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Abstract—We study the problem of constructing a reverse
nearest neighbor (RNN) heat map by finding the RNN set of
every point in a two-dimensional space. Based on the RNN set of
a point, we obtain a quantitative influence (i.e., heat) for the point.
The heat map provides a global view on the influence distribution
in the space, and hence supports exploratory analyses in many
applications such as marketing and resource management. To
construct such a heat map, we first reduce it to a problem
called Region Coloring (RC), which divides the space into disjoint
regions within which all the points have the same RNN set. We
then propose a novel algorithm named CREST that efficiently
solves the RC problem by labeling each region with the heat
value of its containing points. In CREST, we propose innovative
techniques to avoid processing expensive RNN queries and greatly
reduce the number of region labeling operations. We perform
detailed analyses on the complexity of CREST and lower bounds
of the RC problem, and prove that CREST is asymptotically
optimal in the worst case. Extensive experiments with both real
and synthetic data sets demonstrate that CREST outperforms
alternative algorithms by several orders of magnitude.

I. INTRODUCTION

In market analysis, urban design, and facility placement,
we often need to select a suitable location for new facilities
such as a warehouse or a hospital. Emerging event-based
social networks such as Meetup and Whova also need to
select an appropriate location suitable for the event-participant
arrangement. These problems are called the location selection
problem, which is usually a multi-criteria decision making
process involving various quantitative and qualitative factors.
A quantitative factor usually considered is the influence of the
location, which is commonly measured by the reverse nearest
neighbor (RNN) set of the location [12], [22], [26]. Given two
sets of points O and F , the RNN set of a location p is a subset
of O that are closest to p among all the points in F . There
are many ways to measure the influence of p by the RNN set.
Straightforward measures consider only the size or total weight
of the set [6], [26], [31]. Other measures consider various
attributes of the data points in O and F , such as the capacity
constraint [16], [22], social relationship [19], [29], etc. While
we can model the quantitative factors precisely by numbers,
we can not do the same to many qualitative factors such as
the area safety, demographic composition and convenience of
public transportation. Some factors in decision-making are also
vague and imprecise, which are subject to decision maker’s
judgments. To assist decision making based on quantitative
measures while still allowing subjective judgments based on
qualitative measures and other factors, we introduce the RNN
heat map, which shows the influence (quantitative measures)
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(a) RNN heat map (b) Satellite map
Fig. 1. RNN Heat Map of New York City

of every point in the space. Comparing to existing studies [8],
[10], [22], [26], [31] which give only the points or regions with
the highest influence, the RNN heat map enables exploring the
influence of the whole space while considering qualitative fac-
tors at any instant during the exploration. Consider a scenario
where RNN heat maps are used to assist selecting locations of
self-pickup and drop-off service points for courier companies.
Let O be the potential clients and F be the existing service
points. For simplicity, let the size of the RNN set measure the
influence, i.e., heat (although any other functions related to
the RNN set can be used). Fig. 1(a) shows such an RNN heat
map for the New York City, whose satellite image is shown in
Fig. 1(b). The darker regions indicate higher heat values. Such
a heat map will allow the exploration of influential regions
while considering qualitative factors as discussed above. Note
that regions with high influence values do not necessarily
correspond to regions of high client density because we need to
consider the competition from existing facilities. For example
in Fig. 2, the upper left corner has the highest client density,
but the most influential and the 4th influential regions are in
the middle, denoted by the two gray rectangles (the 2nd and the
3rd most influential regions are also in the middle near these
two but too small to be visible). Without the RNN heat map,
it is very difficult or impossible to explore all these different
choices and make well-informed decisions.

To construct such a heat map, we need to obtain the
influence value of every point in the space. We call such a
problem the RNN heat map (RNNHM) problem:

Definition 1 (RNN Heat Map Problem): Given two sets of
points O and F and a distance metric in a two-dimensional
space, the RNN set of a point q (q /∈ F ) is a subset of O that
have q as their nearest neighbor comparing with other points
in F . Given any influence measure, which is a real-valued
function on the RNN set, associate each point in the space
with its influence value, i.e., the heat value.

Since the number of points in the space is infinite, to solve the
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RNNHM problem, we first reduce it to a problem called Region
Coloring (RC), which divides the space into disjoint regions,
within which all the points have the same RNN set (detailed
in Section III). We use Fig. 3(a) to illustrate the RC problem
with L∞. For simplicity and ease of presentation, we will first
discuss how to obtain such regions and compute their influence
values with the L∞ metric, and then extend the techniques
to L1 and L2 metrics. In Fig. 3(a), let O = {o1, o2, o3, o4},
represented by the black dots, and F = {f1, f2}, represented
by the small red squares. For each point o in O, we draw a
“circle” called the NN-circle with o being the center and the
distance to o’s nearest neighbor (NN) being the radius, which
is a square with the L∞ metric. The NN-circles partition the
space into separate regions. It can be proved that all the points
in such a region have the same RNN set. The RC problem is
to obtain the influence of each such region in the space.

Note that if we measure the influence simply by the size of
the RNN set, we can build the heat map by a superimposition
of the NN-circles, i.e., overlap/overlay of translucent NN-
circles as shown in Fig. 3(b). A darker region suggests more
NN-circles overlapping there and hence a higher influence.
However, for a more generic influence measure than the size
(or a weighted sum of the RNNs), the heat map can not
be achieved by such a simple superimposition. For example,
consider a taxi-sharing scenario [14] where the heat map assists
taxi drivers to decide the next pick-up locations. In Fig. 3(a),
let O be potential passengers, e.g., users of taxi booking apps,
and F be taxis. Assume that taxi drivers make more profits
when taking together multiple passengers whose destinations
are close, say within one kilometer. Let the data points o1, o2,
and o4 connected by an edge denote such passengers. Under
such setting, the influence of a location becomes the number
of connected passengers in the RNN set. We build the heat
map as shown in Fig. 3(c). We can see that there is only one
darkest region, which has an influence value of 3.0 since its
RNN set is {o1, o2, o4} and there are three edges connecting
o1, o2 and o4. In comparison, the superimposition as shown in
Fig. 3(b) creates two darkest regions, both have an influence
value of 3.0, one with the RNN set {o1, o3, o4} and the other
{o1, o2, o4}. Under the measure that favors connected data
points, the RNN set {o1, o3, o4} only has an influence value
of 1.0, which is not a good choice for picking up passengers.
Another example is that in the previous courier company
scenario, all the service points have a capacity limit (e.g.,
the storage space). Taking these attributes into account, the
influence of a location will depend not only on the size of the
RNN set but also on its serving capacity1. The superimposition
will not be able to handle such influence measures.

1The influence of a location p is computed by
∑

f∈F∪{p} min{c(f), |R(f)|},
where c(f) is the capacity and R(f) the RNN set of f [22].

Besides not being able to compute the RNN heat map for
generic influence measures, a superimposition also cannot sup-
port interactive post-processing operations such as selectively
showing regions with heat values above a threshold or regions
having the top-k heat values, whereas these operations can be
easily applied as post-processing of our proposed techniques,
which aim to obtain the RNN set of every region in the space.

