body of literature on continuous evaluation

of spatial queries. For example, Šaltenis et al. [28] propose
the Time Parameterized R-tree (TPR-tree) that indexes mov-
ing points as linear functions of time, based on which time-
parameterized queries [25] are proposed to retrieve moving ob-
jects that satisfy certain time-parameterized predicates continu-
ously. Hu et al. [15] propose a safe region based framework for
monitoring continuous spatial queries over moving objects on a
client-sever based system. Each moving object (a client) in the
system is aware of the current query result and only reports its
new location to the server if it is likely to cause changes to the
query result. Mokbel et al. [16, 17] propose two frameworks for
processing continuous spatial queries. They process the queries
incrementally by computing the effect of each individual update
on the query answer. They also propose shared execution tech-
niques to process multiple queries at the same time. Benetics
et al. [6] study the problem of continuous reverse nearest neigh-
bor (RNN) monitoring over moving objects. Xia et al. [30] also
study the continuous RNN query. They propose a so-called six-
region approach to process the query. Later, Cheema et al. [8]
propose a safe region based approach to process the continu-
ous reverse k nearest neighbor (RkNN) query. More recently,
Zhang et al. [35] study the continuous intersection join query,
which reports the set of intersecting objects from two moving
object sets continuously.

2.2. Continuous k Nearest Neighbor Queries on Moving Ob-
jects

As a major type of continuous spatial queries, the contin-
uous k nearest neighbor (kNN) query on moving objects has
been studied extensively. For example, Tao et al. [26] consider
a continuous NN search that retrieves the NNs of every point
on a given line segment. Song et al. [24] propose a sampling-
based approach to reduce the cost of processing continuous NN
queries. However, this method may produce inaccurate query
answers. Zhang et al. [33] use the validity region to enable
mobile clients to determine the validity of previous NN query
results based on their current locations. Nutanong et al. [21, 22]
use an incremental-safe-region based technique called the V∗-
Diagram that exploits both the location of the query object and
the scope of the current search space to answer moving kNN
queries. Yu et al. [32] use grid indices for monitoring kNN
queries on moving objects, which can provide exact query an-
swers but with a delay in the time. Xiong et at. [31] also
use grid indices for monitoring continuous kNN queries. They
compute the query answer incrementally by maintaining an an-
swer region for each query. The location updates of objects at
each timestamp are used to update the answer region, which is
then used to generate updates to the query answer. In addition,
Mouratidis et al. [18] propose a threshold based algorithm for
the continuous NN query, which aims at minimizing the com-
munication overhead between the query processor and the mov-
ing objects. Further more, Hsueh et al. [14] present a partition

2

based lazy update algorithm that uses Location Information Ta-
bles and safe regions to process continuous NN queries.

There are also many studies on variants of the continuous
kNN query. For example, Zhang et al. [34] study the predictive
moving kNN query. Hashem et al. [13] study how to protect
a user’s location privacy in moving kNN monitoring systems.
Shahabi and Sharifzadeh [23] propose the VoR-Tree, which in-
corporates Voronoi diagrams into the R-tree to improve the effi-
ciency of processing various types of kNN queries. Al-Amri et
al. [1, 3] study kNN queries in indoor space. They propose an
adjacency index structure for moving objects in indoor space
that takes into account both spatial and temporal properties.
They use a non-leaf node timestamping method to store moving
data and process kNN queries. In addition, Al-Amri et al. [2]
propose a moving object index and a lookup table that can be
used to process traditional kNN queries as well as the novel
direction and velocity queries. Since these studies do not con-
sider obstacles in the continuous kNN query, their methods do
not apply to our problem.

2.3. Visible k Nearest Neighbor Queries on Static Objects

The visible k nearest neighbor (VkNN) query is first pro-
posed by Nutanong et al. [19]. This query retrieves the nearest
k static objects that are visible to a static query object. To pro-
cess the query, Nutanong et al. [19] propose an algorithm that
starts from retrieving the nearest object and then incrementally
obtains the knowledge of visibility while finding other nearest
neighbors. Nutanong et al. [20] also study the aggregate VkNN
query and propose an approach named single retrieval front to
process the query. Besides, Gao et al. [10] study the visible
reverse k nearest neighbor (VRkNN) query, which finds all ob-
jects regarding the query object as a member of their VkNN
sets. In another paper [12], Gao et at. study the continuous
visible nearest neighbor (CVNN) query. They assume static
data objects and a query object q moving along a given line
segment, and use a branch-and-bound technique to process the
CVNN query based on 7 pruning heuristics. Among the 7 prun-
ing heuristics, 4 are based on the distance between the static
data objects and the line segment where q moves along, while
the other 3 are based on the position relationship between the
static data objects, an obstacle and q. Since we do not assume a
line segment for q or static data objects, these pruning heuristics
do not apply.

3. Preliminaries

In this section, we formulate the continuous VkNN query on
moving objects and present an efficient filtering-and-refinement
framework to process the query. We summarize the symbols
frequently used in the following discussion in Table 1.

3.1. Problem Formulation

We first define the concept of visibility between two objects.
We assume that obstacles are line segments while data objects
including the query object are points in a two-dimensional Eu-
clidean space.

Definition 1. (Visibility). Given a set O of obstacles, we say
that two objects p and q are visible to each other iff there is no
obstacle o in O such that the line segment connecting p and q,
denoted by pq, intersects o, i.e., ∀o ∈ O, o ∩ pq = ∅.

Similarly, we say that p and q are invisible to each other
iff there is an obstacle o such that pq intersects o, i.e., ∃o ∈
O, o ∩ pq , ∅.

We useV(q) to denote the visible region of q, i.e., the region
inside which all points are visible to q (cf. the white region in
Figure 2). By checking whether p resides in V(q), we know
whether p is visible to q. Similarly, we use I(q) to denote the
invisible region of q inside which all points are invisible to q (cf.
the grey region in Figure 2). We follow the classical technique
to computeV(q) [4, 27]. The technique uses the obstacles and
the lines that pass through q and the endpoints of the obstacles
to clip the invisible region of q from the whole data space. The
remaining part of the data space is the visible region of q.

We define the visible distance (VD) to represent the distance
between two objects when their visibility is taken into consid-
eration.

VD(p, q) =

{
dist(p, q) p is visible to q
∞ otherwise.

Here, dist(p, q) denotes the Euclidean distance between two
points p and q.

Given the definition of visible distance, we define the con-
tinuous visible k nearest neighbor query on moving objects as
follows.

Definition 2. (Continuous Visible k Nearest Neighbor
(CVkNN) query on moving objects) Given a set P of moving
objects, a set O of obstacles and a moving query object q, at ev-
ery timestamp, the continuous visible k nearest neighbor query
retrieves a subset of P, denoted by VkNN(q), such that:

(i) |VkNN(q)| = k;
(ii) ∀p ∈ VkNN(q), p is visible to q;
(iii) ∀p ∈ VkNN(q) and ∀p′ ∈ P \ VkNN(q), VD(p, q) ≤

VD(p′, q).

System architecture. We consider processing the CVkNN
query for two types of systems, centralized systems and client-
server based systems. Centralized systems are commonly used
in applications such as military simulations, where the simu-
lation system usually controls the moving objects directly and
has all up-to-date object location information it needs to process
the CVkNN query. Client-server based systems are commonly
used in applications such as multiplayer online games, where
most of the moving objects are avatars controlled by human
players through game clients (local computers or play stations),
while the CVkNN query is processed in the game server. In this
case, communication cost is incurred when the server and the
clients exchange location updates and query results.

For the algorithm design and cost analysis in the rest of this
paper, we assume a client-server based system for ease of pre-
sentation, i.e., we will consider computation cost as well as
communication cost. However, the algorithm design principles
and cost analysis also apply to centralized systems, in which

3

Symbol Definition
P a set of moving objects
O a set of obstacles (line segments)
p a moving object
o an obstacle
q a query object
pq a line segment that connects p and q

|pq|
the length of pq (the Euclidean distance
between p and q)

VD(p, q) the visible distance between p and q
Rp the safe region of p
Rq the safe region of q
V(q) the visible region of q
V(Rq) the visible region of Rq

I(q) the invisible region of q
I(Rq) the invisible region of Rq

MinVD(Rq,Rp)
the minimum visible distance between
Rq and Rp

MaxVD(Rq,Rp)
the maximum visible distance between
Rq and Rp

S c a set of query answer candidate objects
vm the global maximum speed
T the recomputation period of S c

τp an invisible time period of p

τl
p

an invisible time period lower bound
of p

τm
p

a moving direction aware invisible
time period of p

Table 1: Frequently Used Symbols

case communication cost is replaced by the cost of accessing
the object location data within the centralized systems.

