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Abstract—We propose and study a new type of location
optimization problem: given a set of clients and a set of existing
facilities, we select a location from a given set of potential
locations for establishing a new facility so that the average
distance between a client and her nearest facility is minimized.
We call this problem the min-dist location selection problem,
which has a wide range of applications in urban development
simulation, massively multiplayer online games, and decision
support systems. We explore two common approaches to lo-
cation optimization problems and propose methods based on
those approaches for solving this new problem. However, those
methods either need to maintain an extra index or fall short
in efficiency. To address their drawbacks, we propose a novel
method (named MND), which has very close performance to the
fastest method but does not need an extra index. We provide a
detailed comparative cost analysis on the various algorithms. We
also perform extensive experiments to evaluate their empirical
performance and validate the efficiency of the MND method.

I. INTRODUCTION

Location optimization is an important problem for spatial

decision support systems. A number of studies [1], [2], [3]

proposed solutions to various instances of such problems. In

this paper, we consider a new location optimization problem

that cannot be efficiently solved by existing techniques. The

problem is motivated by the following applications.

In urban development simulation, urban planners need to

consider the influence of public infrastructure or business

centers on the residents. Very often they need to select a

location for establishing a new facility (e.g., fire hydrant,

public phone booth, hospital, bus stop, etc.) and a commonly

used criteria is to select the location that can minimize the

average distance between a resident and her nearest facility so

that people can access the facilities in the shortest time.

In the multi-billion dollar computer game industry, mas-

sively multiplayer online games (MMOGs) like World of

Warcraft have group quests for players to complete in teams,

which mostly involve killing mobs (monsters or other non-

player characters). As the quests often take players days or

even weeks to complete, it is common for players to leave

and rejoin the game during a quest. When a player rejoins the

game, the subquest she was on may have been completed by

her team, which has moved on to another region. It is a waste

of time for this player to rejoin the game from where she left.

A very helpful utility for the game is selecting a starting point

from a set of preset rejoin locations to minimize the average

distance between a mob and its nearest player, so that players

can focus on completing quests rather than walking.
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Fig. 1. An example for the problem

The example in Fig. 1 illustrates the problem: {c1,c2, ...,c8}
is a set of clients (residents or mobs), { f1, f2} is a set of

existing facilities (public facilities or teammates) and {p1, p2}
is a set of potential locations (candidate locations for new

facility establishment or rejoin). Now we need to select one

from the potential locations to establish a new facility. Before

adding a new facility, f1 is the nearest facility of c1, c2, c3

and c6; f2 is the nearest facility of c4, c5, c7 and c8. If a new

facility is established at p1, it will become the nearest facility

for c1, c2 and c3. If a new facility is established at p2, it will

become the nearest facility of c4 and c5. As we can observe,

p2 results in a smaller average distance between a client and

the nearest facility, so it is selected as the answer.

Besides the above described applications, many organiza-

tions and businesses face similar decision making problems

(e.g., McDonald’s needs to add new restaurants; a wireless

service provider needs to set up new hotspots). This paper

studies how to efficiently select a potential location for a

new facility, so that the average distance between a client

and her nearest facility is minimized. We call it the min-dist

location selection problem. In the aforementioned applications,

the min-dist location selection is usually performed frequently.

Therefore, we formulate the problem as the following query.

A. Problem Formulation

All data objects (clients, facilities and potential locations)

are represented by points in an Euclidean space. We may refer

to the data objects as data points or simply as points. Let

dist(o1,o2) denote the distance between two points o1 and

o2, and nc be the number of clients. The min-dist location

selection query is defined as follows.

Definition 1: Min-dist location selection query.

Given a set of points C as clients, a set of points F as

existing facilities and a set of points P as potential locations,

the min-dist location selection query finds a potential location

pi ∈ P for a new facility to be established at, so that ∀p j ∈



P and p j 6= pi :

∑c∈C{min{dist(c,o)|o ∈ F ∪ pi}}

nc

≤
∑c∈C{min{dist(c,o)|o ∈ F ∪ p j}}

nc

.

Since the denominator is the same on both sides of the

inequality, the problem is equivalent to minimizing the sum

(instead of the average) of the distances between the clients

and their respective nearest facilities.

Although an existing commercial software [4] can solve

several simpler location optimization problems, none can solve

the min-dist location selection problem (see Section II).

B. A Naive Algorithm

A straightforward algorithm to the min-dist location selec-

tion query is to sequentially check all potential locations. For

every new potential location p, we compute the sum of the

distances of all clients to their respective nearest facilities.

The potential location with the smallest sum is the answer.

We call this algorithm the sequential scan (SS) algorithm.

In SS, repeatedly finding the nearest facility to each client

for every potential location is too expensive. Therefore, we

precompute the distances of all clients to their respective

nearest facilities and store the distances. This precomputation

involves a nested loop iterating through every client and for ev-

ery client iterating through every facility. KNN-join algorithms

(e.g., [5]) can do this more efficiently and maintain the results

dynamically when clients and facilities are updated. The SS

algorithm with precomputation is shown in Algorithm 1, where

c.dnn(c,F) denotes c’s precomputed distance to her closest

existing facility and is stored with c’s record.

Algorithm 1: SS(C, P)

1 optLoc← NULL; // optLoc is the optimal location;
2 for p ∈ P do
3 p.distSum← 0;
4 for c ∈C do
5 if dist(p,c)< c.dnn(c,F) then
6 p.distSum← p.distSum+dist(p,c);

7 else
8 p.distSum← p.distSum+ c.dnn(c,F);

9 if optLoc = NULL or p.distSum < optLoc.distSum then
10 optLoc← p;

11 return optLoc;

We see that even with precomputation SS is still very costly

as it has to access the whole client dataset
np

Cp
times, where np

is the cardinality of P and Cp is the capacity of a block for P

(assuming we read P in disk blocks). Therefore, the need for

an efficient algorithm is obvious.

C. Contributions and Organization of the Paper

In this paper, we examine solutions to the min-dist location

selection query and make the following contributions.

• We formulate the min-dist location selection problem and

analyze its basic properties.

• We explore two common approaches to location optimiza-

tion problems and propose methods based on them for

solving this new problem, the quasi-Voronoi cell method

and the nearest facility circle method.

• As methods based on the common approaches either need

to maintain an extra index or fall short in efficiency, we

propose a method called MND, which uses a single value

to describe a region that encloses the nearest existing

facilities of a group of clients, so that the search of

influenced clients for a potential location can be done

groupwise. This results in an algorithm that has very close

performance to the fastest of the previous algorithms

without the need for an extra index.

• We provide a thorough cost analysis of all methods.

• We conduct extensive experiments to evaluate the empir-

ical performance of all methods. The results validate the

efficiency of the MND method.

Section II reviews related work. Section III discusses the

basic properties of the problem and presents a solution frame-

work. Sections IV, V and VI present the quasi-Voronoi cell

method, the nearest facility circle method and the MND

method, respectively. Section VII analyzes the cost of the

methods. Section VIII presents the experimental results and

Section IX concludes the paper.

II. RELATED WORK

Location optimization problems are mostly characterized by

optimization functions, based on which they can be classified

into two categories: max-inf problems and min-dist problems.