In this paper, we investigate algorithms to efficiently solve
the RNN heat map problem. In some applications such as
taxi-sharing, the heat map may change as clients move around
and need to be recomputed frequently. Therefore, an efficient
algorithm to the RNNHM problem is crucial. A straightforward
approach such as employing a grid to divide the space and then
using the cells to fit the regions has difficulties in finding the
right granularity and suffers from low efficiency. When the
influence measure involves a large amount of attributes such
as the capacities of taxis and connections of clients, it can
also be very expensive to compute [22]. To overcome these
challenges, we propose an innovative algorithm named CREST
(Constructing RNN hEat map with the Sweep line sTrategy)
which efficiently solves the RNNHM problem. Through a
detailed analysis, we prove that CREST is asymptotically
optimal in the worst case. CREST is also generic in the
sense that it applies to any influence measure computable from
RNN sets and can easily support interactive post-processing
operations as described above. The main contributions of this
paper are summarized as follows.

• We propose the RNN heat map problem, which com-
putes a heat map showing the distribution of RNN-
based scores to support effective exploratory analyses.

• We propose an innovative algorithm named CREST
which efficiently solves the RNN heat map problem.
The algorithm utilizes two novel techniques to respec-
tively avoid processing any RNN queries and greatly
reduce the times of influence computation.

• We carefully analyze the complexity of CREST and
lower bounds of the RC problem, and prove that
CREST is asymptotically optimal in the worst case.

• We also conduct extensive experiments with both real
and synthetic data sets. The results confirm the superi-
ority of CREST by showing that CREST outperforms
alternative algorithms by several orders of magnitude.

The remainder of this paper is organized as follows. Section II
reviews related work. Section III formalizes the problem.
Section IV discusses a baseline algorithm. Section V describes
the CREST algorithm. Section VI analyzes the complexity.
Section VII extends CREST to other settings. Section VIII
shows the experiments and Section IX concludes the paper.



II. RELATED WORK

RNN Query. The RNN query is introduced by Korn et
al. [12]. Yang et al. [28] proposed the Rdnn-tree (a variant
of R-tree) to process the RNN query. Maheshwari et al. [15]
present a data structure for answering the monochromatic RNN
query by utilizing a persistent search tree [18]. The structure
first obtains the NN-circles enclosing a query point in the x
dimension and then among these retrieved NN-circles locates
the face (region) enclosing the point in the y dimension. These
algorithms focus on computing the RNN set of a single query
point. None of them directly applies to the RNNHM problem.
In the RNNHM problem, the aim is to compute the RNN set
for every point in the space all at the same time, and the
challenge is to avoid the expensive RNN computation. The
All Nearest Neighbor (ANN) [7] operation takes as input two
discrete and finite sets of points and computes for each point
in the first set the NN in the second set. For the RNNHM
problem, however, we need to obtain RNN sets for essentially
infinite points in a continuous space. Therefore, the techniques
for ANN do not apply.

Influence Measures based on RNN Sets. Various influ-
ence measures based on the RNN set have been studied. Korn
et al. [12] propose to use the size (or sum of weights) of RNN
sets as the influence value. To find the optimal points whose
RNN sets are of the maximum size (influence), Cabello et
al. [6] propose the maximization problem MaxCov and they
solve the problem by finding the depth of an arrangement of
disks. Wong et al. [26] solve MaxCov by the devised MaxOver-
lap algorithm. Huang et al. [11] and Xia et al. [27] investigate
finding such points in a given set. Sun et al. [21], [22], [23]
additionally consider the capacity constraints of such points
and study how to achieve a global influence maximization
instead of a local maximization. Qi et al. [17] define the
influence based on the average distance between a point and its
RNNs. As RNNHM applies to a general measure, the RNNHM
problem can be viewed as a generalized version of the above
problems and therefore the solution of RNNHM can be adapted
to solve these problems. However, their solutions do not apply
to RNNHM, since the special properties exploited in these
problems do not present in RNNHM.

RNN Variations. RNNHM is a variant of the RNN query.
There are also many other studies on variations of the RNN
query. For instance, Lu et al. [13] investigate reverse spatial
and textual nearest neighbor queries, in which both location
and textual descriptions are considered in the distance metric.
Similarly, Sun et al. [24] consider temporal aggregates of
location-based social network check-ins in the distance metric.
Zhang et al. [30] design indexes utilizing modern memory
hierarchies to speed up such query processing. Ali et al. [1]
study approaches to continuous retrieval of the query objects.
She et al. [19], [20] devise algorithms to arrange social events
to proper users using RNN sets. These problems are quite
different from RNNHM and the proposed algorithms cannot
be adapted to solve the RNNHM problem.

Sweep Line Strategy. The sweep line strategy is a quite
generic approach to handling geometric objects. The Bentley–
Ottmann (BO) algorithm uses this strategy to compute intersec-
tions of line segments [4] or rectangles [5]. The BO algorithm
and the proposed CREST algorithm compute very different
problems and are different in many aspects. i) BO computes

only pairwise intersections of line segments or rectangles,
while CREST computes the overlaps and relative complements
of multiple circles, squares, and axis-aligned line segments,
which are much more challenging. ii) In order to efficiently
compute the RNN sets, besides the line status, CREST need
to memorize the RNN sets of previous events. This requires a
delicate design to minimize the overhead and achieve optimal
performance. BO does not have such optimization.

III. PROBLEM FORMULATION

We first introduce basic concepts in Section III-A and then
reduce RNNHM to the Region Coloring (RC) problem in
Section III-B. Frequently used symbols are listed in Table I.

TABLE I
FREQUENTLY USED SYMBOLS

Symbol Meaning

O the set of clients
F the set of facilities
n the number of data points in O
C(oi) the NN-circle of oi ∈ O
xi (resp. yi) the left (resp. lower) side of C(oi)
xi (resp. yi) the right (resp. upper) side of C(oi)
el the l-th event
xl the x-coordinate of el
I(l) the line status between el−1 and el

yt the t-th element in a line status
⟨yt−1, yt⟩ two consecutive elements in a line status
rtl the rectangle [xl−1, xl, yt−1, yt]

R(·) the RNN set of an object

A. Preliminaries

We consider two types of RNN queries: the bichromatic
and monochromatic RNN queries. In the former type, the data
points and their NNs belong to two different sets O and F .
In the latter type, they are from the same set, i.e., O = F .
Let d(p, q) be the distance between two points p and q. We
consider three different distance metrics: L∞, L1, and L2.
We start with solving the bichromatic RNNs with L∞ metric
because the bichromatic type is generic and L∞ is simpler.

RNN Query. In bichromatic RNNs, we are given two sets
O and F . The set O can be considered as (the locations of)
clients while F as (the locations of) facilities. The clients find
their NNs from the facility set. The RNN set of a point f in
F , denoted by R(f), consists of the points in O that have f
as their NN, i.e.,

R(f) = {o ∈ O | ∀f ′ ∈ F : d(o, f) ≤ d(o, f ′)}.

For a point q not in F , we obtain its RNN set R(q) by adding
q into the facility set F and computing R(q) as above.

Nearest Neighbor Circle (NN-circle). An NN-circle of a
point o, denoted by C(o), is a circle with o being the center
and the distance from o to its NN being the radius. With
the L∞ distance metric, the distance between two points is
the maximum difference between their coordinates among all
dimensions, i.e., d(p, q) = max{|px−qx|, |py−py|} in a two-
dimensional space, where the subscripts denote the coordinates
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in the x and y dimensions, respectively. Hence, NN-circles
are of a square shape. (With L1 and L2, the NN-circles are
of diamond and circular shapes, respectively.) For example, in
Fig. 4, set O consists of two points o1 and o2. Set F consists
of one point f1. The NNs of o1 and o2 are both f1. The NN-
circles C(o1) and C(o2) are the two squares.