We also assume that the CVkNN query is processed in main
memory. This is reasonable because storing a data set of
100,000 objects only takes several MB while currently a com-
modity computer usually has several GB of main memory.

3.2. Query Processing Framework

A straightforward solution to the CVkNN query is to per-
form a snapshot VkNN query at every timestamp as follows.
At every timestamp, we solicit location updates for all moving
objects, sort the objects based on their visible distance to the
query object, and then report the first k objects as the query
answer. This will serve as our baseline algorithm since there
is no existing work on the CVkNN query. We might use the
solution proposed by Nutanong et al. [19] to process a snap-
shot VkNN query, but this solution is not efficient under our
problem settings for the following reason. Nutanong et al. as-
sume an R-tree on the data objects and the obstacles, and then
use a best-first traversal to identify the invisible regions and
the query object’s nearest visible objects gradually. Applying
their method means building an R-tree on the objects and the
obstacles at every timestamp, which has a time complexity of
O((|P|+|O|) log(|P|+|O|)). In our problem settings, the obstacles
are static. We just need to build an R-tree to index them once.

Then computing the visible distance and sorting the moving ob-
jects based on visible distance at every timestamp requires only
O(|P| log |P|) time, which is smaller than that of Nutanong et
al.’s algorithm. Therefore, we use the sorting based snapshot
VkNN query algorithm instead of Nutanong et al.’s algorithm
as the baseline. However, this baseline solution still requires
too much communication and computation costs incurred by
soliciting location updates and sorting for all objects at every
timestamp. The need for a more efficient solution is evident.

We propose a filtering-and-refinement framework to process
the CVkNN query on moving objects. The framework first per-
forms a two-stage filtering to reduce the search space. Then
refinement is performed to examine the exact positions of the
unfiltered objects and find the query result.

As Figure 3 shows, we divide the time axis into periods of T
timestamps each, where T is a system parameter. At the begin-
ning of each period, we solicit location updates for all objects,
which means that we only need to solicit location updates for all
objects once every T timestamps. We will analyze the effect of
T on system performance in Section 4.1 and perform an empiri-
cal study in Section 6.2. After the location updates are solicited,
we build an R-tree on the moving objects (safe regions of the
objects, actually). At every T timestamps, we update the R-tree
nodes according to the new locations of the objects. We use
the R-tree to perform the first stage filtering, which results in a
subset of P that is guaranteed to contain all possible VkNNs of
the query object for the next T timestamps. We call this sub-
set the candidate answer set and denote it by S c. During the
next T timestamps, we perform the second stage filtering on S c

to determine the objects that require to be examined by refine-
ment. This filtering stage is based on the visibility relationship
between the object and no false dismissal will be introduced.
We then sort the unfiltered objects based on their visible dis-
tance to the query object to generate the exact query result at
each timestamp. This process repeats and answers are reported
continuously for the CVkNN query.

……. Next T Previous T
T

ε

1. Solicit update
2. Build an R-tree
3. Perform first-
stage filtering

Perform
second-stage
filtering and
refinement

…….

T T …

 1. Solicit location updates
 2. Build an R-tree
 3. Perform first-stage filtering

 …….

Perform second-stage filtering and refinement

 ……. t

Figure 3: The query processing framework

Discussion. The advantage of our framework is that it only
needs to solicit location updates for all objects every T times-
tamps, while the snapshot VkNN based solution requires do-
ing that at every timestamp. A possible concern is that our
framework might have a high processing cost at the beginning
of every period incurred by the three operations, i.e., (i) so-
liciting location updates, (ii) building an R-tree, and (iii) fil-
tering the search space. We argue that these operations are
only performed once every T timestamps and hence the cost

4

is amortized. Further, operations (i) and (iii), soliciting loca-
tion updates and filtering the search space, are required for any
algorithm that may efficiently process the CVkNN query any-
way. As for operation (ii), building an in-memory R-tree is
efficient [7, 29]. Our experimental study shows that building an
in-memory R-tree of size 10,000 takes only about 0.33 seconds.
This small overhead enables effective R-tree based pruning that
significantly reduces the number of data objects to be checked
in the refinement stage. Therefore, the cost of building an R-
tree once every T timestamps is justified. We also consider
maintaining the R-tree incrementally, i.e., we build an R-tree at
start and update it as the objects move. The problem of the in-
cremental maintenance is that it has to process every object up-
date, which is too expensive when the objects update frequently.
As our experiments show, rebuilding the R-tree is much more
efficient than maintaining it incrementally under our settings.

Processing multiple queries concurrently. When there are
multiple concurrent CVkNN queries, we can process them to-
gether and reduce the processing costs by shared execution. In
particular, in the first stage filtering, the R-tree on the mov-
ing objects is shared by multiple CVkNN queries to compute
a candidate answer set for each query, which can be done by
a grouped branch-and-bound search on the R-tree. This way
we constrain the communication and computation costs. In the
second stage filtering, we examine each candidate answer set
based on the visibility relationship to obtain the VkNNs at each
timestamp. This filtering stage requires soliciting the locations
of some objects in the candidate answer sets. Since an object
may belong to multiple candidate answer sets, its solicited loca-
tion can be shared by the filtering of multiple candidate answer
sets. This way we reduce the communication cost.

4. Pruning Techniques

Our query processing framework has two filtering stages. In
the first filtering stage, the aim is to generate a set of query
answer candidates S c that can stay valid for the next T times-
tamps while the size of the set is as small as possible. In the
second filtering stage, the aim is to further limit the number of
objects in S c that need to be examined at each timestamp by
the refinement stage. Towards these aims, we propose a safe re-
gion based pruning method and an invisible time period based
pruning method summarized as follows:

• Safe Region based Pruning. We use the safe region to
define a region where a moving object must be in during
a period of T timestamps (cf. Section 4.1). Then for the
query object’s safe region, we find its kth nearest data ob-
ject’s safe region that is entirely visible to it. The distance
between these two safe regions defines a region where an
object’s safe region must intersect or be enclosed in so that
this object can be in the query answer candidate set S c. All
other objects are pruned from further processing.

• Invisible Time Period based Pruning. The objects in S c

are close to the query object q but may not be visible to

q throughout a period of T timestamps. We call the sub-
period when an object p (p ∈ S c) is invisible to q the invis-
ible time period of p. Since an object’s exact movement is
not predictable, there is no way to compute an exact invisi-
ble time period. Instead, we compute a lower bound of the
invisible time period of p based on the current positions
of p, q and the obstacles between the two objects. Then
during the bounded period, p can be excluded from S c and
need not to be examined in the refinement stage. When
the bounded period expires, we solicit a location update of
p and compute the next invisible time period lower bound
for p. This process repeats for the objects in S c. Since this
makes some objects not be examined at every timestamp,
the cost of the refinement stage is reduced.

To further improve the pruning capability of the invisible
time period based method, we utilize the query object’s
moving direction for the computation of the invisible time
period lower bound, which results in the moving direction
aware invisible time period that is generally longer and al-
ways not shorter than the basic invisible time period lower
bound.

Next we elaborate the pruning techniques.

4.1. Safe Region based Pruning
We assume a global maximum speed of all objects, denoted

by vm, which may be the greatest speed limit or the speed of
the fastest object in a gaming/simulator system. Then during
T timestamps, the movement of an object p must be within a
circular region centered at p with vm · T being the radius. We
call this circular region the safe region of p (cf. Figure 4).

o2

o3

o1

o2
PD

MaxV D(Rq,Rp5)

MinV D(Rq,Rp5)

p1

p2

p3

p4

p5
p6

q

V(Rq)

I(Rq)

safe regions

Figure 4: Safe region based pruning (k = 2)

4.1.1. The Pruning Distances
As objects’ safe regions bound their movement, objects

whose safe regions are not close enough to the query object’s
safe region can be discarded from the query answer candidate
set S c. We define three distances on the safe regions, which will
then be used for the safe region based pruning.