Both categories are closely related to nearest neighbor (NN)

search and reverse nearest neighbor (RNN) search. Therefore,

we first review studies of NN search and RNN search, and then

review studies of max-inf problems and min-dist problems.

NN search: Given a set of objects S and a query object q,

the NN search returns q’s nearest objects in S. Two popular

NN search algorithms are depth-first [6] and best-first [7].

The best-first algorithm can retrieve the nearest neighbors

incrementally in order of their distances to the query point.

RNN search: Korn and Muthukrishnan [8] first propose

the RNN query and define the RNNs of an object o to

be the objects whose respective NN is o. They propose to

use an R-tree variant, named the RNN-tree, in addition to

the original R-tree that maintains the data points to answer

RNN queries. In an RNN-tree, the data entries are stored

in the form of NN circles. An NN circle of a point o is a

circle centered at o with the distance between o and its NN

as the radius. The bounding boxes of these NN circles are

indexed in the RNN-tree. Using this tree, an RNN query is

answered with the data points whose NN circles enclose the

query point. To avoid maintaining the RNN-tree, Yang and

Lin [9] propose the RdNN-tree, which effectively combines

the original R-tree and the RNN-tree. While these methods

require the precomputation of the distance between an object

and its NN, Stanoi et al. [10] propose to process the RNN

queries without precomputation. For a query point q, their

method dynamically constructs a Voronoi cell that encloses q
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Fig. 2. Example of a max-inf problem [1]

and contains all its possible RNNs. Only nodes intersecting

the Voronoi cell have to be accessed to check for q’s RNNs.

There are studies on RNN query variants under different

settings. For example, the reverse k nearest neighbor (RkNN)

query finds objects whose k nearest neighbors include the

query object. Wu et al. [11] study the RkNN query on contin-

uously moving objects, which correlates two sets of moving

objects according to their closeness. The continuous join

query on extended moving objects [12], [13] also correlates

multiple sets, but it focuses on intersecting objects with a

time-constraint technique rather than closeness. While these

approached work well for a single R(k)NN query, they are not

tailored for computing RNNs for large amount of objects at

the same time, which is a key difficulty in our study.

Max-inf problems: Max-inf problems maximize the “influ-

ence” of a facility, where influence is typically defined as the

number of clients who are the RNNs of the facility. Cabello et

al. [1] find regions for a new facility to maximize its influence.

They introduce the nearest location circle (NLC) to solve the

problem, where the NLC of a client c is a circle centered at c

with its radius being the distance between c and c’s existing

nearest facility. Since only a facility established within the

NLC of c can be a new nearest facility of c, to find the problem

solution is to find the regions that are enclosed by the largest

number of NLCs. In Fig. 2, the gray regions are the problem

solution because each of them is covered by four NLCs while

no region is covered by more than four NLCs. Xia et al. [2]

use a branch and bound method to find top-t facilities in F

with the largest influence within a continuous spatial region Q,

where the influence of a facility is defined as the total weight

of its RNNs. Du et al. [14] find a location in a region Q for

a new facility to maximize its influence. Gao et al. [15] find

a location p outside a region Q (instead of inside a region)

for a new facility so that its “optimality” is maximized. Here,

the optimality of p is defined as a function of the number of

clients in Q whose distance to p is within a certain threshold

dc (attracted by p). Intuitively, the more clients p attracts, the

greater its optimality. A more recent study [16] selects top-

k candidate locations with the largest influence values for a

new facility. These studies differ from ours in optimization

functions and other settings, and do not apply.

Min-dist problems: Zhang et al. [3] propose the min-dist

optimal-location problem. Given a client set C, an existing

facility set F and a region Q, it finds points within Q so that

if a new facility is established at any one of these points,

the average distance of the clients to their respective nearest

facilities is minimized. Fig. 3 gives an example, where pt may
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Fig. 3. Example of a min-dist problem [3]

be one of the points in the answer set and it is not the solution

p2 to our problem. To solve the problem, Zhang et al. [3]

propose a method that first identifies a set L of candidate

locations from Q and then divides L progressively until the

answer set is found. Xiao et al. [17] study the min-dist problem

in road networks. They have a candidate edge set E for the

new facility to be established at. Their key insight is that

the optimal location on a candidate edge must be one of the

endpoints of the edge. Thus, only the endpoints of the edges

in E need to be checked for the problem solution.

These two studies [3], [17] have the same min-dist op-

timization function as ours, but our study has a set P, the

potential locations given as candidates for selection. In many

real applications, we can only choose from some candidate

locations, e.g., McDonald’s may only open a new restaurant

at a place for rent or sale rather than anywhere in a region or

on a road. The main idea of Zhang et al.’s solution is the fast

identification of a small set L of candidate locations from Q.

However, the candidate locations in L could be any point from

Q, which may not even contain a potential location from our

potential location set P. Similarly, the endpoints of the edges

in E [17] are different from the points in P. This means that

in the general case their approaches cannot provide a correct

answer to our problem, and thus are not applicable.

Related commercial software: As mentioned in Sec-

tion I-A, an existing commercial software [4] can solve several

kinds of simpler location optimization problems. The most

related problem this software can solve is called the minimize

impedance query, which finds locations for a set of new

facilities to minimize the sum of distances between clients and

their respective nearest facilities. However, this problem does

not consider existing facilities. If we use this software to find

a set of locations Sl for new facilities, there is no guarantee

that Sl will contain all points in the set of existing facilities

F . Therefore, this software does not solve our problem.

TABLE I
THE LOCATION OPTIMIZATION PROBLEMS

Problem Optim. Solution Distance Datasets

Function Space Function

[1] Max-inf Continuous L2 C, F

[2] Max-inf Discrete L2 C, F

[14] Max-inf Continuous L1 C, F

[15] Max-inf Discrete L2 C, P

[16] Max-inf Discrete L2 C, F , P

[3] Min-dist Continuous L1 C, F

[17] Min-dist Continuous Network C, F , E

[4] Min-dist Discrete L2 C, P

Proposed Min-dist Discrete L2 C, F , P



Summary: Table I summarizes the differences between

our problem and previously studied location optimization

problems. Most previous problems are max-inf problems and

differ from our problem in optimization functions. For the

min-dist problems, they have the same optimization function

as our problem does, but their problem settings are different.

As discussed in the second paragraph of the related min-dist

problems, they do not choose from a set of given candidate

locations, which does not apply to the requirements of our

applications.

III. BASIC PROPERTIES AND A SOLUTION FRAMEWORK

The min-dist location selection query can be redefined in a

form that reduces the search space. This section provides such

a redefinition and a solution framework based on it. Next, we

start with some basic properties of the problem needed for the

redefinition. Table II summarizes frequently used symbols.

TABLE II
FREQUENTLY USED SYMBOLS

Symbols Explanation

o A point in the data space

dist(o1,o2) The distance between two points o1 and o2

C, F , P The set of clients, existing facilities
and potential locations, respectively

nc, n f , np Cardinality of C, F , and P, respectively

c, f , p A client in C, an existing facility in F
and a potential location in P, respectively

A. Basic Properties

We call the distance between a client c and her nearest

facility the nearest facility distance (NFD) of c. Let dnn(o,S)
denote the distance between a point o and its nearest point in

a set S. Then dnn(c,F) and dnn(c,F ∪ p) denote the NFD of

c before and after a new facility is established on a potential

location p, respectively. The min-dist location selection query

is actually minimizing the sum of all clients’ NFD.