B. Problem Reduction

Our goal is to draw the heat map of a given space based on
the RNN sets of the points. In a continuous space, the number
of points is infinite, which makes finding the RNN set of every
point infeasible. To overcome this, we reduce RNNHM to an
equivalent problem Region Coloring (RC), which divides the
space into regions and “colors” (i.e., associates) every region
with a “heat” (i.e., influence value). We divide the space using
the NN-circles as follows. The arrangement (i.e., layout) of
the NN-circles, as illustrated in Fig. 5, forms a planar graph,
which also induces a subdivision of the space. We use the
notions in planar graphs such as vertices, edges and faces
(as illustrated in Fig. 5) in the arrangement directly. In the
arrangement, each face represents a unique region, which is a
maximal connected subset of the space that does not contain
a vertex or an edge (e.g., the gray region in Fig. 5). In each
region, all the points have the same RNN set. If two points of
a region have different RNN sets, there must exist at least one
NN-circle that one point lies inside but the other does not; this
means one side of the NN-circle must cut the region, making
it no longer a region by definition. The RNN set of each point
in the region consists of the centers of the NN-circles that
enclose the region. For example, in Fig. 5, points q1 and q2
lie in the region enclosed by NN-circles C(o1) and C(o2), and
they have the same RNN set {o1, o2}. For point q3, its RNN
set is {o1}, which is different from that of q1 or q2. Therefore,
q3 must lie in a different region. Note that the opposite does
not hold, i.e., different regions may have the same RNN set.
We formalize the above facts with the following proposition.

Proposition 1: The points in the same region of the subdi-
vision formed by the arrangement of the NN-circles have the
same RNN set.

For RNNHM, each region can be used to represent all the
points it contains. To associate each point with a heat, it
suffices to color each region with the heat of the points it
contains. Since the influence is computed straightforwardly
based on the RNN set, in the following discussion, we do not
distinguish the process of outputting the RNN set of a region
and the process of computing and outputting the influence
value. We will simply use the term “labeling a region” to
denote the two processes. Assuming that the NN-circles are
already precomputed (there are efficient algorithms to compute
and maintain the NN-circles [12]), we define the above region
coloring problem as follows.

Fig. 6. Bounding edge Fig. 7. Side extension

Definition 2 (Region Coloring): Given a set of NN-circles,
Region Coloring is to label each region in the arrangement of
the NN-circles based on the RNN set of any point contained
in the region.

IV. A BASELINE ALGORITHM

A simple approach to the RC problem is to pick a point p
inside each region, use a point enclosure query to obtain the
NN-circles that enclose p, obtain the RNN set and label the
region. However, picking a point in each region is an expensive
operation. This is because it requires computing an exact
representation of each region in the arrangement, which means
every edge bounding a region needs to be computed (cf. Fig. 6)
and hence has a very high complexity (O(n2 logn) [9]). To
avoid such complicated computations, we extend the sides of
each NN-circle to let them span across the whole arrangement,
as shown in Fig. 7. By doing so we form a grid over the
arrangement, where each grid cell can be easily located. We
scan the grid cells and compute the RNN set for the centroid
of each cell, which solves the RC problem. An alternative
way is to use a regular grid where each cell has the same
size. However, it is difficult to determine a proper cell size to
guarantee that each cell falls in exactly one region unless each
point is treated as a cell, which again is impossible to compute.
To efficiently compute the RNN set of a point, instead of
checking each NN-circle to test whether it encloses a certain
point, we build an index that supports point enclosure queries
for the NN-circles. We use the S-tree [25] for ease of analysis,
although other spatial indexes such as the R-tree may be used.

Algorithm Complexity. Let n = |O| denote the number
of NN-circles, and m denote the number of grid cells. There
are at most 2n extended sides vertically or horizontally, thus
m = O((2n)2) = O(n2). To obtain the grid cells, it takes
O(2× 2n log 2n) = O(n logn) time to sort the sides. It then
takes O(n log2 n) time to build an S-tree index and O(log n+
α) time to process a point enclosure query [25], where α is the
number of NN-circles returned. Let λ be the maximum size
of the RNN sets in the arrangement. The time complexity of
the baseline algorithm is O(n log2 n +m log n +mλ). Since
we consider a general influence measure, which can be any
function with any computational cost, in the analysis we only
count the number of times of influence computation, i.e., m
in the above complexity. We further derive a bound for m as
follows. Let r be the number of regions formed by n NN-
circles. It can be proved by Euler characteristic that r is
between Θ(n) and Θ(n2). In particular, when the n NN-circles
do not intersect with each other, r = n+1 = Θ(n); when the
n NN-circles are placed as shown in Fig. 8, where they all
have the same side length n and the ith NN-circle is centered
at point (i, i), r = n2 − n + 2 = Θ(n2). Since r ≤ m and
m = O(n2), we obtain Θ(r) ≤ m ≤ Θ(n2).
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The S-tree index for point enclosure queries occupies
the most space, which is O(n log2 n) [25]. Thus, the space
complexity is O(n log2 n). We summarize the above analysis
with the following theorem.

Theorem 1: The baseline algorithm for the RC problem stops
in O(n log2 n + m log n + mλ) time and uses O(n log2 n)
space, where m is the number of grid cells and λ is the
maximum size of the RNN sets.

Limitations of the algorithm. One drawback of the
baseline algorithm is that it needs to process point enclosure
queries, which is reflected in the n log2 n and m logn terms in
the time complexity. Another drawback is that it further divides
the regions into multiple grid cells, which means a region in
the original arrangement will be labeled multiple times. The
number of these grid cells m may increase quadratically with
the increase of n (closer to Θ(n2)). A large m means we need
to process a large number of point enclosure queries and label a
large number of grid cells, which significantly deteriorates the
efficiency. We aim to reduce m (the number of times of region
labeling) to the number of regions in the arrangement, which is
optimal in the RC problem. Therefore, we have two directions
for improvements: (i) to avoid point enclosure queries, and
(ii) to reduce the number of times region labeling. We present
our CREST algorithm which achieves these two goals in the
following section.

V. THE CREST ALGORITHM

We employ the classic sweep line strategy [4], [9] (cf.
Section II) to avoid forming a large number of cells to be
labeled as done by the grid dividing strategy. We let a line
sweep from the left to the right of the space, and store
information about the NN-circles that are currently cut by the
sweep line. We call such information the line status, and say
that an event is triggered when the line status changes. As
illustrated in Fig. 10, we use the distinct vertical sides of
the NN-circles as event points (i.e., x1, x2, . . . , x9), and the
sorted horizontal sides of the NN-circles as the line status.
Every pair of adjacent vertical sides and horizontal sides
forms a subregion to be labeled. We notice that some of
these subregions come from the same original region formed
by the NN-circles, and hence do not require the RNN set
and influence computations repetitively. We use the change
intervals to avoid labeling such regions multiple times. We
avoid the RNN computation with point enclosure queries by
utilizing the fact that the RNN set of a region can be obtained
efficiently by modifying the RNN sets of the adjacent regions.
For example, in Fig. 9, if the RNN set of the lower region is
{o1, o2} and the boundary between the two regions is formed
by the upper and lower sides of C(o2) and C(o3), denoted by y2
and y3, respectively, then we can immediately obtain the RNN
set {o1, o3} of the upper region by removing o2 from {o1, o2}
and then adding o3 to {o1}. We call the already-computed
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RNN sets of adjacent regions the base sets and cache them
for obtaining the RNN sets of newly swept regions. We also
devise techniques to constrain the number of cached base sets.
Powered by these techniques, we achieve a highly efficient
algorithm to the RNNHM/RC problem, which is proved to be
asymptotically optimal in many cases (cf. Section VI). Next
we detailed these techniques.