We first extend the visible region of an object to the visible
region of a region: the visible region of a region R, denoted
by V(R), is defined as the intersection of the visible regions of
all points in R, i.e., a point in V(R) is visible to every point
in R. Similarly, the invisible region of R, denoted by I(R), is
defined as the union of the invisible regions of all points in R.
For example, in Figure 4, the white region is the visible region

5

of Rq, V(Rq), while the gray region is the invisible region of
Rq, I(Rq). By definition, if an object is in V(Rq), it is guar-
anteed that the object will be visible to q for the following T
timestamps. To compute V(Rq), we draw tangent lines to Rq

from the endpoints of the obstacles in O. The tangent lines and
the obstacles clip the invisible region from the data space. The
remaining region forms V(Rq) (cf. Figure 4). Once we have
V(Rq), checking whether a region is (entirely) visible to Rq is
done by checking whether the region is (fully) overlapped by
V(Rq).

Now we can define the minimum visible distance, the maxi-
mum visible distance, and the pruning distance. The minimum
visible distance (MinVD) between Rq and a region R, denoted
by MinVD(Rq,R), is defined as the smallest distance between a
point in Rq and a point from R that is visible to Rq (i.e., in the
visible region of Rq). Formally,

MinVD(Rq,R) =

{
MinDist(Rq,R ∩V(Rq)) R is visible to Rq

∞ otherwise.

Here, MinDist(·) is a function that returns the smallest distance
between any two points from two regions.

Similarly, we define the maximum visible distance (MaxVD)
between Rq and a region R, denoted by MaxVD(Rq,R), to be
the largest distance between a point in Rq and a point from R
that is visible to Rq. Formally,

MaxVD(Rq,R) =

{
MaxDist(Rq,R ∩V(Rq)) R is visible to Rq

∞ otherwise.

Here, MaxDist(·) is a function that returns the largest distance
between any two points from two regions.

The pruning distance (PD) is then defined as the largest
MaxVD of the k nearest safe regions who are entirely visible
to Rq. Formally,

PD = max{MaxVD(Rq,R)|R ∈ S R}, S R satisfies
(i) |S R| = k
(ii) ∀R ∈ S R ∀R′ < S R, R ∩V(Rq) = R and R′ ∩V(Rq) = R′

MinVD(Rq,R) < MinVD(Rq,R′).

The definition of PD guarantees that, during the following T
timestamps, we have k objects that are always visible to q, while
their distance to q is at most PD. Any object whose safe region
has a MinVD to Rq that is larger than PD cannot contribute to
the query answer candidate set S c (e.g., p2 in Figure 4). There-
fore, using PD for pruning guarantees no false dismissal.

4.1.2. The Pruning Algorithm
Safe region based pruning works as follows. We solicit ob-

ject location updates at the beginning of every period (i.e., every
T timestamps) and update the R-tree TP. Then, we traverse TP
in a best-first order to determine S c for the next T timestamps.
We start the traversal with inserting all entries of the root node
of TP into a priority queue QP. The entries in QP are prioritized
based on their minimum visible distance to the safe region of
the query object q, denoted by Rq. They are popped out one
after another until QP is empty. When an entry ep pops out, if

it is invisible to Rq, which means any point bounded by ep is
invisible to every point in Rq, then we simply discard the entry.
Otherwise, (i) if ep has a child node, then all entries in the child
node are inserted into QP; (ii) if it is a data entry, which rep-
resents the safe region of a data object p, denoted by Rp, then
we add p to S c. We further check whether Rp is entirely visible
to Rq, which means any point in Rp is visible to every point in
Rq. If it is, then p must be visible to q and be a VkNN can-
didate throughout the next T timestamps. We repeat the above
process until we have found k data objects whose safe regions
are entirely visible to Rq. These k objects guarantee that we
have a candidate VkNN set for q for the next T timestamp pe-
riod. We compute the pruning distance PD to define a circular
region and bound all these k objects’ safe regions. If there is an
object p whose safe region’s minimum visible distance is larger
than this pruning distance, then p cannot be closer to q than any
of these k objects. Therefore, any entry popped out from QP
whose minimum visible distance to Rq is larger than PD can be
discarded from S c and hence we reduce the search space. We
summarize the pruning algorithm in Algorithm 1, where TO de-
notes an R-tree that indexes the set of obstacles O to facilitate
the computation of visibility relationships.

Algorithm 1: Safe Region based Pruning
Input : Rq, TP, TO, k
Output: Candidate set S c

1 Initialize QP with the entries in the root node of TP;
2 PD← ∞, S c ← ∅;
3 while NOT QP.empty() do
4 ep ← QP.pop();
5 if MinVD(Rq, ep) > PD then
6 break;

7 if ep is visible to Rq then
8 if ep has a child node then
9 Insert all entries in the child node of ep into

QP;
10 else
11 S c ← S c ∪ p;
12 if there are k objects in S c that are entirely

visible to Rq then
13 Update PD;

14

15 Return S c.

Figure 4 gives an example to the above algorithm where we
compute the CV2NN. We find 2 objects p5 and p6 whose safe
regions are entirely visible to the safe region of q. They must be
in S c for the next T timestamps. Between these two objects, p5
has a larger MaxVD value. Therefore, PD = MaxVD(Rq,Rp5).
Further, since the entries are prioritized inQP based on MinVD,
we can early terminate the algorithm once such an entry is
popped out from QP and thus reduce the computation cost.

4.1.3. Choosing the Value of T
The value of T significantly affects the system performance.

A larger T may reduce the cost of query processing by reducing

6

the number of times that the R-tree is rebuilt. However, it will
also increase the size of the safe regions and hence the number
of candidate answers to be checked during the second filtering
stage. Determining the best value of T theoretically is too dif-
ficult if possible at all. It requires an accurate model to predict
the cost of a moving kNN query with the presence of obstacles
and for real data distribution and movement patterns. A full
study on such a detailed cost model is beyond the scope of this
study. Therefore, in our experimental study, we choose the best
value of T empirically in Section 6.2.

In a moving object management system, the parameter T
may be self-adjusted based on the statistics of the costs of re-
building the R-tree and maintaining the candidate query an-
swer set. When the cost of rebuilding the R-tree dominates,
the parameter T should be adjusted to a larger value to reduce
the cost. Otherwise, the parameter T should be adjusted to a
smaller value.

4.2. Invisible Time Period based Pruning
After the safe region based pruning, we have a set S c that

contains the possible VkNNs of the query object q for a period
of T timestamps. The set S c consists of two types of objects.
Type I includes objects whose safe regions are entirely visible
to Rq - these objects determine the pruning distance PD (cf.
Figure 4, p5 and p6). Type II includes objects whose safe re-
gions are only partially visible to Rq but their minimum visi-
ble distance is smaller than PD (cf. Figure 4, p3). The latter
type has the potential of further reducing the search space for
VkNN computation. Specifically, a Type II object p needs time
to move to be visible to q. We call this time the invisible time
period of p, denoted by τp. If we could compute the value of
τp, we could exclude p from S c until τp expires. Unfortunately,
we cannot predict the exact movement of p and thus, we cannot
compute the exact value of τp. Instead, we compute a lower
bound of τp that is guaranteed to expire before τp. Then we
can exclude p from S c until this lower bound expires, at which
point we solicit a location update of p and check if p has ac-
tually became visible to q. (i) If yes then we add it back to S c

and continue with the regular refinement process. When p be-
comes invisible to q again, we recompute a lower bound of τp.
(ii) Otherwise we directly recompute a lower bound of τp based
on the updated location of p. By this means, we further reduce
the size of S c and hence reduce the query processing costs.

Next we explore how to derive a lower bound of τp. We first
derive a basic lower bound, denoted by τl

p, and then refine it by
taking the query object’s moving direction into consideration,
which results in an improve lower bound denoted by τm

p .

4.2.1. A Lower Bound of the Invisible Time Period
A lower bound estimation of τp, denoted by τl

p, must guar-
antee that p is invisible to q within τl

p, i.e., pq ∩ o , ∅, where
o denotes an obstacle between p and q. A critical point is when
pq reaches an endpoint of o, and the shortest time required for
this to happen defines τl

p. Figure 5(a) gives an example, where
pq needs to reach e1 so that p and q can be visible to each other.