If o is a point not in the set F and dist(c,o) < dnn(c,F),
then establishing a new facility at o will reduce the NFD of

c. In this case, we say that c can get an NFD reduction from

o. We define the influence set of o, denoted by IS(o), as the

set of clients that can get NFD reduction from o. Formally,

IS(o) = {c|c ∈C,dist(c,o)< dnn(c,F)}. The influence set of

a potential location p includes all clients that will reduce their

NFD if a new facility is established at p. For example, in

Fig. 1, IS(p1) = {c1,c2,c3}, and IS(p2) = {c4,c5}.
If IS(p) 6= /0 for a potential location p, then establishing a

new facility at p will reduce the sum of the clients’ NFD.

We call the sum of the clients’ NFD reduced by p the

distance reduction of p, denoted by dr(p). Formally, dr(p) =

∑c∈IS(p)(dnn(c,F)− dnn(c,F ∪ p)). Minimizing the sum of

the clients’ NFD when adding a facility on p is equivalent to

maximizing dr(p). Therefore, the min-dist location selection

query can be redefined as follows.

Definition 2: Given a set of points C as clients, a set of

points F as existing facilities and a set of points P as potential

locations, the min-dist location selection query finds a potential

location pi ∈ P, so that ∀p j ∈ P and p j 6= pi: dr(p j)≤ dr(pi).

B. A Solution Framework

Definition 2 provides a framework for solving the min-dist

location selection problem with the following two steps:

1) Identify IS(p);
2) Compute dr(p) and find the potential location with the

largest dr(p).

Since the cardinality of IS(p) is usually much smaller than that

of C, we do not have to access the whole client dataset for

every potential location p. Thus, the above framework has a

great potential to improve performance. All methods presented

in this paper will follow this framework. The key issues are:

(i) how to efficiently identify IS(p) and (ii) how to prune

more potential locations from consideration. We will see that

in all methods dnn(c,F) of every client is used many times

in both steps of the framework. Computing dnn(c,F) on-the-

fly will repeatedly access the datasets of the clients and the

existing facilities, which will incur significant costs. Therefore,

we precompute dnn(c,F) for every client and store it with the

client’s record for all methods (including the SS method).

In the next two sections, we explore two common ap-

proaches to location optimization problems and propose meth-

ods based on those approaches for solving the min-dist lo-

cation selection query under the above framework. When a

spatial index is used for a method, we assume an R-tree [18],

although any hierarchical spatial index could be used.

IV. QUASI-VORONOI CELL METHOD

In this section, we propose a so-called “quasi-Voronoi cell”

(QVC) method. For any potential location p, the Voronoi

cell of p on the set F ∪ p is a region V that satisfies that

for any point p′ ∈ F ∪ p, p′ 6= p, and for any point o ∈ V ,

dist(p,o) ≤ dist(p′,o) [19]. It is guaranteed that the Voronoi

cell of p encloses all and only the clients in IS(p). We

can use the Voronoi cell to quickly identify IS(p). However,

computing the Voronoi cell of p is an expensive operation

itself. Interestingly, this algorithm only needs to identify a

superset of IS(p) instead of the exact IS(p). Stanoi et al. [10]

show a relatively straightforward way to compute a region

that encloses the Voronoi cell and this region is a good

approximation of the Voronoi cell. We call this region the

quasi-Voronoi cell (QVC). First, we find a superset of IS(p)
through the QVC of p. Then, we can use the precomputed

NFD to quickly identify the exact IS(p). Finally, we compute

dr(p) and compare it for all potential locations. Next, we give

details of constructing QVC and the algorithms.

The QVC of a potential location p is formed as follows. In

the coordinate system with the origin at p and the two axes

parallel with the original axes, find the nearest facility to p

in each of the four quadrants and let these nearest facilities

be f1, f2, f3 and f4 as shown in Fig. 4(a). Draw the bisector

between each fi (i = 1,2,3,4) and p, and the four bisectors

form a polygon. This polygon is the QVC of p, denoted as

QVC(p). Stanoi et al. [10] prove that QVC(p) encloses the

Voronoi cell of p. To find the NN in each quadrant, we use the

best-first algorithm [7] to retrieve the NNs until each quadrant



has one. Since this algorithm is based on a spatial index, we

use an R-tree to index the facilities, denoted as RF .
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Fig. 4. Examples of the QVC method

To facilitate finding clients in QVC(p), we index C using

an R-tree and denote this R-tree by RC. We perform a window

query on RC with the query range being the minimum bounding

rectangle (MBR) of QVC(p). We call the MBR of QVC(p)
the approximate influence region of p and denote it by AIR(p)
(Fig. 4(b)). The window query finds all clients in AIR(p). For

each client c in AIR(p), we compare dist(p,c) with dnn(c,F),
which has been precomputed.

If dist(p,c)≥ dnn(c,F), then we know that c is not in IS(p).
Otherwise, c is in IS(p). Since we can identify all the clients

in IS(p), we can then compute dr(p). We compute dr(p) for

every potential location and the one with the largest distance

reduction is the answer. The QVC method is summarized in

Algorithms 2 and 3.

Algorithm 2: QVC(RC, RF , FP)

1 optLoc← NULL;
2 while not EndOfFile( FP ) do
3 BP← ReadBlock( FP );
4 Sp← /0;
5 for p ∈ BP do
6 Contruct QVC(p) from RF ;
7 Contruct AIR(p), stores it as p.mbr;
8 if p.mbr intersects RC.rootnode.mbr then
9 Sp← Sp∪ p;

10 WQ( RC.rootnode, Sp, optLoc );

11 output optLoc;

Algorithm 3: WQ(NC, Sp, optLoc)

1 if NC is a leaf node then
2 for p ∈ Sp do
3 for ec ∈ NC, dist(p,ec)< ec.dnn(c,F) do
4 p.dr← p.dr+ ec.dnn(c,F)−dist(p,ec);

5 if optLoc = NULL or p.dr > optLoc.dr then
6 optLoc← p;

7 else
8 for ec ∈ NC do
9 S′p← /0;

10 for p ∈ Sp, p.mbr intersects ec.mbr do
11 S′p← S′p∪ p;

12 WQ(ec.childnode, S′p, optLoc);

V. NEAREST FACILITY CIRCLE METHOD

In this section, we propose a method that exploits the

nearest facility circle (NFC), and we call it the NFC method.

The nearest facility circle of a client c, denoted by NFC(c), is

a circle centered at c with the radius being dnn(c,F). It can be

observed that for a potential location p, c ∈ IS(p) if and only

if p is inside NFC(c). An example is shown in Fig. 5, where
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p1 is in the NFCs of c1, c2 and c3, and p2 is in the NFCs of

c4 and c5. Thus, IS(p1) = {c1,c2,c3} and IS(p2) = {c4,c5}.
Therefore, we only need to check which NFCs enclose p to

identify the clients in IS(p). Motivated by this observation, we

build an RNN-tree [8], denoted as Rn
C, to index the NFCs of

all clients. As discussed in the related work, Rn
C is basically

an R-tree that indexes the MBRs of the NFCs of the clients.