A. Concepts and Notation

Events. Let xi (resp. yi) and xi (resp. yi) be the x- (resp. y-
) coordinates of the left and right (resp. lower and upper) sides
of NN-circle C(oi), respectively. The distinct x-coordinates of
the vertical sides (of all the NN-circles) are stored in ascending
order in a queue, which is called the event queue and denoted
by Qe. The elements in Qe are called the events or event
points. For convenience, we refer to the coordinates of the
sides simply as sides when the context is clear. We denote the
lth event (i.e., the lth ejected element from Qe) by el and the
x-coordinate of el by xl. Note the difference between an event
coordinate xi and the side coordinates of C(oi) (i.e., xi or xi).
They may have an equal value, but different semantics.

Line Statuses. Let sx be the x-coordinate of the sweep
line. We say that the line cuts NN-circle C(oi) if and only
if sx ∈ (xi, xi] (i.e., it is in the horizontal range of C(oi)).
By definition, the NN-circles that are cut by the line remain
the same between two consecutive events (including their
positions). Let C(ol1), C(ol2), . . . , C(oln(l)

) be the n(l) NN-
circles cut by the line when it sweeps from el−1 to el. We sort
the horizontal sides (not only coordinates) yl1 , yl1 , yl2 , yl2 , . . .,
yln(l)

, yln(l)
of these NN-circles in ascending order (ties are

broken arbitrarily), and use the sorted list as the line status
between events el−1 and el, which is denoted by I(l) =
∥yla , . . . , ylb , . . . ylc , . . . , yld∥, a, b, c, d ∈ {1, 2, . . . , n(l)}.
For example, in Fig. 10, the current line status is I(3) =
∥y1, y2, y1, y2∥. For convenience, we denote by yi the ith

element in the line status, and hence the line status between
el−1 and el is

I(l) = ∥y1, y2, . . . , y2n(l)∥, y1 ≤ y2 ≤ . . . ≤ y2n(l).

Pair and Subregion. Any two consecutive elements in the
line status is termed as a pair, which is denoted by ⟨yt−1, yt⟩.
We denote by ⟨yt−1, yt⟩ ∈ I(l) that the pair ⟨yt−1, yt⟩ comes
from the line status I(l). We denote by [x, x′, y, y′] a rectangle
whose diagonally opposite corners are (x, y) and (x′, y′) with
x < x′ and y ≤ y′. When y = y′, [x, x′, y, y′] is in fact a



horizontal line segment. For ease of presentation, we treat it as
a special rectangle. We denote by (x0, y0) ∈ [x, y, x′, y′] that
point (x0, y0) is in rectangle [x, y, x′, y′]. Here the rectangle
is open (i.e., (x0, y0) ∈ [x, y, x′, y′] iff x0 ∈ (x, x′) and
y0 ∈ (y, y′)) and no point is in the special rectangle. When
the line sweeps from el−1 to el, the x-coordinate xl−1 of
event el−1 is strictly less than that of el. This forms a
rectangle [xl−1, xl, y1, y2n(l)] between the two events. In this
rectangle, each pair ⟨yt−1, yt⟩ ∈ I(l) forms a small rectangle
[xl−1, xl, yt−1, yt]. The small rectangle has no vertex or edge
in it, which makes it a connected subset of a region. We
call each small rectangle a subregion, and denote by rtl the
one formed by pair ⟨yt−1, yt⟩ ∈ I(l). We denote by R(rtl )
the RNN set of the points in subregion rtl , or simply by
R(⟨yt−1, yt⟩) when the line status is clear.

B. Avoiding Point Enclosure Queries

We obtain the RNN set of each subregion by finding the
NN-circles enclosing it. When the line sweeps from el−1 to
el, the subregions between el−1 and el are enclosed by the
NN-circles in the x dimension if and only if these NN-circles
are cut by the line. Therefore, we only need to check whether
these NN-circles enclose the subregions in the y dimension,
which can be easily achieved by checking the line status. We
use the following lemma to show the RNN set of a pair in the
line status. Due to space limitation, we omit the proofs of the
lemmas in this section.

Lemma 1: ∀⟨yt−1, yt⟩ ∈ I(l), the RNN set R(rtl ) of subre-
gion rtl = [xl−1, xl, yt−1, yt] is an empty set if yt−1 = yt or
a set consists of the centers of the NN-circles that are cut by
the line and enclose rtl in the y dimension, i.e., R(rtl ) is{

∅ if yt−1 = yt,
{oi | xi < xl ≤ xi and yi ≤ yt−1 < yt ≤ yi} if yt−1 ̸= yt.

By Lemma 1, we can obtain the RNN set R(⟨yt−1, yt⟩) of
a pair as follows. When yt−1 = yt, the RNN set is empty. For
convenience, we call such pairs invalid pairs and the others
(with yt−1 < yt) valid pairs. For a valid pair, we check the
elements in the line status in the range of (−∞, yt−1]. Since
the elements are sorted in ascending order, yt−1 (resp. yt)
of a valid pair must be the last (resp. first) element among
elements of the same value. Thus, we only need to check
elements from the beginning of the line status to the first
element (inclusive) of the pair. Starting with an empty set,
which is called the base set and denoted by R, if an element
is a lower side, we add the center of the corresponding NN-
circle to R, otherwise we remove the center from R. When
reaching the second element (exclusive) of the pair, we stop
and R is the RNN set of the pair. For example, in Fig. 10,
the line status is I(3) = ∥y1, y2, y1, y2∥. For pair ⟨y1, y2⟩, y1
is the only element we encountered in the checking range and
hence R(⟨y1, y2⟩) = {o1}. We formally describe the above
approach with the following corollary.

Corollary 1: ∀ ∈ ⟨yt−1, yt⟩ ∈ I(l) with yt−1 ̸= yt, the
RNN set R(rtl ) of a subregion rtl = [xl−1, xl, yt−1, yt] can
be obtained by checking elements yi for i = 1 to t − 1 and
maintaining the set R(rtl ) as follows{

ok is removed from R(rtl ) if yi is yk,
ok is added into R(rtl ) if yi is yk.

It is easy to observe that if we have obtained the RNN set
R(⟨yt−1, yt⟩) of a valid pair, we can start from yt (which
is the first element among elements of the same value) and
use R(⟨yt−1, yt⟩) as the base set for the valid pair ⟨yt′−1, yt′⟩
immediately next to it. In this way, we can obtain the RNN set
of every valid pair (in one line status) with a single traversal of
the line status. Continuing with the above example in Fig. 10,
for pair ⟨y2, y3⟩, we use R(⟨y1, y2⟩) = {o1} as base set,
encounter y2, add o2, and stop with R(⟨y2, y3⟩) = {o1, o2}.
For pair ⟨y3, y4⟩, we remove o1 from {o1, o2} and stop with
R(⟨y3, y4⟩) = {o2}.