Assume that p and q can both move at the global maximum
speed vm towards arbitrary directions. We observe that, for pq

q

(a) (b)

e1

e2

q1

o

p

le1

p3

q3

q′

p′

p1

q2

p2

r

q

e1

e2

p
r

q3

p3
p′

q′

s
o

le1 q1

p1

q2

p2

Figure 5: Computation of τl
p

to reach an endpoint of o with the shortest time, p and q should
both move towards either a same endpoint of o or a same di-
rection that is perpendicular to the line segment that connects
the original locations of p and q, depending on which way re-
sults in the shortest moving time. For example, in Figure 5(a),
there are four choices of movement, i.e., {p → e1, q → e1},
{p → e2, q → e2}, {p → p1, q → q1}, and {p → p2, q → q2},
where “→” denotes “moves towards” and pp1, pp2, qq1 and
qq2 are all perpendicular to pq. Then τl

p is computed as the
smallest time that any of these choices requires for pq to reach
either e1 or e2. Formally,

τl
p = min{min{

|pe1|

vm
,
|qe1|

vm
},min{

|pe2|

vm
,
|qe2|

vm
},

max{
|pp1|

vm
,
|qq1|

vm
},max{

|pp2|

vm
,
|qq2|

vm
}}.

(1)

Note that p may have to cross o to get to p1 (p2) (cf. Fig-
ure 5(b)). In this case, p needs to first get to an endpoint e1 (e2).
Therefore, we define |pp1| (|pp2|) as the sum of |pe1| (|pe2|) and
|e1 p1| (|e2 p2|). Similar definition applies to |qq1| (|qq2|) if qq1
(qq2) intersects o.

The following theorem guarantees the correctness of Equa-
tion 1 and hence no false dismissal will be introduced by this
invisible time period lower bound based pruning.

Theorem 1. Given two points p and q and a line segment e1e2
such that pq intersects e1e2 at r (r , e1, e2), for p and q to
move to two points p1 and q1 so that p1q1 intersects e1e2 at e1
while max{|pp1|, |qq1|} is minimized, pp1 and qq1 should both
be perpendicular to pq if neither pp1 nor qq1 intersects e1e2,
otherwise p1 and q1 should be two points such that pp1 and qq1
are overlapped by pe1 and qe1, respectively.

Proof. First we prove that pp1 and qq1 should both be perpen-
dicular to pq if doing so does not result in either pp1 or qq1
intersecting e1e2. Figure 5(a) illustrates how p1 and q1 are lo-
cated in this case. Now assume that there are two points p′

and q′ that p and q may move to so that p′q′ intersects e1.
We prove max{|pp1|, |qq1|} ≤ max{|pp′|, |qq′|}. We denote the
line that overlaps p′q′ as le1. If le1 also overlaps p1q1, then
max{|pp1|, |qq1|} ≤ max{|pp′|, |qq′|} is guaranteed by the fact
that pp1⊥p1q1 and qq1⊥p1q1, which means |pp1| (|qq1|) must
be the shortest distance between p (q) and a point on le1. Other-
wise (le1 does not overlap p1q1), as shown in Figure 5(a), we let
p3 and q3 be two points on le1 such that pp3⊥le1 and qq3⊥le1.

7

Then by definition we have max{|pp3|, |qq3|} ≤ max{|pp′|, |qq′|}.
We prove max{|pp1|, |qq1|} < max{|pp′|, |qq′|} through proving
max{|pp1|, |qq1|} < max{|pp3|, |qq3|}. The latter inequality is
guaranteed by that p3 and q3 must be at different sides of p1q1
because otherwise either pp3 or qq3 must cross e1e2. Mean-
while, p and q are both at the same side of p1q1. Therefore, ei-
ther pp3 or qq3 must intersect p1q1. Without lost of generality
we assume that pp3 intersects p1q1. Then in triangle 4p3 p1 p,
we have ∠p3 p1 p > 90◦ because ∠q1 p1 p = 90◦. Thus, |pp3|

is the longest side in the triangle and |pp3| > |pp1| = |qq1|.
Therefore, max{|pp1|, |qq1|} < max{|pp3|, |qq3|}.

Next we prove that if p and q moving along the lines that
are perpendicular to the original pq will result in pp1 or qq1
intersecting e1e2 before p and q are visible to each other, then
p1 and q1 should change to two points such that pp1 and qq1
are overlapped by pe1 and qe1, respectively. This effectively
means that p and q should move to e1 directly. Once either
p or q reaches e1, the line that connects them will intersect
e1e2 at e1. Therefore, we need to prove min{|pe1|, |qe1|} <
max{|pp′|, |qq′|}. Without lost of generality we assume that
pp1 intersects e1e2 (note that pp1 and qq1 cannot both in-
tersect e1e2). Figure 5(b) illustrates the case, where le1 is
a line that overlaps p′q′ and pp3⊥le1, qq3⊥le1 at p3 and q3,
respectively. We prove min{|pe1|, |qe1|} < max{|pp′|, |qq′|}
through proving |pe1| < max{|pp3|, |qq3|}. If |pe1| < |pp3|,
then |pe1| < max{|pp3|, |qq3|} holds. Otherwise, we prove
|pe1| < |qq3|. We draw a line segment se1 such that se1⊥le1
at e1 and se1 interests pq at s. Then |pe1| < |se1| holds be-
cause in 4spe1, ∠spe1 > ∠spp1 = 90◦. Meanwhile, in trape-
zoid e1sqq3, |se1| < |qq3| because ∠qse1 > 90◦ (derived from
∠spe1 > 90◦ and ∠pse1 < 90◦). Thus, we have |pe1| < |qq3|

and therefore, min{|pe1|, |qe1|} < max{|pp′|, |qq′|}.

Until now we have considered only one obstacle between p
and q. When there are multiple obstacles, we just need to com-
pute a lower bound of τp for each of the obstacles using Equa-
tion 1, and then choose the smallest one as the overall lower
bound τl

p. For example, in Figure 6, we first compute two in-
visible time period lower bounds for p based on e1e2 and e3e4,
respectively. Then we can use the smaller one between the two
lower bounds as the overall lower bound. The correctness of
doing so is straightforward and hence the proof is omitted.

4.2.2. Moving Direction aware Invisible Time Period
In this subsection we improve the lower bound of the invis-

ible time period by taking the query object’s movement into
consideration. The intuition of this lower bound is that usually
a moving object will not change its moving direction dramat-
ically and hence it will stay in the range of its current mov-
ing direction for a while. Within this range, we can compute a
shortest path that p can reach the visible region and hence an
invisible time period lower bound. This shortest path may not
be the same as the overall shortest path as computed based on
Theorem 1 in the last subsection, since the range p moving into
may not enclose the overall shortest path. Thus, we can usually

obtain a better lower bound of τp in this way. We call the re-
sultant lower bound the moving direction aware invisible time
period and denote it by τm

p .

q

e3
e4

p

o1

o2

lqe1

lqe4
lqe2

lqe3
e1

e2

Figure 6: Computation of τl
p under multiple obstacles

Figure 7 shows an example. When a lower bound of τp is to
be computed, we draw two lines lqe1 and lqe2 passing through
the two endpoints e1 and e2 of an obstacle o, and intersecting
each other at q. These two lines divide the movement of q into
four ranges D1,D2,D3 and D4. Each of these ranges is like a
safe region for the moving direction of q. As long as q remains
in the range where it is moving into at this instant (D1 as in
Figure 7), we can compute a larger lower bound of τp based on
the position relationship between this range, the obstacle o and
the moving object p. This larger lower bound is the moving
direction aware invisible time period τm

p . If q moves out of the
range that it is currently moving into before τm

p expires, then
we can simply fall back to the lower bound τl

p computed by the
method discussed in Section 4.2.1.

qq′

e1

e2

D3

D4

D1
D2

lqe2 lqe1

p

o

Figure 7: An example of the moving ranges

Next we illustrate how to compute τm
p . Again we consider

how p and q should move so that pq can meet one of the end-
points e1 and e2 of the obstacle o as early as possible, but now
the movement of q is constrained by the range it is moving into.
Suppose q is moving into range D1, as shown in Figure 7. We
first consider how pq can meet e1 early. Effectively this means
how p can reach the left boundary of the invisible region of q,
line lqe1 . An observation is that, for any point in D1, say q′, q
moving to q′ will make lqe1 rotate towards p. We need to find
the optimal path for q that makes lqe1 rotate the fastest to meet p,
and the optimal path for p to reach lqe1 accordingly. Meanwhile,
q moving to q′ will make the right boundary of the invisible re-
gion of q, line lqe2 , rotate away from p. To let pq meet e2 early,
we need to find the optimal path for q that makes lqe2 rotate the
least and the optimal path for p to reach lqe2 as early as possible.