It can be built based on RC and maintained in accordance to

the updates of RC. Note that there is no extra computation to

get the clients’ NFCs, since dnn(c,F) has been precomputed

for all clients and stored in RC. Besides having an RNN-

Algorithm 4: NFC(NP, Nn
C, optLoc)

1 if NP and Nn
C are non-leaf nodes then

2 for (ep,e
n
c) ∈ NP×Nn

C, ep.mbr intersects en
c .mbr do

3 NFC(ep.childnode, en
c .childnode, optLoc);

4 else if NP is a leaf node and Nn
C is a non-leaf node then

5 for en
c ∈ Nn

C, en
c .mbr intersects NP.mbr do

6 NFC(NP, en
c .childnode, optLoc);

7 else if NP is a non-leaf node and Nn
C is a leaf node then

8 for ep ∈ NP, ep.mbr intersects Nn
C.mbr do

9 NFC(ep.childnode, Nn
C, optLoc);

10 else
11 for ep ∈ NP, ep intersects Nn

C.mbr do
12 for en

c ∈ Nn
C,

dist(centerO f (en
c .mbr),ep)<

1
2 (edgeLength(en

c .mbr))
do

13 ep.dr← ep.dr+ 1
2 (edgeLength(en

c .mbr))−
dist(centerO f (en

c .mbr),ep) ;

14 if ep.dr > optLoc.dr or optLoc = NULL then
15 optLoc← ep;

tree to index the NFCs, this method also uses an R-tree to

index the potential location set P, denoted as RP. Then for

every potential location p, we can use Rn
C to quickly identify

all NFCs that enclose p, which is essentially a point query on

an R-tree. We need to do this for all the potential locations

indexed in RP, which makes the process a spatial join between



P and the set of all NFCs of C. The spatial join operation finds

out all intersected pairs between two sets of objects. In our

case, when P is a set of points, the spatial join returns for every

p, the set of NFCs that enclose p. Then we can identify IS(p)
using the clients corresponding to the NFCs that enclose p and

compute dr(p) for every p. We use a standard R-tree based

join algorithm [20] to join RP and Rn
C, which results in the

NFC algorithm, as summarized in Algorithm 4. Note that in

this algorithm, since the MBR of an entry en
c bounds NFC(c)

of en
c’s corresponding client c, we can compute dnn(c,F) as

1
2
edgeLength(en

c .mbr), where edgeLength() returns the length

of an edge of a square MBR (lines 12, 13).

VI. MAXIMUM NFC DISTANCE METHOD

We have proposed two methods based on common ap-

proaches to location optimization problems. However, those

methods both have some drawbacks. The QVC method needs

to perform a kNN search to find a nearest facility in each

quadrant for every potential location, which is expensive. The

NFC method is simple and efficient, but needs to maintain

an extra index, Rn
C. In dynamic environments, insertions and

deletions on data occur frequently. Maintaining two indexes on

the dataset C makes database management such as concurrency

control more complicated and brings significant overheads.

Therefore, having the extra index has been considered as a

serious drawback in the solutions to other types of location

optimization problems [10], [9], [21], [22]. We also view the

extra index for the NFC method as a serious drawback.

In this section, we propose a novel method that is simple

and efficient, but requires no extra index, so it overcomes the

drawbacks of the QVC and NFC methods. This method still

exploits the idea of NFCs. However, unlike the NFC method,

which uses an MBR to bound the NFCs of all clients in a node

of RC and physically stores all these MBRs in a separate tree

(Rn
C), this method uses just one value to describe a region that

encloses the NFCs of all clients in a node and stores that value

in the parent entry of the node of RC. Therefore, this method

avoids using another tree but achieves the same purpose. A

challenge in this method is to define a value for delimiting a

region that can enclose the NFCs of all clients in a node NC

of RC as tight as possible.

We propose to use a value with respect to a node called the

maximum NFC distance (MND), denoted as MND(NC) for a

node NC. The intuition is that given the NFCs of the clients

indexed by a node NC, we find a point from these NFCs whose

distance to the MBR of NC is the largest. This largest distance

defines MND(NC). If the distance between NC and a node NP

in RP (the R-tree on the set of potential locations) is larger

than or equal to MND(NC), then for any potential location p

in NP, no client in IS(p) is from sub(NC) since no point in

the MBR of NP will be enclosed by the NFC of any client in

sub(NC), where sub(NC) denotes the set of clients contained

in the subtree rooted at NC. In what follows, we first formally

define MND and then explain it in detail.

Given a leaf node NC in RC and the clients indexed in NC, we

find a client ci indexed in NC and a point oi on the boundary

MND region of
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Fig. 6. Examples of MND regions

of NFC(ci), so that for any other point o j on the NFC of

any client indexed in NC, minDist(oi,NC) ≥ minDist(o j,NC),
where minDist(o,N) denotes the minimum distance be-

tween two objects (either points or MBRs). Then we define

MND(NC) as minDist(oi,NC). The metric MND(NC) delimits

a rounded rectangular region such that for any point o on its

boundary, minDist(o,NC) = MND(NC) (cf. Fig. 6(a)). We call

this region the MND region of NC.

For non-leaf nodes, MND is defined recursively in a bottom-

up manner. Given a non-leaf node NC in RC and the child

nodes of NC, we find a point oi on the boundary of the

MND region of a child node Ni, so that for any other point

o j on the boundary of the MND region of a child node N j,

minDist(oi,NC)≥minDist(o j,NC). Then we define MND(NC)
as minDist(oi,NC), and it delimits the MND region of NC, the

rounded rectangular region in Fig. 6(b).

The definition of the MND region of NC guarantees that this

region must be intersected by a node NP in RP if sub(NC)∩
IS(p) 6= /0, where p is a potential location in the subtree rooted

at NP. If this region is not intersected by NP, then sub(NC)∩
IS(p) = /0 and we can discard the whole subtree of NC when

identifying IS(p). This observation, formalized in Theorem 1,

is the pruning strategy of the MND method.

Theorem 1: Let p be a potential location indexed in the

subtree rooted at NP, and minDist(NC,NP) be the minimum

distance between the MBRs of two nodes NC and NP. Then,

sub(NC)∩ IS(p) = /0 if minDist(NC,NP)≥MND(NC).

Proof: By definition, minDist(NC,NP) is the minimum

distance between a point in the MBR of NC and a point

in the MBR of NP. For any point p indexed in the subtree

rooted at NP, p is enclosed by the MBR of NP. Thus,

minDist(p,NC) ≥ minDist(NC,NP). If minDist(NC,NP) ≥
MND(NC), then minDist(p,NC) ≥ MND(NC). According to

the definition of MND(NC), p is not inside the NFC of any

client indexed by NC. Thus, sub(NC)∩ IS(p) = /0.

Theorem 1 suggests that we only need to check whether a

node NC’s distance to NP is less than MND(NC) to determine

whether any client c ∈ sub(NC) is in IS(p) for any potential

location p enclosed by NP. Like the other methods, we uses

an R-tree to index the clients, but in addition, we store the

MND value of a node Nm
C in its parent entry em

c , denoted as



em
c .mnd. To distinguish this R-tree from the normal R-tree on

C, we denote it as Rm
C . The algorithm for processing the query

mimics a spatial join on the two R-trees, Rm
C and RP. We

traverse the two trees simultaneously and compare every node

from Rm
C with every node from RP, starting from the roots. As

we traverse down the tree, we compare a node pair (NP,N
m
C )

only if minDist(NP,N
m
C ) < MND(Nm

C ); this condition can be

checked before retrieving Nm
C since MND(Nm

C ) is stored in

the parent entry of Nm
C . When the traversal of the two trees

finishes, all nodes that may contain points in IS(p) are checked

and hence we obtain IS(p). Algorithm 5 details the steps.