C. Reducing the Number of Times of Region Labeling

1) Locating the Change Interval: With the above approach,
we obtain the RNN sets and label the corresponding regions
between two events el−1 and el. We then move the sweep
line forward across el and label regions between el and el+1.
Crossing el, we obtain a new line status I(l + 1). We notice
that some of the pairs in I(l) and I(l + 1) represent the
same regions (not subregions) even though they are formed
by different NN-circles. For example, in Fig. 10, between e2
and e3, I(3) = ∥y1, y2, y1, y2∥, while between e3 and e4,
I(4) = ∥y3, y1, y2, y3, y1, y2∥. The pair ⟨y2, y1⟩ ∈ I(3) and
new pair ⟨y3, y1⟩ ∈ I(4) represent the same region. Besides
new pairs, a pair also represents the same region if it exists
in both I(l) and I(l + 1) and the RNN sets of the pair in
the two line statuses are the same (e.g., ⟨y1, y2⟩ in the above
example). The reason is that, by Lemma 1, the RNN set of a
pair is changed if and only if the pair is entirely enclosed by
an NN-circle that is inserted into (i.e., newly cut) or removed
from (i.e., no longer cut by) the line. When the RNN set of
a pair does not change, the two subregions formed by the
pair must be connected (and hence represent the same region),
since no side of NN-circles separates them. To reduce the
number of times of region labeling, we should avoid processing
pairs representing the same regions, i.e., only some of the
newly formed pairs and the pairs that exist in both line status
whose RNN sets are changed should be processed. We use
the following lemma to precisely locate the pairs that need
to be processed when only one NN-circle is changed in (i.e.,
inserted into or removed from) the line.

Lemma 2: When a line status I(l) is changed into a new
line status I(l′) because an NN-circle C(oc) = [xc, xc, yc, yc]
is newly or no longer cut by the sweep line, i.e., yc and yc are
inserted into or removed from I(l), we only need to process
the pairs in the following set

{⟨yt−1, yt⟩ ∈ I(l′) | yc ≤ yt−1 < yt ≤ yc}.

By Lemma 2, the pairs that need to be processed are located
within a range. We call such a range a changed interval and
denote it by [yci , ycj ]. Note that yci and ycj are coordinate
values, not line elements. When the line triggers (i.e., crosses)
an event, multiple NN-circles are inserted into or removed
from the line, and hence several (initial) changed intervals
are created. We cannot process such changed intervals one
by one, since they may intersect and affect each other. We
need to merge the intersected changed intervals. When merging
two changed intervals, we need to be careful about the line
elements that are of the same value so that no regions are
labeled repeatedly. Specifically, any two changed intervals



x1 x2 x3 x4 x5x6x7x8 x9

1

2

3
8

4
5

6

7

o1

o2

C(o1)

C(o2) o4

o3

C(o4)

C(o3)

Fig. 11. Example of changed intervals

[yci , ycj ] and [yci′ , ycj′ ] with yci ≤ yci′ are merged into a
new one [yci ,max{ycj , ycj′}] if ycj ≥ yci′ . After merging,
we only need to handle separated changed intervals, which
can be processed individually. For example, in Fig. 11, when
the line crosses x3, the grey area is processed, in which
C(o3) is inserted into the line. The pairs (i.e., subregions),
for convenience denoted by 1, 2, and 3, need to be processed,
which are in changed interval [y3, y3]. When the line crosses
x4, C(o1) is removed and C(o4) is inserted. Only pairs 4, 5,
6 and 7 in [y1, y4] (merged from [y1, y1] and [y4, y4]) are
processed. When the line crosses x5, C(o2) is removed and
only pair 8, the only one in [y2, y2], is processed. The validity
of the sweep line strategy still holds with the above approach,
since a simple induction will show that all pairs in all line
statuses are properly processed.

2) Caching and Retrieving Base Sets: To obtain the RNN
set within a changed interval, an efficient way is to use the
RNN set of the pair that is immediately preceding of the
changed interval as the base set. Such a pair must be a valid
pair, since the changed interval includes the line elements
whose values are equal to the interval boundary. Therefore,
we cache (only) the RNN set of each valid pair in the line
status. We index the RNN set of a pair with its first element.
Specifically, if the pair’s first element is the lower (resp. upper)
side of C(oi), we assign the RNN set a key 2i− 1 (resp. 2i).
When the RNN set of a pair is changed, the record in the
index is also updated accordingly (for elements of the same
value, the record is always maintained only at the last one for
efficient access and space saving). In this way, the base set
for a changed interval is the record of the element that is one
position ahead of the changed interval. (In case that the change
interval is at the end of the line status, we also keep an empty
set for the last element of a line status.) When we process
several separated changed intervals in ascending order, it is
guaranteed that such a record is always available and up-to-
date. Specifically, let yt be the element whose record we need.
If no such element yt exists, the base set is an empty set, since
the changed interval must be at the beginning of the line status.
If yt is the boundary of a preceding changed interval, then such
a record is already updated and ready to use, otherwise yt must
exist in the last line status and the record is also available.

We use an example to illustrate the above approach. In
Fig. 10, I(1) is empty, I(2) = ∥y1, y1∥, and [y1, y1] is the
changed interval which is at the beginning of I(2). We thus
use an empty set as the base set, and keep the records (2×1−
1, {o1}) for ⟨y1, y1⟩, and (2× 1,∅) for y1 (the last element),

respectively. In I(3), C(o2) is inserted and the changed interval
is [y2, y2]. The element immediately preceding the changed
interval is y1. We obtain {o1} as the base set with key 2 ×
1 − 1 = 1, and keep records (2 × 2 − 1 = 3, {o1, o2}), (2 ×
1 = 2, {o2}) and (2× 2 = 4,∅) for ⟨y2, y1⟩, ⟨y1, y2⟩ and y2,
respectively. We now have (1, {o1}), (2, {o2}), (3, {o1, o2})
and (4,∅) cached for future use.

D. The Algorithm

We now present the detailed steps of CREST, as summa-
rized in Algorithm 1. We first obtain the event queue Qx by
storing the vertical sides of the NN-circles in Qx in ascending
order (line 4). The sides are stored in a way such that for
each side, we can directly obtain the NN-circle to which it
belongs and whether it is the left or right side. We then

Algorithm 1: The CREST algorithm
Input: An arrangement of n NN-circles
Output: A subdivision with each region labeled

1 T ← ∅ ⋄ the index structure for the horizontal sides
2 U ← ∅ ⋄ the changed NN-circles between events
3 P ← ∅ ⋄ the cached RNN sets
4 Qx ← the vertical sides of the NN-circles in ascending order
5 for each element v in Qx do
6 C(oi)← the NN-circle to which v belongs
7 Add C(oi) into U
8 if v is a left side then
9 Insert yi, yi into structure T