8

Next we describe how these optimal paths are computed. Since
lqe1 and lqe2 have different rotation directions for different mov-
ing ranges, we analyze the different cases of the four moving
ranges separately and use Figure 8 for the illustration.

(a) (c)

q
D3

D4

D1
D2

e1

e2

pp1

p2p2
o

q1 q

e1
e2

p

D3

D4

D1
D2

o
p2

p1

q1

lqe1

lqe2
lqe1

lqe2

(d) (b)

q

D3

D4

D1
D2

e1

e2

pp1

o

q1
q2

p2

q

e1

e2

p

D3

D4

D1
D2

o

p1

p2

lqe1

lqe2
lqe1

lqe2

(a) (c)

q
D3

D4

D1
D2

e1

e2

pp1

p2p2
o

q1 q

e1
e2

p

D3

D4

D1
D2

o
p2

p1

q1

lqe1

lqe2
lqe1

lqe2

(d) (b)

q

D3

D4

D1
D2

e1

e2

pp1

o

q1
q2

p2

q

e1

e2

p

D3

D4

D1
D2

o

p1

p2

lqe1

lqe2
lqe1

lqe2

Figure 8: Computation of τm
p

As shown in Figure 8(a), if q is moving towards D1, then lqe1

will rotate towards p while lqe2 will rotate away from p. We
describe how p can reach lqe1 and lqe2 early as follows. (i) For p
to reach lqe1 early, p and q should both follow the movement as
described in the last subsection, i.e., both p and q move in the
direction that is perpendicular to the current pq, and if in this
way p or q reaches o before pq reaches e1, then both p and q
should move directly to e1. (ii) For p to reach lqe2 early, since q
moving into D1 will result in lqe2 rotating away from p, the best
q can do is to move along the current lqe2 (or do not move at
all) so that lqe2 does not rotate away any farther. Meanwhile, p
should move perpendicularly towards lqe2 since this is the short-
est path that a point can reach a line. If in this way p reaches
o before pq reaches e2, then p should move directly to e2. The
shortest time that p and q needs to move as described above be-
fore pq reaches either e1 or e2 (i.e., p reaches either lqe1 or lqe2)
defines τm

p .
If q is moving towards D2, as shown in Figure 8(b), both lqe1

and lqe2 are rotating away from p. Therefore, for p to reach ei-
ther line early, q should move along lqe1 (lqe2) towards e1 (e2)
to keep lqe1 (lqe2) from rotating away, while p should move per-
pendicularly towards lqe1 (lqe2). If in this way p reaches o before
pq reaches e1 (e2), then p should move directly to e1 (e2).

If q is moving towards D3, as shown in Figure 8(c), the situ-
ation is very similar to that of q moving towards D1. Therefore,
the analysis of that previous case (i.e., q moving towards D1)
applies. The only difference is that now lqe1 is rotating away
from p while lqe2 is rotating towards p.

If q is moving towards D4, as shown in Figure 8(d), both lqe1

and lqe2 are rotating towards p. In this case, q needs to move

along the current lqe2 (lqe1) so that lqe1 (lqe2) can rotate the fastest
towards p. To determine the shortest distance p and q need to
move until pq intersects e1, we let q1 be a point on lqe2 and
q1 p1 be a line segment that intersects e1 and is perpendicular to
pp1. When |qq1| = |pp1|, the two line segments qq1 and pp1
are the shortest paths for pq to reach e1. The correctness of
this claim can be proved in a way that is similar to the proof of
Theorem 1 and thus the proof is omitted. Intuitively, among all
line segments in D4 that have the same length as qq1, qq1 has the
longest projection on the overall best path of q to make pq reach
e1 (i.e., qq1 in Figure 8(a)). Meanwhile, we have established in
Theorem 1 that pp1 and qq1 should be of the same length so that
max{|pp1|, |qq1|} is minimized. Therefore, the paths pp1 and
qq1 described above are the optimal paths. By basic geometry
we compute the locations of p1 and q1 and get pp1 and qq1.
Again if p cannot reach p1 without crossing o then p should
move directly to e1. Similarly we get the optimal paths pp2 and
qq2 for pq to reach e2 early.

The correctness of the above analysis is supported by The-
orem 1. We still use Equation 1 to compute τm

p , but the points
represented by p1 and p2 in the equation are changed to the
points described above for the four cases accordingly.

q D3

D4

D1

D2

D′
4

D′
2

D′
41

D′
3

D′
43

D′
1

p

l1
l2o

lqe1 lqe2

e1

e2

Figure 9: Another choice of data space partitioning

Discussion. Using lqe1 and lqe2 is not the only way to divide
the space. We have chosen these two lines because every resul-
tant range has one unchanged rotation direction for each of the
invisible region sides. This leads to a simple and efficient way
to compute a lower bound of τp. We might use other lines to
partition the space and compute lower bounds of τp based on
those lines, but then some of the resultant ranges may overlap
more than one of the ranges as divided by lqe1 and lqe2 , and the
computation of a lower bound of τp will become complicated
and less efficient. For example, as shown in Figure 9, we use
two lines l1 and l2 to divide the space and denote the resultant
ranges by D′1, D′2, D′3 and D′4. We can see that D′4 overlaps D1,
D3 and D4. The overlapping ranges are D′41, D′43 and D4, re-
spectively. Then, we have to compute lower bounds of τp for
each of these ranges and then find the smallest as the the lower
bound of τp for range D′4, which is more complex than using
lqe1 and lqe2 directly.

5. Cost Analysis

In this section we analyze the performance of the proposed
pruning methods and compare the proposed framework with the

9

snapshot VkNN based method in communication and computa-
tion costs. For simplicity, we denote the snapshot VkNN based
method, the safe region based pruning method, the basic lower
bound invisible time period based pruning method and the mov-
ing direction aware invisible time period based pruning method
as SV, SR, LITP and MITP, respectively.

5.1. Communication Cost
In a client-server based query processing system, the com-

munication cost is caused by two operations, i.e., soliciting lo-
cation updates from the moving objects (clients) and reporting
the query result to the query object. In a centralized system,
the communication cost is replaced by the cost of accessing the
object location data within the centralized system and report-
ing the query result to itself for later use. Since the cost of
reporting the query result is the same for all CVkNN query pro-
cessing methods, and it is much smaller than the cost of getting
the location updates, we focus on the cost of getting the loca-
tion updates. We compare for the various methods the number
of location updates solicited during a period of T timestamps
starting from the beginning of the period.

A) SV needs the exact location for each moving object (in-
cluding the query object) at each timestamp. Therefore, its
communication cost for T timestamps, denoted as CMS V , is
computed as:

CMS V = (|P| + 1)T = (|P| + 1) + (|P| + 1)(T − 1). (2)

B) Our proposed framework first performs safe region
based pruning using the locations of all objects, which results in
a subset S c of P as the query answer candidate set for the next
T timestamps (including the current timestamp). Then invisi-
ble time period based pruning is performed to further reduce the
number of objects in S c to be checked by the refinement step to
generate the exact query answer set at each timestamp.

B.i) If only SR is applied, then the communication cost of
the proposed framework, denoted by CMS R, is computed as:

CMS R = (|P| + 1) + (|S c| + 1)(T − 1) (3)

By comparing Equations 2 and 3, we can see that CMS R ≤

CMS V is guaranteed since S c ⊆ P. The superiority of the pro-
posed framework over SV depends on |S c |

|P|
, which in turn de-

pends on T because T determines the sizes of the safe regions
and the pruning distance. To learn the effect of T , we look at
the average per timestamp communication cost of SR, denoted
as CMS R and derived from Equation 3 as follows.

CMS R =
(|P| + 1) + (|S c| + 1)(T − 1)

T

=
|P \ S c| + (|S c| + 1) + (|S c| + 1)(T − 1)

T
=
|P \ S c|

T
+ |S c| + 1

(4)

When T increases, the denominator in the equation increases.
However, |S c| also becomes larger because the size of the safe

regions increases and so as the pruning distance. There is no
obvious theoretical trend on the combined effect and we will
use experiments to find a suitable value of T to optimize the
performance of the proposed framework.