Algorithm 5: MND(NP, Nm
C , optLoc)

1 if NP and Nm
C are non-leaf nodes then

2 for (ep,e
m
c ) ∈ NP×Nm

C , minDist(em
c ,ep)< em

c .mnd do
3 MND(ep.childnode, em

c .childnode, optLoc);

4 else if NP is a leaf node and Nm
C is a non-leaf node then

5 for em
c ∈ Nm

C , minDist(em
c ,NP)< em

c .mnd do
6 MND(NP, em

c .childnode, optLoc);

7 else if NP is a non-leaf node and Nm
C is a leaf node then

8 for ep ∈ NP, minDist(Nm
C ,ep)< Nm

C .mnd do
9 MND(ep.childnode, Nm

C , optLoc);

10 else
11 for (ep,e

m
c ) ∈ NP×Nm

C , minDist(em
c ,ep)< em

c .mnd do
12 ep.dr← ep.dr+ em

c .dnn(c,F)−dist(em
c ,ep);

13 if ep.dr > optLoc.dr or optLoc = NULL then
14 optLoc← ep;

A. Efficient computation of the Maximum NFC Distance

The definition of MND does not give an efficient way for

its computation. According to the definition, MND can be

computed straightforwardly as follows. Suppose Nm
C is a leaf

(or non-leaf) node. We compute for every client c (or child

node N) indexed by Nm
C the largest minDist(o,Nm

C ) value for

a point o on the boundary of NFC(c) (or MND region of

N), denoted as maxMinDist(c,Nm
C ) (or maxMinDist(N,Nm

C )).
Since the MND region of Nm

C should enclose the NFCs (or

MND regions) of all Nm
C ’s children, MND(Nm

C ) must be the

largest among all these children’s maxMinDist values, that is:

MND(Nm
C ) =























max{maxMinDist(c,Nm
C )|c ∈ Nm

C },
if Nm

C is a leaf node

max{maxMinDist(N,Nm
C )|

N is a child node of Nm
C },

if Nm
C is a non-leaf node.

However, minDist(o,Nm
C ) is a piecewise function based on

the relative position of a point o and the MBR of Nm
C . The

computation of the maxMinDist values requires computing

the maxima of a piecewise function with two variables. This

is typically obtained by numerical methods, specifically, by

finding the stationary points of a Lagrange function. However,

numerical methods are iterative methods and there is no

guarantee on the number of iterations needed to find the

solution. Therefore, the computation cost is very high and

unpredictable for the straightforward way of computing MND.

Next, we propose a much more efficient method to compute

the MND. The key observation is that the MND can be derived

from those points on the boundary of NFC(c) (MND region

of a child node N) that are the “furthest” to Nm
C , and we can

limit our search for the “furthest” point within a set of four

candidate furthest points (CFPs) described as follows.

Fig. 7(a) illustrates the CFPs for a client c indexed in a leaf

node Nm
C . In the figure, M denotes the MBR of Nm

C , R denotes

NFC(c), R’s center point O is located at c and its radius r

denotes r’s NFD value. A horizontal line Lh and a vertical

line Lv intersect each other at O, and they intersect R at Ih1,

Ih2, Iv1 and Iv2, respectively. The four points Ih1, Ih2, Iv1 and

Iv2 are the CFPs of c. Similarly, Fig. 7(b) illustrates the CFPs

for a child node N of a non-leaf node Nm
C . In the figure, M1

denotes the MBR of N, R denotes the MND region of N, r

denotes MND(N) and O is R’s center point. The four points

Ih1, Ih2, Iv1 and Iv2 are the CFPs of N.

We denote the largest minDist(Ii,N
m
C ) value for the CFPs

as maxMinDist(I,M), where Ii denotes a CFP. We will prove

below (Theorems 2 and 3) that one of the CFPs must be the

“furthest” point from the boundary of NFC(c) (or the MND

region of a child node N) to Nm
C , i.e., maxMinDist(I,M) =

maxMinDist(c,Nm
C ) (or maxMinDist(N,Nm

C )) if Nm
C is a leaf

node (or a non-leaf node). The intuition here is that we can

divide the boundary of NFC(c) (or the MND region of a child

node N) into a set of arc segments, and for each segment, there

must be a CFP Ii such that for any point o on the segment,

minDist(Ii,N
m
C ) ≥ minDist(o,Nm

C ). We find the CFP with the

largest minDist(Ii,N
m
C ) value and it is the “furthest” point from

NFC(c) (or the MND region of N) to Nm
C .

O

Q

r

minDist(   ,    )I

minDist(   ,    )Q

h1

L h

vL

R
M

I v1

M

h2I

v2I

I

M

(a) CFPs for a client

M

IminDist(  ,    )

Q

r

L h

vL

Oh1I h2I

I v1

I v2

R

M1

M

(b) CFP for a node

Fig. 7. Candidate furthest points

Theorem 2: Given an MBR M, a circle R = (O,r) and a set

I of four candidate furthest points, the largest minDist value

from a point Q on the boundary of R to M, maxMinDist(R,M),
equals to maxMinDist(I,M).

Proof: If R is enclosed by M, then for every point

Q on R, minDist(Q,M) = 0. Thus, maxMinDist(R,M) =
maxMinDist(I,M) = 0.

Otherwise, there are the following two cases.

(1) The center point O is on the boundary of M (cf.

Fig. 8(a)). Without loss of generality, we assume O is on

the top edge of M. Then minDist(Iv1,M) = r. For any other

point Q on R, minDist(Q,M)< r. Thus, maxMinDist(R,M) =
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maxMinDist(I,M) = r.

(2) The center point O is inside M (cf. Fig. 8(b)). In this

case, we divide the boundary of R into eight arc segments

using four lines overlapping the four edges of M. A resultant

arc segment is categorized into group 1 if it passes through

one of the CFPs (e.g.,
_

GH passing through Ih1), and into group

2 if it does not (e.g.,
_

HA).

For the arc segments in group 1, the theorem holds because

for a point Q on any of these arc segments, minDist(Q,M)≤
minDist(Ii,M), where Ii denotes the CFP passed through by

this arc segment. For example, for a point QGH on
_

GH,

minDist(QGH ,M)≤ minDist(Ih1,M).

For group 2, without loss of generality, we prove that

for a point Q on
_

HA, minDist(Q,M) ≤ minDist(Ih1,M) or

minDist(Q,M)≤minDist(Iv1,M), where Ih1 and Iv1 are passed

through by the two arc segments
_

GH and
_
AB that are adjacent

to
_

HA, respectively.