10 else
11 Delete yi, yi from structure T
12 Remove the corresponding records from P
13 if the next element v′ of Qx equals v then
14 Continue the outer for-loop
15 Merge the changed intervals of the NN-circles in U
16 Delete all elements in U
17 for each separated changed interval do
18 Find the starting element st and ending element ed
19 R← Retrieve the base set from P
20 for each element y between st and ed do
21 C(oj)← the NN-circle to which y belongs
22 if y is the lower side then
23 R← add oj into the base set
24 p← 2j − 1
25 else
26 R← remove oj from the base set
27 p← 2j
28 if y is greater than the next element y′ then
29 Label the region represented by pair ⟨y, y′⟩

with set R
30 P[p]←R

process the elements in Qx one by one (line 5). If an element
is a left (resp. right) side, we insert (resp. remove) the two
horizontal sizes of the NN-circle corresponding to the element
into (resp. from) a balanced search tree T in which the data
are stored in the doubly linked leaf nodes (e.g., a B+-tree)
(lines 6-14). When the next element in Qx is greater than the
current one, we process the event. The structure T now stores
the information of the current line status. We obtain separated
changed intervals by merging the y-coordinates of the inserted
and removed sides in this event (line 15). For each changed
interval (line 17), we locate the starting and ending elements in
T (line 18), and retrieve the base set from the RNN set records
(line 19), which are stored in a random access data structure



such as an array. We then sequentially check the elements in
each changed interval (line 20). For each element, we either
add or remove the corresponding data point (i.e., oi) from the
base set to obtain RNN sets of the valid pairs and label the
regions (lines 21-29). To facilitate efficient insert, delete and
copy operations on the base set, we keep the data points in
a linked list and store pointers to the nodes in the linked list
with an additional random access data structure indexed by the
data points. The RNN sets we obtained are also dynamically
recorded to support the future base set retrieval (line 30). After
all changed intervals are processed, we eject the next element
in Qx and repeat the above steps until Qx is empty.

VI. COMPLEXITY ANALYSIS

A. Complexity of CREST

We analyze the time complexity of CREST following
the steps in Algorithm 1. We sort the 2n vertical sides of
the n NN-circles in O(n log n) time. When we process the
events, each horizontal side is inserted into and then deleted
from the structure T once. Therefore, there are at most 2n
elements in T , and the 2 × 2n insertions and deletions can
be done in O(n log n) time. To merge the changed intervals
at an event, we can first sort them in lexicographical order
and then obtain the merged result with a linear scan. This
requires O(β log β + β) = O(β log β) time, where β is the
number of changed intervals at the event. Since each NN-
circle can only be a changed interval twice, the total number
of changed intervals in all events is O(n). Thus, the overall
time required for merging the changed intervals is bounded
by O(

∑
β log β) = O(log n

∑
β) = O(n log n). For each

merged changed interval, we obtain its starting element in T in
O(n log n+λ) time, where λ is the maximum size of the RNN
sets in the arrangement. This is because we first search in T in
O(log n) time to obtain an element yi whose value is equal to
the lower endpoint of the interval. Starting from yi, we obtain
the starting element by checking backward (to the beginning
of T ) until the elements are less than yi. This procedure takes
O(2λ) = O(λ) time, since λ is the maximum size of the RNN
sets and there are at most λ upper sides and λ lower sides that
are of the same y-coordinate. Symmetric analysis applies to
obtaining the ending element. We have only O(n) changed
intervals, and thus obtaining starting and ending elements can
be done in O(n log n+nλ) time. We then process the elements
between them. We first retrieve a base set, which takes at most
O(λ) copying time. Thus, it takes O(nλ) time to obtain base
sets for O(n) changed intervals. For each element between
the starting and ending elements, we either add into or remove
from the base set its corresponding data point (i.e., oi). It takes
at most O(λ) time for the adding or removing operations to
obtain an RNN set for a valid pair. This is because to get an
RNN set of size αt by changing an RNN set of size αs, at
most αs data points are removed and αt data points are added,
which takes O(αs + αt) = O(λ) time. We denote by k the
number of valid pairs, and hence the time for obtaining the
RNN sets for k valid pairs is bounded by O(kλ). For each
valid pair, we record its RNN set and label its corresponding
region, and this takes O(kλ) time.

Putting all things together, we have that CREST stops in
O(n log n + nλ + kλ) time. Since k denotes the number of
times of region labeling in CREST, k must be greater than or
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equal to the number of regions in the arrangement which is
in turn greater than or equal to the number of NN-circles n.
Therefore, the time complexity of CREST is O(n log n+kλ).
Shortly (in Section VI-B) we will prove that k = Θ(r), where
r is the number of regions in the arrangement.

The space required by the queue Qx and structure T is
O(n). The space required by caching the RNN sets is O(nλ),
and the storage of the base set requires O(n+λ) space. Overall,
the space complexity of CREST is O(nλ).

B. Bounding the Times of Region Labeling in CREST

From the above analysis, we can see that the number of
times of region labeling k largely decides the performance of
CREST. In CREST, we successfully avoid labeling the same
region multiple times in different line statuses. Although rarely
happens, multi-labeling still exists within the same line status.
For example, in Fig. 12, at the event of the left side of C(o1),
the gray region is labeled six times. Despite the multi-labeling,
we show with the following lemma that the number of times
of region labeling in CREST and the number of regions in the
arrangement, up to a constant factor, are asymptotically the
same (as a function of n).

Lemma 3: k = Θ(r), where r is the number of regions in
the arrangement.

Proof: Let v, e, and c be the number of vertices, edges
and connected components in the arrangement, respectively.
We call the number of edges bounding a region the degree of
the region, and the number of edges incident to a vertex the
degree of the vertex. In an arrangement of squares, there are
only 2-, 3-, and 4-degree vertices, which are denoted by v2, v3,
and v4, respectively. In CREST, the number of times a region
is labeled cannot be greater than the degree of the region, since
each time the region is labeled we need a distinct valid pair
which requires at least one of the edges bounding the region.
Therefore, k is less than or equal to the sum of degrees of
all regions which equals 2e, i.e., k ≤ 2e. In the arrangement,
we also have v = v2 + v3 + v4, 2e = 4v4 + 3v3 + 2v2 and
v−e+r−c = 1 (Euler characteristic). Combining these three
equations, we obtain r = v4+v3/2+ c+1. We then have that

k ≤ 2e = 4v4+3v3+2v2 ≤ 6(v4+v3/2+c+1)+2v2 = 6r+2v2.

The number of 2-degree vertices is less than or equal to 4n
and hence less than or equal to 4r, since each square makes at
most four 2-degree vertices and n ≤ r. Therefore, it follows
that

k ≤ 6r + 2v2 ≤ 6r + 8n ≤ 14r.

Obviously, r ≤ k, and hence r ≤ k ≤ 14r, which completes
the proof.

We conclude the above analysis with the following theorem.



Theorem 2: The CREST algorithm solves the (bichromatic)
RC problem in O(n logn+rλ) time with O(nλ) space, where
r and λ are the number of regions and the maximum size of
the RNN sets in the arrangement, respectively.

C. A Lower Bound of the RC Problem

We show that Ω(n logn + rλ∗) is a lower bound of the
RC problem (in the algebraic computation tree model) [3],
where λ∗ is the average size of RNN sets in the arrangement.
When rλ∗ is the dominating term, at least the RNN sets of
all regions need to be output, the above bound is a trivial
lower bound. Thus, we only need to show that it requires
Ω(n log n) operations even without considering the output
cost. This bound is proved by the reduction from the point
distinctness problem to a special case of the RC problem.