We let ωS R be |S c |

|P|
and use it to denote the pruning power of

SR. Then CMS R becomes (|P|+ 1) + (ωS R|P|+ 1)(T − 1). When
the invisible time period based pruning is also applied, the size
of |S c| is further reduced.

B.ii) The communication cost of the proposed framework
when applying SR + LITP and SR +MITP, denoted as CMS L

and CMS M respectively, are computed as follows.

CMS L = (|P| + 1) + (ωS L|P| + 1)(T − 1) (5)

CMS M = (|P| + 1) + (ωS M |P| + 1)(T − 1) (6)

Here, ωS L and ωS M denote the pruning power of SR in com-
bined with LITP and MITP, respectively. The pruning power
depends on whether LITP or MITP can keep more objects
from S c. By definition, MITP computes invisible time period
lower bounds that are at least as long as what LITP computes.
Thus, its pruning power is at least as good as that of LITP, i.e.,
ωS M ≤ ωS L. Therefore, SR+MITP performs no worse than
SR+LITP in terms of communication cost.

5.2. Computation Cost

For computation cost analysis we also consider the cost of a
period of T timestamps.

A) SV computes the visible distance and performs a sorting
for all objects at each timestamp. The computation cost, de-
noted as CPS V , is computed as:

CPS V = ϕS V |P|T = ϕS V |P| + ϕS V |P|(T − 1), (7)

where ϕS V denotes the scaling of the cost of visible distance
computation and sorting on |P|.

B) Our proposed framework’s computation cost consists of
three types of costs: (i) the cost of safe region based pruning,
denoted as CPS R, which involves building an in-memory R-tree
and a best-first traversal on the tree, (ii) the cost of invisible time
based pruning, denoted as CPLP and CPMP for LITP and MITP,
respectively, which involves invisible time period computation
and checking whether the objects in S c are in their invisible
time periods, and (iii) the cost of refinement, denoted as CPRF ,
which involves computing the exact distance between the query
object and the objects in S c and sorting to determine the query
answer set. While CPS R is required only at the first timestamp,
CPLP (CPMP) and CPRF are both required at every timestamp.
We denote the computation cost for SR + LITP and SR + MITP
as CPS L and CPS M , respectively. Then we have:

CPS L = CPS R + (CPLP + CPRF)T
= CPS R + CPLP + CPRF + (CPLP + CPRF)(T − 1)

(8)
CPS M = CPS R + (CPMP + CPRF)T

= CPS R + CPMP + CPRF + (CPMP + CPRF)(T − 1)
(9)

10

We first compare SR + LITP and SR + MITP based on
the two equations and then compare them with SV. For SR +

LITP and SR + MITP, the main difference is the strategy used
for invisible time period lower bound computation. Specifi-
cally, MITP has a higher cost to compute an invisible time pe-
riod lower bound because it has to considered a more complex
case as shown in Figure 8(d). However, as discussed in the last
subsection, MITP computes longer invisible time period lower
bounds and hence needs to be invoked for a smaller number of
times. Meanwhile, longer invisible time period lower bounds
means smaller query answer candidate sets to be checked by the
refinement step. Therefore, CPRF is smaller for SR + MITP. All
factors combined, SR + MITP is expected to outperform SR +

LITP in most cases, as verified by the experiments.
We now compare our framework with S V . The computa-

tion cost of our our framework at the first timestamp during
T , CPS R + CPLP(CPMP) + CPRF , is comparable to the average
per timestamp cost of S V in the sense that both methods re-
quire some computation on the whole data set P, and the time
complexities are both at O(|P| log |P|) (R-tree building v.s. sort-
ing). The speedup in pruning achieved from the R-tree built
by our framework compensates the cost of building the tree.
Meanwhile, in the following (T-1) timestamps, our filtering and
refinement are based on a much smaller data set S c compared
with P for SV. Therefore, the advantage of our framework is
explicit. As shown in the experimental study, our framework
constantly outperforms SV by an order of magnitude.

6. Experiments

In this section we study the empirical performance of the pro-
posed framework. We first describe the experimental settings
in Section 6.1. Then we evaluate the impact of T and choose a
suitable value of T for the framework in Section 6.2. We inves-
tigate the performance of the framework under various settings
in Sections 6.3. In Section 6.4, we evaluate the cost of main-
taining the in-memory R-tree required by the framework.

6.1. Experimental Settings

Parameter Values
Data domain [0, 20000] × [0, 20000]
T 1, 2, 4, 8, 16, 32, 64
k 1, 5, 10, 50, 100
vm 2.5, 5, 10, 25, 50
|P| 100, 500, 1000, 5000, 10000
|O| Rivers: 1000, 5000, 10000, 24650;

Lakes: 10, 30, 50, 77

Table 2: Parameters and their values

All algorithms were implemented in C++, and the exper-
iments were conducted on a desktop computer with an Intel
2.4GHz CPU and 2GB memory.

We use two real data sets from the R-tree Portal2 that contains
bounding rectangles of 24,650 rivers and 77 lakes in Greece as

2http://www.chorochronos.org/

(a) Rivers (b) Lakes

Figure 10: Obstacle sets

our obstacle sets (cf. Figure 10). We call them the Rivers and
the Lakes, respectively. We take the diagonals of the rectangles
as the obstacles and map them into a domain of size [0, 20,000]
× [0, 20,000].

We generate objects that move around the obstacles. Two
types of moving object sets are generated, the uniform data sets
and the Zipfian data sets, where the objects initially follow uni-
form and Zipian distributions, respectively. We use “RU” to
denote experiments where Rivers is used as the set of obsta-
cles and a uniform data set is used as the set of moving objects.
Similarly, we use “RZ”, “LU” and “LZ” to denote experiments
done on Rivers and a Zipfian data set, Lakes and a uniform data
set, and Lakes and a Zipfian data set, respectively. The data
objects move randomly in the data domain with a global max-
imum speed that ranges from 2.5 to 50. To evaluate the effect
of data set size, we vary the moving object set size from 100
to 10,000 and vary the obstacle set size from 10 to 24,650 (by
sampling from the real data sets). We vary the value of k from 1
to 100 and the value of T from 1 to 64 to evaluate the impact of
these two parameters. Table 2 summarizes the parameters used,
where values in bold denote the default values.

We evaluate the performance of four different methods:

• SV, the straightforward snapshot VkNN based method.

• SR, the query processing framework with only the safe re-
gion based pruning enabled.

• SR+LITP, the query processing framework with the safe
region based pruning and the basic lower bound invisible
time period based pruning enabled.

• SR+MITP, the query processing framework with the safe
region based pruning and the moving direction aware in-
visible time period based pruning enabled.

In these methods, when an R-tree is required, we use the R*-
tree [5] implementation.

In all experiments, we run the different algorithms for a
CVkNN query over a period of 300 timestamps. We measure
the communication cost by counting the number of object loca-
tion updates solicited by the query processor and the computa-
tion cost by recording the query processing time.

6.2. Choosing the Value of T
We first study the effect of T . We omit SV in this subsection

as its performance is not related to T . As shown in Figure 11,

11

Figure 11: Effect of T

while the communication and computation costs of SR first in-
crease and then become stable with the increase in the value
of T , those of SR + LITP and SR + MITP first drop until T
reaches 4 and then start to increase. This phenomena confirms
the cost analysis in that the effect of T is twofold and there is
no unified trend of the query performance when the value of T
is varied. Since at T = 4 the three methods show better perfor-
mance in general, we use it in the experiments in the following
subsections.

We also notice that in the figure, compared with the per-
formance difference in query processing time, the perfor-
mance difference in the number of communications is relatively
smaller for the three methods. This is because the number of
communications scales linearly with the size of the query an-
swer candidates |S c| while the query processing time scales in
O(|S c| log |S c|) for the visible distance based sorting of the ob-
jects in S c. Besides, when T is small, the operation of soliciting
location updates for all objects is performed more frequently
for each method and it dominates the communication cost. The
difference in the communication cost of different methods be-
comes smaller. In the extreme case where T = 1, all methods
have the same communication cost since they all solicit location
updates from all objects at every timestamp.