Let the top left corner of M be K. As Fig. 8(b) shows,

radius OJ passes through K and intersects R at J. Then

minDist(J,M) = |JK|. Radius OIh1 is perpendicular to the left

edge of M and they intersect at S. Then minDist(Ih1,M) =
|Ih1S|. We prove minDist(J,M)< minDist(Ih1,M) as follows.

minDist(Ih1,M) = |Ih1O|− |SO|= r−|SO|
minDist(J,M) = |JO|− |KO|= r−|KO|
OIh1 ⊥ SK⇒ |KO|> |SO|







⇒

minDist(J,M)< minDist(Ih1,M).

Point J further divides
_

HA into two arc segments
_

HJ and
_
JA. For a point QHJ on

_
HJ, we prove minDist(QHJ ,M) <

minDist(Ih1,M). Similarly, we can prove minDist(QJA,M) <

minDist(Iv1,M) for a point QJA on
_
JA and the proof is omitted

due to space limit.

Proving minDist(QHJ ,M)< minDist(Ih1,M) equals to prov-

ing |QHJK| < |Ih1S|. First, we draw radius OQHJ , which

intersects M at N. Then we prove |QHJK| < |QHJN| and

|QHJN| < |Ih1S| so as to prove |QHJK| < |Ih1S|. The proof

of |QHJK| < |QHJN| is straightforward based on the law of

sines, since 6 QHJKN > 6 QHJNK. Meanwhile, |QHJN|< |Ih1S|
holds because |QHJN|= r−|NO|, |Ih1S|= r−|SO| and |NO|>
|SO|. Thus, |QHJK|< |QHJN|< |Ih1S| and minDist(QHJ ,M)<
minDist(Ih1,M).

Now we have proved that for a point Q on an arc segment in

either group 1 or group 2, minDist(Q,M)≤maxMinDist(I,M).
Therefore, the theorem is proved.

Theorem 3: Given two MBRs M and M1, the MND re-

gion R of M1 centered at O and a set I of four candidate

furthest points, the largest minDist value from a point Q

on the boundary of R to M, maxMinDist(R,M), equals to

maxMinDist(I,M).
Proof: The proof of this theorem is very similar to that

of Theorem 2. Thus, we only provide a sketch of the proof.

If R is enclosed by M, the theorem holds because

minDist(Q,M) = 0 for every point Q on R’s boundary.

Otherwise, there are the following two cases.

(1) The center point O is on the boundary of M.

Like case (1) in Theorem 2, the theorem holds because

maxMinDist(R,M) = maxMinDist(I,M) = r.
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(2) The center point O is inside M. As shown in Fig. 9, we

draw four circles R1 = (O1,r), R2 = (O2,r), R3 = (O3,r) and

R4 = (O4,r) centering at the four corners O1, O2, O3 and O4

of M1, respectively. For each circle, a horizontal line and a

vertical line intersecting at its center point also intersect the

boundary R. This results in eight candidate furthest points of

the four circles, denoted by A, B, ..., H. The CFPs divide R

into eight segments. The resultant segments are categorized

into two groups. Every segment in group 1 passes through

one of the CFPs, while no segment in group 2 does.

For a point Q on a segment in group 1, the theorem holds

because there is a CFP of M1 in the segment.

For group 2, by definition, each segment in it must

be overlapped by one of the circles in {R1,R2,R3,R4}.
Then Theorem 2 guarantees the theorem’s correctness.

For example,
_

HA belongs to this group and it is over-

lapped by R1. Theorem 2 guarantees that, for any point o

on
_

HA, minDist(o,M) ≤ minDist(A,M) or minDist(H,M).
At the same time, minDist(A,M) ≤ minDist(Iv1,M) and

minDist(H,M)≤minDist(Ih1,M). Therefore, minDist(o,M)≤
minDist(I,M), where I is one of the CFPs of M1.

Theorems 2 and 3 provide an efficient way to compute the

MND, which requires the computation of the minDist values

for the four CFPs. The specific steps are as follow.

We denote the coordinates of O as (Ox,Oy), and the

coordinates of Ih1, Ih2, Iv1 and Iv2 as (Ox− r,Oy), (Ox + r,Oy),



(Ox,Oy + r) and (Ox,Oy− r), respectively. Let M be (Mx−,

Mx+, My−, My+) (“−” and “+” stand for lower bound and

upper bound, respectively). Then, minDist(Ih1,M) = Mx− −
(Ox−r), minDist(Ih2,M) = (Ox+r)−Mx+, minDist(Iv1,M) =
(Oy + r)−My+ and minDist(Ih2,M) = My−− (Oy− r). As a

result, according to Theorem 2, we have:

maxMinDist(R,M) = max{Mx−− (Ox− r),
(Ox + r)−Mx+, My−− (Oy− r), (Oy + r)−My+}

(1)

Now we can compute maxMinDist(c,Nm
C ) using Equation (1)

for a client c indexed in a leaf node Nm
C . Further, we

can compute MND(Nm
C ) as follows since it is defined as

max{maxMinDist(c,Nm
C )|c is a client indexed by Nm

C }.

MND(Nm
C ) = max{d1,d2,d3,d4}, where

d1 = max{cy +dnn(c,F)|c ∈ Nm
C }−max{cy|c ∈ Nm

C },
d2 = max{cx +dnn(c,F)|c ∈ Nm

C }−max{cx|c ∈ Nm
C },

d3 = min{cy|c ∈ Nm
C }−min{cy−dnn(c,F)|c ∈ Nm

C },
d4 = min{cx|c ∈ Nm

C }−min{cx−dnn(c,F)|c ∈ Nm
C }.

According to Theorem 3, we can replace c by N and replace

dnn by MND in the above equation to obtain an equation for

computing the MND value of a non-leaf node Nm
C , where N

denotes a child node of Nm
C and MND denotes its MND.

Compared with the straightforward MND computation ap-

proach, which requires an expensive iterative method for

computing maxima, the above proposed method requires only

several arithmetic operations, which has a constant low cost.

As the MND computation is performed recursively in a bottom

up manner, it resembles the procedure of MBR computation

for R-tree construction and maintenance. Therefore, the MND

computation can be integrated straightforwardly into the stan-

dard R-tree procedures with negligible overhead.

VII. COST ANALYSIS

In this section, we analytically compare for all described

methods (SS, QVC, NFC and MND) the precomputation cost,

I/O cost, and CPU cost. Table III summarizes the analytical

results, but omits CPU cost as it is just the product of I/O cost

and processing cost per node (block).

We first introduce the notation and equations used in the

analysis. Let Cm be the maximum number of entries in a disk

block (i.e.,Cm = block size / size of a data entry). Let Ce be

the effective capacity of an R-tree, i.e., the average number

of entries in an R-tree node. The average height of an R-

tree is h =
⌈

logCe
n
⌉

where n is the cardinality of the dataset;

the cardinalities of C, F and P are denoted by nc,n f and np,

respectively. The expected number of nodes in an R-tree is

the total number of nodes in all tree levels (leaf nodes being

level 1 and the root node being level h), which is ∑h
i=1

n
Ci

e
=

n
(

1
Ce

+ 1
C2

e
+ · · ·+ 1

Ch
e

)

= n
Ce−1

(1− 1
Ch

e
)≈ n

Ce−1
. We assume an

R-tree node has the size of a disk block.