Definition 3 (Element Distinctness): Given real numbers
a1, . . . , an ∈ R, determine whether or not there is a pair i, j
with i ̸= j and ai = aj .

We show that the element distinctness problem can be reduced
to the RC problem in linear time. For each real number ai,
we create a point (ai, ai), i = 1, 2, . . . , n in the plane. We
then build a square C(oi) with point (ai, ai), i = 2, . . . , n
and point (a1, a1) being the diagonally opposite corners and
oi being the center. An example of such reduction is shown in
Fig. 13. These squares form an arrangement of NN-circles in
a two-dimensional space. We use this arrangement as input to
any algorithm that solves the RC problem. A correct algorithm
outputs exactly n RNN sets (including the empty set) if and
only if the elements are distinct. The reason is that each RNN
set corresponds to only one region, and there are n regions
(including the exterior face) in the arrangement if and only if
the elements are distinct. It has been proved that the element
distinctness problem has a lower bound Ω(n log n) [3] (in the
algebraic computation tree model), which implies that RC has
a lower bound Ω(n log n) without the output cost. Therefore,
Ω(n log n+ rλ∗) is a lower bound of the RC problem.

D. Optimality of CREST

From the time complexity of CREST and lower bound of
the RC problem, CREST is asymptotically optimal in terms
of the number of times of region labeling (i.e., influence
computation) in all cases, since k = Θ(r).

In the following cases, we show that the upper bound
O(n log n+ rλ) of CREST is also tight, which indicates that
CREST is overall asymptotically optimal. For the bound to be
tight, it is sufficient to show that λ = Θ(λ∗).

Case (i). When the clients and facilities are relatively
uniformly distributed such that λ is bounded by a sufficiently
large constant C (which depends on |O|

|F| ), since λ∗ ≤ λ, λ∗ is
also bounded by C. Thus, λ = Θ(λ∗) = O(1). An example is
that none of the n squares intersects any other ones (or only
a few of them overlap).

Case (ii). When λ is unbounded, we show with the worst
case illustrated in Fig. 8 that λ = Θ(λ∗) also holds when
every square intersects all the other ones. In this arrangement,
λ = n, and we have that r = n2 − n+ 2 and r · λ∗ = n3+2n
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Therefore, it follows that
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=
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3
=

λ
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Since λ∗ ≤ λ, it follows that λ = Θ(λ∗), which indicates
CREST is overall asymptotically optimal.

VII. RNNHM IN OTHER SETTINGS

We show how CREST solves the RNNHM problem with
the monochromatic RNNs, L1, and L2 distance metrics.

A. Monochromatic RNNs

CREST directly applies to the monochromatic RNNs, since
O and F being the same set does not affect the computation
of the NN-circle and these NN-circles still form a planar
subdivision with axis-aligned edges as in the bichromatic
RNNs. By Korn et al. [12], an RNN set contains at most
six points for monochromatic RNN queries, which means
λ = O(1). Therefore, by Theorem 2, the time complexity of
CREST for the monochromatic RNNs is O(n log n + r) and
the space complexity is O(n).

B. RNNHM with L1 Distance

In two-dimensional spaces, the L1 distance can be viewed
as equivalent to the L∞ distance by rotation and scaling.
Specifically, with the L1 distance, NN-circles are of diamond
shape. If we rotate (around the origin) the coordinate system
counter-clockwise by π/4, diamonds become squares. Each
point (x, y) in the original system has a corresponding point
(x′, y′) in the rotated system with x′ = x cos θ − y sin θ,
y′ = x sin θ + y cos θ and θ = π/4. In the rotated system,
CREST directly applies. The transformation takes O(n) time
and the overall time and space complexities stay unchanged.

C. RNNHM with L2 Distance

With the L2 distance, the NN-circles are of circular shape.
They form a planar subdivision with curved edges, as shown in
Fig. 14. CREST still applies in such a subdivision but requires
modifications as follows. We use the x-extreme points of
circles (instead of vertical sides of squares) as event points. In
the line status, we use the arc segments of circles between two
consecutive events as line elements (instead of horizontal sides
of squares). For each line element yi (i.e., an arc segment), we
assign two values ysi and yli, which are the smallest and largest
y-coordinates of yi between two consecutive events el−1 and
el, respectively. Line element yi is less than yj iff (i) ysi < ysj
or (ii) ysi = ysj and yli < ylj or (iii) ysi = ysj , y

l
i = ylj and



ymi < ymj , where ymi and ymj are the y-coordinates of yi and
yj at xl−1+xl

2 , respectively. We include intersection points as
event points (e.g, x4 and x7 in Fig. 14). This is because the arc
segments of NN-circles switch positions at intersection points.
We also use the center of each NN-circle as event points (e.g.,
x5 and x29 in Fig. 14) to guarantee that each line element
is y-monotone (i.e., strictly increasing or decreasing in the
y-dimension). Before processing an event, we update values
ysi and yli for each line element yi regardless of whether it is
related to the event. This update is required in order to maintain
a proper order in the line status because the arcs go up or down
between events and their upper and lower values change even if
they are irrelevant to the events. Note that such an update does
not change the relative order of the line elements irrelevant to
the events, and thus can be completed in linear time.

Apart from the above modifications, CREST remains the
same. Specifically, if an event point at el−1 is the left boundary
point of C(oc), we insert yc and yc into the line status with
yc

l = yc
s = yoc and yc

s and yc
l being the lower and upper

y-coordinates where el intersects C(oc), respectively. We also
create a change interval with yc and yc. If an event point is an
intersection point, we obtain the relevant line elements (arcs
incident to the intersection point) in the line status, switch their
positions and create a change interval with these elements.
If an event point is the right boundary point or center of
an NN-circle, we remove or update the two line elements
corresponding to the NN-circle. We do not create change
intervals for either of these two types of event points, since no
pair is between the removed elements and updating the line
elements by the centers is only to keep them y-monotone. We
then merge and handle change intervals as before.

Complexities. In the worst case (as shown in Fig. 8),
CREST runs in O(n3) time with the L2 distance, since there
can be as many as O(n2) events and for each event we need
to update O(n) line elements. However, the worst case com-
plexity is much lower than that of an existing algorithm [22],
which suffers from an exponential running time in the worst
case. The algorithm was proposed to obtain regions with
the maximum influence value, but it could be adapted to
solve the RC problem if we remove its pruning techniques.
The algorithm [22] follows the filter and refine paradigm by
enumerating all possible regions and then checking their exis-
tence. For example, when C(o1) intersects C(o2) and C(o3), it
enumerates the regions ô1ô2ô3, ô1ô2ō3, ô1ō2ô3, ô1ō2ō3, where
ôi means inside C(oi) and ōi means outside C(oi), and then
checks whether such regions really exist. In our experiments
(in Section VIII), CREST constantly outruns the algorithm on
data sets of various settings.