6.3. Comparing Different Methods
In this subsection we compare the performance of the studied

methods in different settings by varying the experiment param-
eters. When a parameter is varied, the other parameters stay
with their default values.

6.3.1. Varying the Number of Moving Objects
We first evaluate the query processing performance when

the number of moving objects (|P|) is varied. As shown in
Figure 12 and Figure 13, the number of communications and
the query processing time increase with the increase of |P| for
all methods. We observe that the proposed framework outper-
forms SV constantly, and when SR and MITP are applied, the
advantage is the most significant, i.e., by an order of magni-
tude. An important observation is that, when the invisible time
period based pruning techniques are used (i.e., SR+LITP and
SR+MITP), the increase in the query processing costs is very
slow when |P| increases. When |P| reaches 10,000, the query
processing time of SR+LITP and SR+MITP stays within tens
of seconds (i.e., below 0.1 seconds for processing the query at
each timestamp on average) while that of SV is at hundreds or
even thousands of seconds (i.e., over 1 second for processing
the query at each timestamp on average). We also observe that,

Figure 12: Number of communications v.s. |P|

Figure 13: Query processing time v.s. |P|

SR+MITP outperforms SR+LITP in terms of both communica-
tion and computation costs for most of the experiments, which
validates the proposal of MITP and confirms the cost analysis
in Section 5.

6.3.2. Varying the Number of Obstacles
Next we vary the number of obstacles (|O|) by randomly sam-

pling obstacles from the Rivers and Lakes. Since Lakes con-
tains a much smaller number of obstacles than Rivers does, we
use smaller sets of moving objects (i.e., |P| = 1000) in the “LU”
and “LZ” experiments. Again, as shown in Figure 14 and Fig-
ure 15, the proposed framework outperforms SV for all cases
and SR+MITP shows the best performance for most cases. An
observation is that when |O| increases the query costs of differ-
ent methods vary in different patterns. Specifically, the commu-
nication cost of SV stays the same when |O| is varied because
SV always solicit location updates from all objects. Meanwhile,
the communication costs of the other three methods first in-
crease and then decrease. This is because when |O| increases, it
may bring a larger |S c| because a larger |O|means more difficult
to find k safe regions that are entirely visible to the query ob-

12

ject, which may result in a larger PD and hence a larger |S c|. It
may also bring a smaller |S c| because most of the safe regions
of the objects may simply be blocked from the query object by
the obstacles. The latter effect is more explicit when |O| is large
enough for the obstacles in O to cover a large portion of the
space. As for the query processing time, the increase in |O| re-
sults in the increase of the query processing time for all methods
because the cost of checking object visibility increases.

Figure 14: Number of communications v.s. |O|

Figure 15: Query processing time v.s. |O|

6.3.3. Varying the Global Maximum Speed
We show the effect of the global maximum speed of the mov-

ing objects (vm) on the query processing costs in Figure 16 and
Figure 17. We observe that the increase in vm results in the
increase in the query processing costs for the proposed frame-
work. This is expected because the increase in vm results in the
increase in the sizes of the safe regions as well as decrease in
the lengths of the invisible time periods. The pruning power of
SR, LITP and MITP suffers and the query processing efficiency
is lowered. However, even when vm = 50, which is quite large
considering the size of the data domain, the proposed frame-
work still outperforms SV significantly, which again confirms

Figure 16: Number of communications v.s. vm

Figure 17: Query processing time v.s. vm

the superiority of the framework.

6.3.4. Varying Query Parameter k

Figure 18: Number of communications v.s. k

13

Figure 19: Query processing time v.s. k

Figure 18 and Figure 19 show the query processing costs for
the four methods when the query parameter k is varied. As
can be seen from the figures, the proposed framework outper-
forms SV in terms of both communication and computation
costs when k varies from 1 to 100. An important advantage
of the proposed framework is that when both safe region based
pruning and invisible time period based pruning are applied
(i.e., SR+LITP and SR+MITP), the query processing costs stay
relatively stable when k increases. This demonstrates the scala-
bility of the proposed framework.

6.3.5. Varying the Object Moving Pattern

Figure 20: Algorithm performance on a real dataset

Figure 21: Algorithm performance in a small data space

In this subsection we vary the object moving pattern by (i)
using a real trajectory dataset to model the object movements
and (ii) changing the data space size.

Experiments on a real data set. The real trajectory data
set used is the Trucks data set from the R-tree Portal. It con-
tains 1,100 trajectories of trucks delivering concrete to several

construction sites around Athens metropolitan area in Greece.
We map the trajectories to a [0, 20, 000] × [0, 20, 000] domain,
and use each trajectory to model the movement of a data object.
We randomly pick a trajectory for the query object. We use
the Spatial Data Generator3 from the R-tree Portal to generate
500 obstacles randomly placed in the data space where there
is no trajectory passing. The size of each obstacle is randomly
chosen from the range of [500, 1, 000]. Figure 20 shows the ex-
perimental result where we vary the number of moving objects
from 100 to 1,100. We can see that our proposed algorithms
(SR, SR+LITP, and SR+MITP) outperform the baseline algo-
rithm SV constantly, and the advantage is more significant as
more pruning techniques are applied.

Experiments in a small data space. We perform experi-
ments in a small geographical area where the moving object
density is high. This is to evaluate our algorithm performance
under our motivating application scenario, the MMOFPS game
scenario. Due to the limited availability of real MMOFPS game
trajectory data, we use the Spatial Data Generator to generate
objects and obstacles in a [0, 500] × [0, 500] domain. We gen-
erate 10,000 obstacles randomly placed in the data space. The
size of each obstacle is randomly chosen in the range of [5, 10].
We vary the number of data objects from 100 to 10,000. The
objects (including the query object) are randomly placed in the
data space initially, and then move towards a random direction
with a speed randomly chosen in the range of [0, 5]. The veloc-
ity of an object is reinitialized when the object hits an obstacle.
Figure 21 shows the experimental result. We can see that our
proposed algorithms again outperform the baseline algorithm.
This result confirms the robustness of our algorithms in small
geographical areas with high object density.

We also varied other experimental settings (e.g., the number
of obstacles) on the real data set and in the small data space.
The results show similar patterns and hence are omitted.

6.4. The Cost of Maintaining an In-memory R-tree

In this subsection we evaluate the cost of maintaining an in-
memory R-tree by the proposed framework on data sets of dif-
ferent sizes.

Rebuilding the R-tree. We first report the time used for
building an R-tree compared with the overall query process-
ing time. As shown in Figure 22, the time required for building
an R-tree is very small in general. Even for a data set size as
large as 10,000, building an in-memory R-tree only takes 0.33
seconds (during the 300 timestamps that we ran the CVkNN
query with a period length T of 4 timestamps, the R-tree is
built 75 times and it takes 25 seconds in total as shown in the
figure). Considering that even with this overhead, SR+LITP
and SR+MITP still have much smaller query processing time
than that of SV, building an R-tree once every T timestamps is
justified.

Maintaining the R-tree incrementally. We then compare
the query processing performance of rebuilding the R-tree, de-
noted by “SR+MITP-R”, with that of maintaining the R-tree

3http://www.chorochronos.org/?q=node/49

14

(a) RU

(b) RZ

(c) LU

(d) LZ

Figure 22: Cost of building an R-tree

incrementally, denoted by “SR+MITP-I”. We add another base-
line algorithm using the incremental computation technique
proposed by Xiong et al. [31], denoted by SEA-CNN. SEA-
CNN processes the CVkNN query as follows. It computes an

Figure 23: Number of communications v.s. update processing schemes (vary-
ing |P|)

Figure 24: Query processing time v.s. update processing schemes (varying |P|)

initial query answer at the start of the query. Then it processes
the location updates of the objects one at a time and computes
the effect of each individual update on the query answer. For
example, if an object that is close to the query point but in-
visible moves and becomes visible, this object is added to the
query answer to replace the existing farthest VkNN. If a current
VkNN becomes invisible, a snapshot VkNN query is performed
to update the query answer.