A. Precomputation and Index Cost

We precompute dnn(c,F) for all methods. Computing

dnn(c,F) for all clients has the cost of O(nc · n f ) since

dist(c, f ) for each pair of client c and existing facility f needs

TABLE III
SUMMARY OF COSTS

Method Precomp Indexes I/O Cost

SS dnn N/A
npnc

C2
m

QVC dnn RC, RF
np

Cm
+ k

npn f

Ce−1+

np(1−wq)
logCe

nc

Cm

NFC dnn RC, Rn
C, RP (1−wn)

ncnp

(Ce−1)2

MND dnn Rm
C , RP (1−wm)

ncnp

(Ce−1)2

to be computed. The result of dnn(c,F) may be incrementally

maintained and therefore the cost is amortized.

QVC uses RC and RF . NFC and MND all use RP. In

addition, NFC uses RC and the RNN-tree Rn
C, while MND

uses the R-tree variant Rm
C . The cost of maintaining any of

the R-tree variants is very similar to the cost of maintaining

a traditional R-tree. For example, Rn
C has the same Cm and Ce

as RC, so it has almost the same maintenance cost as RC. Rm
C

has an additional attribute in each entry, which reduce Ce a

little bit. However, the effect on the height of the tree is very

small. For example, in our experiments, where every entry of

RC stores only its MBR and a child node pointer, the height

of Rm
C is less than 10% larger than that of RC. The difference

in height will be even smaller in practical databases where an

entry is much larger than just an MBR. Therefore, we do not

distinguish Cm (Ce) of different R-tree variants.

In summary, except for the costs of building indexes, all

methods have the same precomputation cost. QVC and MND

have similar R-tree maintenance costs and the NFC method

maintains one more R-tree.

B. I/O Cost

For SS, the data points are retrieved in blocks from the disk;

the I/O cost is IOs =
np

Cm

nc
Cm

=
npnc

C2
m

.

For the other three methods, the I/O costs depend on the

number of R-tree nodes accessed. In NFC and MND, RP is

traversed in a depth-first order and for every node NP of RP,

we need to retrieve the nodes in the client R-tree (Rn
C or

Rm
C ) that satisfy certain conditions with NP. In the worst case,

every node of RP is traversed, and for every node of RP, the

whole client R-tree is traversed. Therefore, the worst-case I/O

costs for these two methods are the same: nc
Ce−1

np

Ce−1
=

ncnp

(Ce−1)2 .

While this worst-case I/O cost is worse than the I/O cost of

SS, in practice, many nodes of the R-trees are pruned during

traversals. We quantify the percentage of pruned nodes in

the simultaneous traversal of the two R-trees as the pruning

power, denoted by w; the number of nodes accessed is then

(1−w)
ncnp

(Ce−1)2 , where w should be replaced by wn and wm for

NFC and MND, respectively. The cost difference among the

two methods lies in the different pruning powers of the two

algorithms. Next, we focus on their pruning power differences.

The pruning power is associated with the metrics used in

the determination of whether the subtree rooted at a client

R-tree node indexes the clients in IS(p) of some potential

location p, which are dnn(c,F) and MND for NFC and

MND, respectively. The affected regions corresponding to



these metrics are the MBR of the NFCs and the MND region.

According to the definitions of these metrics, the area covered

by the MND region is very similar to that covered by the MBR

of the NFCs. This means that wm ≈ wn and hence IOm ≈ IOn.

This relationship is also observed in our experiments.

QVC involves the following I/O costs. (i) Fetch P from the

disk in blocks, IOq1 =
np

Cm
. (ii) For each potential location p,

perform a best-first NN query to construct AIR(p): the I/O cost

is IOq2 = np · k
n f

Ce−1
where k indicates the average percentage

of RF nodes accessed in the NN query. (iii) For every AIR(p),
perform a window query on RC: the I/O cost is IOq3 =

np

Cm
·

(1−wq) logCe
nc. Therefore, the I/O cost of QVC is IOq =

IOq1 + IOq2 + IOq3 =
np

Cm
+ k

npn f

Ce−1
+

np

Cm
(1−wq) logCe

nc.

The I/O cost of SS is much larger than that of NFC or

MND due to its lack of pruning capability. The I/O cost of

QVC depends on Cm and can be larger than SS under certain

circumstances as follows. Let IOnn = k
n f

Ce−1
(i.e., the I/O cost

of the NN query discussed above). Based on the I/O costs of

SS and QVC, if C2
mIOnn > nc, we obtain CmIOnn >

nc
Cm

. Hence,
np

Cm

(

1+Cmk
n f

Ce−1
+(1−wq) logCe

nc

)

>
npnc

C2
m

and thus, IOq >

IOs. For example, in our experiments, when nc = 10K and

Cm = 204, IOq > IOs whenever IOnn > 2.4. This is a situation

where NN query only accesses 2.4 nodes in RF . In general,

IOs > IOq when nc is huge or n f is small.

C. CPU Cost

The CPU cost can be considered as the product of the CPU

cost per block (node) multiplied by the number of blocks

(nodes) accessed. The I/O cost analysis provides the number

of nodes accessed. The CPU cost per block, denoted by t,

involves MBR intersection check and/or metric computation.

The NFC method requires the intersection examination of

the MBRs, and MND requires only the computation of minDist

and the comparison of minDist and MND. Therefore tm ≈
tn. For QVC, recall that IOq = IOq1 + IOq2 + IOq3. Since the

first part only involves disk block retrieval, there is very little

CPU cost; the CPU cost of QVC is mainly tq2IOq2 + tq3IOq3

where tq2 corresponds to the CPU cost per pair of RC and

RF nodes during the construction of AIR(p) and tq3 indicates

the CPU cost per pair of AIR(p) block and RC node. The

third part, tq3IOq3, is comparable with the CPU costs of NFC

and MND. In fact tq3 ≈ tn because both methods perform a

window query with the query window being either AIR(p)
or NP.mbr, respectively. Due to the additional quasi-Voronoi

cell construction stage, QVC has higher CPU cost in general

compared with NFC and MND.

While the other methods only compute the values of several

metrics for each pair of accessed nodes, SS computes dist(c, p)
for every pair of client c and potential location p for each pair

of blocks of the client set and the potential location set. Hence,

the CPU cost per pair of blocks of SS, ts, is much higher than

that of any other method. Also, IOs is not smaller than other

I/O costs. Thus, SS has the highest CPU cost.

In summary, we have CPUs >CPUq >CPUm ≈CPUn. Our

experimental study will also validate this inequality.

TABLE IV
PARAMETERS AND THEIR SETTINGS

Parameter Setting

Data distribution Uniform, Gaussian, Zipfian

Client set size 10K, 50K, 100K, 500K, 1000K

Existing facility set size 0.1K, 0.5K, 1K, 5K, 10K

Potential location set size 1K, 5K, 10K, 50K, 100K

µ (Gaussian distribution) 0

σ2 (Gaussian distribution) 0.125, 0.25, 0,5, 1, 2

N (Zipfian distribution) 1000

α (Zipfian distribution) 0.1, 0.3, 0.6, 0.9, 1.2

VIII. EXPERIMENTAL STUDY

In this section, we report the results of our experiments.

Section VIII-B studies the behavior of the different methods

using uniform datasets, varying the sizes of the different

datasets used in the query. Section VIII-C studies the per-

formance of the methods using datasets of Gaussian and

Zipfian distributions, varying the skewness of the data dis-

tribution. Section VIII-D presents the experimental results on

real datasets.