VIII. EXPERIMENTS

In this section, we experimentally evaluate the performance
of CREST. We use both real and synthetic data sets. Two
real data sets, NYC and LA, contain points-of-interest in
New York City and Los Angeles, respectively (we obtain the
data sets from the authors of [2]). Table II lists the details
of the real data sets. We also generate two synthetic data
sets, Uniform and Zipfian, which contain points of uniform
and Zipfian distributions, respectively. The skew coefficient in
Zipfian distribution is set to 0.2. In the experiments, we use
the bichromatic RNNs since the monochromatic type is just

TABLE II
REAL DATA SETS

Name Size Description

NYC 128,547 points-of-interest in New York City
LA 116,596 points-of-interest in Los Angeles

a special case of the bichromatic RNNs. We use L1 and L2

distance metrics since they are used more often than L∞ in
real-world scenarios, and L1 and L∞ are equivalent in two-
dimensional spaces. We uniformly sample from the data sets
to obtain the client set O and the facility set F . All algorithms
are implemented using C++ and the experiments are conducted
on a desktop computer with a 3.4GHz Intel i7-2600 CPU and
8GB main memory.

A. Showcasing Real-World Heat Maps

In the first set of experiments, we show the RNN heat
maps for two cities: New York City and Los Angeles. For each
data set NYC and LA, we uniformly sample 20, 000 points
as the clients and 6, 000 points as the facilities, since in real
world scenarios the number of clients is usually larger than the
number of facilities. For simplicity, we measure the influence
by the size of RNN sets, although any other function on the
RNN sets may be used. Fig. 1(a) and Fig. 1(b) (in Section I)
show the RNN heat map and the satellite map of New York
City (within latitude and longitude ranges [40.50, 40.95] ×
[−74.15, −73.70]), while Fig. 15(a) and Fig. 15(b) show the
heat and satellite maps of Los Angeles (within [33.82, 34.17]×
[−118.47, −118.12]), respectively. Comparing the heat and
satellite maps, we can see that they are closely geographically
correlated as expected. For instance, the mountain and sea area
have few clients or facilities, and hence have very low heat.
We can easily explore regions of various influences to help
various decision making applications such as those described
in the motivating examples. If the decision maker is interested
in any specific area, she can zoom in to see more details.

(a) Heat map for LA (b) Satellite map for LA

Fig. 15. Real-world heat map

B. Performance of CREST with L1 Distance

In this set of experiments, we compare the running time
of three algorithms: the baseline algorithm (BA), the CREST
algorithm with only the RNN computation optimization, de-
noted by CREST-A, and the CREST algorithm with both
RNN computation optimization and repetitive region labeling
optimization. We cannot evaluate the effect of the latter op-
timization alone, since it is built upon the former optimiza-
tion. We compute the influence by (i) the size of RNN sets
and (ii) the function considering the capacity constraints of
facilities [22] (described in the Introduction), respectively. The
results of the latter function are consistent with those using the
size and hence are omitted due to space limitation.
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Fig. 16. Effect of |O|
|F| with L1 diatance

Effect of |O|
|F| . We first vary the ratio of |O|

|F| from 21 to
210. Since the baseline algorithm does not terminate within 24
hours on large data sets, we only show results on relatively
small data sets and fix n = |O| at 210. We plot the results in
Fig. 16 (note the log scale in the axes). We can see that in all
data sets, CREST outperforms the baseline by at least three
orders of magnitude, and outperforms CREST-A by several
times. With the increase of |O|

|F| , the running time of CREST
also moderately increases. This is because both the number
of regions and the maximum size of the RNN sets increase
with |O|

|F| . The growth rates of CREST-A and CREST are

similar, which indicates that the ratio of |O|
|F| mainly affects

the number of regions in the arrangement, but not the number
of times a same region is repeatedly labeled. We can also see
from the slope of the lines that with the increase of |O|

|F| , the
number of regions increases only polynomially (rather than
exponentially). This indicates that the performance of CREST
will stay stable even if |O|

|F| becomes very large.

Effect of Data Set Size. We then fix |O|
|F| at 27 and vary

the size of the client set O from 27 to 216. The results are
plotted in Fig. 17. When the size of O is greater than 213, the
baseline runs for more than 24 hours and is early terminated,
hence the results are not presented.
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Fig. 17. Effect of data set size with L1 diatance

Again we can see that CREST outruns the baseline by
at least three orders of magnitude and outruns CREST-A
by up to an order of magnitude. The running time of the
baseline increases much faster than that of the other two
algorithms, which indicates the number of point enclosure
queries computed in the baseline increases dramatically when
n = |O| becomes larger. The growth rate of CREST-A is also
higher than that of CREST. This implies that the number of
times of repeated labeling becomes larger with the increase of
data size. The lowest growth rate of CREST also demonstrates
its scalability for processing much larger data sets.

C. Performance of CREST with L2 Distance

We repeat the above experiments with the L2 distance
metric, where the CREST algorithm for L2 (CREST-L2) is
compared with the pruning algorithm (Pruning) described in
Section VII-C. We compute the influence with the function
in [22] and use the two algorithms to find the regions with
the maximum influence, since in such settings the pruning
algorithm performs the best. This also shows the flexibility
of CREST since the adaptation to various influence functions
and supporting post-processing operations is very easy.
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Fig. 18. Effect of |O|
|F| with L2 distance

Effect of |O|
|F| . We first vary the ratio from 21 to 210 and plot

the results in Fig. 18. In all data sets, when the ratio is greater
than 23, we can see that CREST consistently outperforms the
Pruning algorithm by several orders of magnitude. With the
increase of |O|

|F| , the performance of the Pruning algorithm
deteriorates rapidly, since the number of regions enumerated
grows exponentially with the increase of |O|

|F| . Comparing with
the Pruning algorithm, CREST has a much lower growth rate.
When |O|

|F| is less than or equal to 22, in Fig. 18(d) the Pruning
algorithm runs slightly faster than CREST. This is because
the number of regions enumerated in the Pruning algorithm is
small, while the number of events in CREST is large when the
data distribution is very skewed. Overall, CREST still outruns
the Pruning algorithm by up to three orders of magnitude.

Effect of Data Set Size. Next, we fix |O|
|F| at 25 and vary the

size of |O| from 27 to 216. The results are presented in Fig. 19.
In all the data sets, again CREST consistently outperforms the
Pruning algorithm. With the increase of |O|, CREST and the
Pruning algorithm have a similar growth rate. The running



time of the Pruning algorithm gets closer to that of CREST
when |O| is very large. This is because although the number
of regions increases with the increase of |O|, most of them are
pruned without being searched in the Pruning algorithm, which
does not happen in CREST. It is notable that even we solve
the maximization problem with CREST which is quite general,
it still outruns the specialized Pruning algorithm designed for
the problem, which demonstrates the efficiency of CREST.
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Fig. 19. Effect of data set size with L2 distance

IX. CONCLUSIONS

In this paper, we proposed the RNN heat map problem,
which computes the influence of every point in the space.
Comparing to existing studies which give only the points or
regions with the highest influence, the RNN heat map enables
exploring the influence of the whole space while considering
qualitative factors at any instant during the exploration. We
solved the problem by first reducing it to the Region Coloring
(RC) problem, and then computing the influence on regions
instead of points with a novel algorithm called CREST. We
proposed two techniques in CREST, one to avoid point en-
closure queries in the influence computation and the other to
reduce the total number of times of the influence computation.
Through a detailed analysis, we showed that the number of
influence computation in CREST is asymptotically optimal.
We also showed that the worst-case time complexity of CREST
is much lower than that of the baseline algorithm and in many
cases meets the lower bound of RC. We conducted extensive
experiments on both real and synthetic data sets. The results
showed that CREST outperforms alternative algorithms by up
to three orders of magnitude.
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