As shown in Figures 23 and 24, SR+MITP-R outperforms
the two incremental update processing methods constantly in
terms of both communication cost and query processing time.
The advantage grows as the number of data objects increases.
We observe that the performance of SEA-CNN is quite close
to that of SV. This is because SEA-CNN requires a snapshot
VkNN query to process an update that causes an existing VkNN
to be removed from the current VkNN set. At each times-
tamp, there are many object updates. Thus, almost every times-
tamp requires a snapshot VkNN query and hence, SEA-CNN
cannot perform much better than SV. SR+MITP-I also pro-

15

cesses every update, but it simply reinserts the updated object
into the R-tree, which is much faster than a snapshot VkNN
query. Therefore, SR+MITP-I is much faster than SEA-CNN.
However, SR+MITP-I is still slower than SR+MITP-R because
SR+MITP-R batch processes all updates on the R-tree during
a T -timestamp period at once, while SR+MITP-I processes the
updates one after another. When an object updates multiple
times in a period, SR+MITP-I has to process each update to
maintain the R-tree, while SR+MITP-R just needs one rebuild
of the R-tree to reflect the impact of the multiple updates. Ex-
periments where we vary other experimental settings (e.g., the
maximum speed vm) show similar results and hence are omitted.

7. Conclusions and Future Work

In this paper, we proposed a filtering-and-refinement frame-
work to process the continuous visible k nearest neighbor query
on moving objects. This framework utilizes spatial proximity
and visibility properties between the moving objects to prune
the query search space. Spatial proximity based pruning uses
the safe region to compute a set of query answer candidates S c

that will be valid for a period of T timestamps. During this
period, the query processor will only require location updates
from the objects in S c to compute the exact query answer. As
a result, the communication cost for soliciting object location
updates as well as the computation cost for examining the dis-
tance between the objects are reduced. Visibility based pruning
then uses the invisible time period to reduce the number of ob-
jects in S c that need to be examined at each timestamp so as to
further reduce the query processing costs. As our cost analy-
sis and experimental study show, the proposed query process-
ing framework constantly outperforms a snapshot VkNN based
query processing algorithm by an order of magnitude.

For future work we will consider extending our techniques
to other types of obstacles (e.g., polygons) and distance metrics
(e.g., Network distance).

References

[1] Alamri, S., Taniar, D., Safar, M.. Indexing moving objects in indoor
cellular space. In: 15th International Conference on Network-Based In-
formation Systems (NBiS). 2012. p. 38–44.

[2] Alamri, S., Taniar, D., Safar, M.. Indexing moving objects for directions
and velocities queries. Information Systems Frontiers 2013;15(2):235–
248.

[3] Alamri, S., Taniar, D., Safar, M.. Indexing of spatiotemporal objects
in indoor environments. In: 27th International Conference on Advanced
Information Networking and Applications (AINA). 2013. p. 453–460.

[4] Asano, T., Asano, T., Guibas, L., Hershberger, J., Imai, H.. Visibility-
polygon search and euclidean shortest paths. In: 26th Annual Symposium
on Foundations of Computer Science (SFCS). 1985. p. 155–164.

[5] Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.. The r*-
tree: an efficient and robust access method for points and rectangles. In:
SIGMOD. 1990. p. 322–331.

[6] Benetis, R., Jensen, S., Karčiauskas, G., čaltenis, S.. Nearest and
reverse nearest neighbor queries for moving objects. The VLDB Journal
2006;15(3):229–249.

[7] Biveinis, L., Šaltenis, S., Jensen, C.S.. Main-memory operation buffer-
ing for efficient r-tree update. In: VLDB. 2007. p. 591–602.

[8] Cheema, M.A., Lin, X., Zhang, Y., Wang, W., Zhang, W.. Lazy
updates: an efficient technique to continuously monitoring reverse knn.
PVLDB 2009;2(1):1138–1149.

[9] http://www.fpsreport.com/news/65-cross fire/, . Crossfire china breaks
again record: 3.5 million. 2012.

[10] Gao, Y., Zheng, B., Chen, G., Lee, W.C., Lee, K.C.K., Li, Q.. Visible
reverse k-nearest neighbor query processing in spatial databases. TKDE
2009;21(9):1314–1327.

[11] Gao, Y., Zheng, B., Chen, G., Li, Q., Guo, X.. Continuous visi-
ble nearest neighbor query processing in spatial databases. The VLDB
Journal 2011;20(3):371–396.

[12] Gao, Y., Zheng, B., Lee, W.C., Chen, G.. Continuous visible nearest
neighbor queries. In: EDBT. 2009. p. 144–155.

[13] Hashem, T., Kulik, L., Zhang, R.. Countering overlapping rect-
angle privacy attack for moving knn queries. Information Systems
2013;38(3):430–453.

[14] Hsueh, Y.L., Zimmermann, R., Wang, H., Ku, W.S.. Partition-based
lazy updates for continuous queries over moving objects. In: GIS. 2007.
p. 1–8.

[15] Hu, H., Xu, J., Lee, D.L.. A generic framework for monitoring continu-
ous spatial queries over moving objects. In: SIGMOD. 2005. p. 479–490.

[16] Mokbel, M.F., Aref, W.G.. Sole: scalable on-line execution of con-
tinuous queries on spatio-temporal data streams. The VLDB Journal
2008;17(5):971–995.

[17] Mokbel, M.F., Xiong, X., Aref, W.G.. Sina: scalable incremental pro-
cessing of continuous queries in spatio-temporal databases. In: SIGMOD.
2004. p. 623–634.

[18] Mouratidis, K., Papadias, D., Bakiras, S., Tao, Y.. A threshold-
based algorithm for continuous monitoring of k nearest neighbors. TKDE
2005;17:1451–1464.

[19] Nutanong, S., Tanin, E., Zhang, R.. visible nearest neighbor queries.
In: DASFAA. 2007. p. 876–883.

[20] Nutanong, S., Tanin, E., Zhang, R.. Incremental evaluation of visible
nearest neighbor queries. TKDE 2010;22(5):665–681.

[21] Nutanong, S., Zhang, R., Tanin, E., Kulik, L.. The v*-diagram: a
query-dependent approach to moving knn queries (2008). In: PVLDB.
2008. p. 1095–1106.

[22] Nutanong, S., Zhang, R., Tanin, E., Kulik, L.. Analysis and evaluation
of v*-knn: an efficient algorithm for moving knn queries. The VLDB
Journal 2010;19(3):307–332.

[23] Sharifzadeh, M., Shahabi, C.. Vor-tree: R-trees with voronoi dia-
grams for efficient processing of spatial nearest neighbor queries. PVLDB
2010;3(1):1231–1242.

[24] Song, Z., Roussopoulos, N.. K-nearest neighbor search for moving
query point. In: SSTD. 2001. p. 79–96.

[25] Tao, Y., Papadias, D.. Time-parameterized queries in spatio-temporal
databases. In: SIGMOD. 2002. p. 334–345.

[26] Tao, Y., Papadias, D., Shen, Q.. Continuous nearest neighbor search.
In: VLDB. 2002. p. 287–298.

[27] Vatti, B.R.. A generic solution to polygon clipping. Communications of
ACM 1992;35(7):56–63.

[28] Šaltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.. Indexing
the positions of continuously moving objects. In: SIGMOD. 2000. p.
331–342.

[29] Šidlauskas, D., Šaltenis, S., Christiansen, C.W., Johansen, J.M., Šaulys,
D.. Trees or grids?: indexing moving objects in main memory. In:
SIGSPATIAL. 2009. p. 236–245.

[30] Xia, T., Zhang, D.. Continuous reverse nearest neighbor monitoring. In:
ICDE. 2006. p. 77–.

[31] Xiong, X., Mokbel, M.F., Aref, W.G.. Sea-cnn: Scalable processing of
continuous k-nearest neighbor queries in spatio-temporal databases. In:
ICDE. 2005. p. 643–654.

[32] Yu, X., Pu, K.Q., Koudas, N.. Monitoring k-nearest neighbor queries
over moving objects. In: ICDE. 2005. p. 631–642.

[33] Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.. Location-based
spatial queries. In: SIGMOD. 2003. p. 443–454.

[34] Zhang, R., Jagadish, H.V., Dai, B.T., Ramamohanarao, K.. Optimized
algorithms for predictive range and knn queries on moving objects. Infor-
mation Systems 2010;35(8):911–932.

[35] Zhang, R., Qi, J., Lin, D., Wang, W., Wong, R.C.W.. A highly
optimized algorithm for continuous intersection join queries over moving
objects. The VLDB Journal 2012;21(4):561–586.

16