A. Experimental Setup

All experiments were conducted on a desktop PC with 3GB

RAM and 2.66GHz Intel(R) Core(TM)2 Quad CPU. The disk

page size is 4K bytes. We measure the running time, the

number of I/Os and the index size.

We conduct experiments on synthetic and real datasets. Syn-

thetic datasets are generated with a space domain of 1000×
1000. The dataset cardinalities range from 100 to 1000000.

Three types of datasets are used: (i) Uniform datasets, where

data points are distributed randomly; (ii) Gaussian datasets,

where data points follow the Gaussian distribution; (iii) Zipfian

datasets, where data points follow the Zipfian distribution. The

parameters of the synthetic data experiments are summarized

in Table IV, where values in bold denote default values.

We use two groups of real datasets provided by Digital Chart

of the World [23], which contain the points of populated places

and cultural landmarks in the US and in North America. We

name them as the US group and the NA group, respectively.

For each group of datasets, the populated places are used as the

client set C. The cultural landmark dataset is divided into two

datasets. Half of the cultural landmarks are chosen randomly to

form the existing facility set F , and the remaining are used as

the potential location set P. For the US group, the cardinalities

of C, F , P are 15206, 3008 and 3009, respectively, while those

for the NA group are 24493, 4601 and 4602.

We use the R-tree [18] (or its variants as proposed in this

paper) as the underlying access methods.

B. Experiments on Uniform Datasets

The following experiments focus on the effect of dataset

cardinalities. We vary the sizes of C, F and P independently.

1) Varying the Number of Clients: In our experiments, we

show that MND is the only method whose performance is as

good as NFC in terms of the running time and the number of

I/Os, while MND has a much smaller index size.



The results for the experiments that vary the number of

clients are shown in Fig. 10. From this figure, we can see that

the NFC method and the MND method perform best in terms

of the running time and the number of I/Os (cf. Fig. 10(a)

and (b)). Meanwhile, the MND method has a much smaller

index size compared to the NFC method (cf. Fig. 10(c)).

Fig. 10(d) gives a different representation of the index size

requirements using the measure relative to the index size of

the NFC method. For example, for the 10K datasets the index

size of the MND method is about 70% of that of the NFC

method, and for the 100K datasets, the index size of the MND

method drops to about 60% of that of the NFC method.
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Fig. 10. The effect of client set size

From Fig. 10, we also observe that, compared with other

methods, the SS and QVC methods have significantly higher

running time and larger numbers of I/Os, although the QVC

method requires slightly less index size than the MND method

does and the SS method does not require any index. When the

cardinality of the client set is large enough (e.g. 500K), the

number of I/Os of SS exceeds that of QVC. The observations

above are in accordance with the cost analysis. QVC traverses

RF for each potential location, while either NFC or MND only

traverses the R-trees once on average for the entire potential

location set. Thus, QVC has larger number of I/Os and higher

running time. For SS, IOs > IOq whenever nc is large. It is

slow because it does not have any pruning strategy.
2) Varying the Number of Existing Facilities: The running

time, the number of I/Os and the index size of the methods,

with respect to the number of existing facilities, are shown in

Fig. 11. Again, MND and NFC are the most efficient methods

in terms of the running time and the number of I/Os, while

MND outperforms NFC in terms of index size due to NFC’s

extra index tree for client indexing.

Other observations can be made from the figure are as

follows. First, in terms of the running time and the number of

I/Os, the comparative performance of the methods is similar to

that of the experiments varying the number of clients. Second,

an increase in the number of facilities yields a drop in both

the running time and the number of I/Os. The effect is more

explicit for the NFC and MND methods. The reason is that on
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Fig. 11. The effect of existing facility set size

average the more the facilities, the shorter the nearest facility

distance. In other words, dnn(c,F) decreases with the increase

of the number of existing facilities. As a result, the areas of

NFCs and MND regions decrease and the pruning power is

enhanced. Therefore, the number of I/Os and running time are

reduced. SS is not affected due to its lack of pruning capability

and it does not access the set of F (it accesses F for dnn(c,F)
computation, which is assumed to be precomputed). Third,

when the number of facilities is small enough, the number of

I/Os of QVC is less than that of SS, which is in accordance

with our cost analysis. Fourth, varying the number of existing

facilities only affects the index size of the QVC method, since

only this method requires an index on F .

3) Varying the Number of Potential Locations: Experiments

that vary the number of potential locations also give results

that are very similar to those of the experiments varying the

number of clients, as shown in Fig. 12. MND still shows high

efficiency in terms of the pruning time, the number of I/Os

and the index size.
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Fig. 12. The effect of potential location set size

From Fig. 12(c) and (d), we notice that the index sizes of

the SS and QVC methods are not affected by the increase in



the number of potential locations. This is because these two

methods do not index the potential locations, and as a result,

they are both slow and have large numbers of I/Os. We also

observe that the growth in the number of potential locations

has the same effect on the running time and the number of

I/Os as increasing the number of clients. When the number of

potential locations np becomes very large (i.e. np ≥ 10K), the

advantages of NFC and MND in terms of the number of I/Os

become much significant (cf. Fig. 12(b)).

C. Experiments on Gaussian and Zipfian Datasets

In the following experiments, we vary the distribution of the

datasets. We focus on performance of the algorithms in terms

of the running time and the I/O cost rather than the index size

because the influence of detail data distribution on the index

size requirement is not the major concern of this paper.
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Fig. 13. The effect of σ2 in Gaussian distribution

Fig. 13 shows the results of experiments on Gaussian

datasets varying the value of σ2. For the Gaussian datasets,

varying σ2 means varying the degree of the inclination for

the data points to cluster at the central area of the distribution.

Increasing σ2 leads to less dense data points at the center.

We see that, compared with varying the dataset cardinalities,

varying σ2 does not affect much of the algorithm performance.

NFC and MND are still the two most efficient methods. These

results follow our cost analysis.

Experimental results on datasets of Zipfian distribution have

similar behavior to the above results and are omitted.

D. Experiments on Real Datasets

The experimental results on real datasets are shown in

Fig. 14. The comparative performance of the methods is

similar to that of experiments conducted for the synthetic

datasets. QVC shows the worst performance in terms of the

number of I/Os. While the number of I/Os of SS is close to

that of QVC, it has the largest running time due to the lack of

pruning capability. NFC and MND outperform other methods

in terms of both the number of I/Os and the running time.

Overall, the MND method outperforms the other methods.
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Fig. 14. Performance comparison on real datasets

IX. CONCLUSIONS

We formulated the min-dist location selection problem and

conducted a comprehensive study. We proposed two methods,

QVC and NFC, based on common approaches to location

optimization problems. Our experiments show that they sig-

nificantly outperform the sequential scan algorithm. However,

they both have some drawbacks. NFC performs the best but

requires maintaining an additional index. QVC requires fewer

indexes, but is not as efficient as NFC. We further proposed

the MND method, which has very close efficiency to NFC

without the need of maintaining an additional index. We

provided a detailed comparative cost analysis for all methods

and performed extensive experiments to evaluate the empirical

performance of them. The results agree with our analysis and

validate the advantages of the MND method.
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