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ABSTRACT
We propose and study a new type of facility location selection
query, the top-k most influential location selection query. Giv-
en a set M of customers and a set F of existing facilities, this
query finds k locations from a set C of candidate locations with
the largest influence values, where the influence of a candidate lo-
cation c (c ∈ C) is defined as the number of customers in M who
are the reverse nearest neighbors of c. We first present a naive algo-
rithm to process the query. However, the algorithm is computation-
ally expensive and not scalable to large datasets. This motivates
us to explore more efficient solutions. We propose two branch and
bound algorithms, the Estimation Expanding Pruning (EEP) algo-
rithm and the Bounding Influence Pruning (BIP) algorithm. These
algorithms exploit various geometric properties to prune the search
space, and thus achieve much better performance than that of the
naive algorithm. Specifically, the EEP algorithm estimates the dis-
tances to the nearest existing facilities for the customers and the
numbers of influenced customers for the candidate locations, and
then gradually refines the estimation until the answer set is found,
during which distance metric based pruning techniques are used to
improve the refinement efficiency. BIP only estimates the number-
s of influenced customers for the candidate locations. But it uses
the existing facilities to limit the space for searching the influenced
customers and achieve a better estimation, which results in an even
more efficient algorithm. Extensive experiments conducted on both
real and synthetic datasets validate the efficiency of the algorithms.
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Figure 1: The top-k most influential location selection problem

1 Introduction
A common problem many businesses and organizations share is
finding a suitable place for the establishment of a new facility. For
example, McDonald’s may want to add a new restaurant to com-
pete with other restaurants; a wireless service provider may want
to add a hotspot to a densely populated area to improve the qual-
ity of service. In most cases, there is a set of candidate locations
to select from (e.g., real estate agents have databases of places for
lease or sale). Then, an important business decision (for McDon-
ald’s or a wireless service provider) is to select a location that at-
tracts as many customers as possible. Sometimes, one may want to
first have a number (k) of such locations and then make decisions
with further considerations. In this paper, we investigate this prob-
lem of finding the top-k candidate locations that attract the largest
numbers of customers, where k is a user input parameter. These
k candidate locations can then be fed to further decision making
procedures for selecting an overall best location for the new facili-
ty. Here, we assume a customer is attracted by her nearest facility
and the business has the knowledge of customer distribution from
surveys or past sales records.

In urban development simulation, very often urban planners need
to simulate the above facility location selection procedure, so that
the influence of establishing a new public facility or business cen-
ter on the residents can be observed. Figure. 1 gives an example,
where circles, pentagons and stars denote customers, existing fa-
cilities and candidate locations (labeled as c1, ..., c6), respectively.
First, for every candidate location ci, we compute the number of
customers ci can attract. For example, if a new facility is estab-
lished at c1, then it will attract 4 customers. Similarly, we can com-
pute the numbers for c2, c3, c4, c5 and c6, which are 6, 3, 5, 2 and
1, respectively. Suppose now we want to have the top-3 candidate
locations that attract the largest numbers of customers, i.e., k = 3.
Then, c2, c4 and c1 are returned as the answer set.

The above location selection problem aims at maximizing the
“influence” of the candidate locations, where the influence of a can-



didate location c denotes the number of customers whose respective
nearest facility will be c if a new facility is established at c. This
problem is frequently raised in applications like urban development
simulation. Thus, we formulate it as the top-k most influential lo-
cation selection query. We propose algorithms to process this query
efficiently and make the following contributions.

• We formulate the top-k most influential location selection query.
• We analyze the properties of the query and propose pruning

techniques to reduce the search space for processing the query.
• Based on the proposed pruning techniques, we propose two al-

gorithms, namely, the Estimation Expanding Pruning algorithm
(EEP) and the Bounding Influence Pruning (BIP) algorithm, to
efficiently process the query.

• We perform an extensive experimental study. The results con-
firm the effectiveness of the proposed pruning techniques and
the efficiency of the proposed algorithms.

The rest of the paper is organized as follows. § 2 reviews previ-
ous studies on related topics. § 3 defines the problem and presents
the naive algorithm. § 4 and 5 describe our EEP algorithm and BIP
algorithm, respectively. § 6 presents the experimental results and
§ 7 concludes the paper.

2 Related Work
The studied problem is based on the concept of reverse nearest
neighbor (RNN) query [10], which finds for a query object o a set
of objects, who perceive o as their nearest neighbors. Since it was
proposed, various techniques [14, 16, 1] have been proposed to pro-
cess this type of query and its variants under different settings. For
example, a most relevant RNN variant, the reverse k nearest neigh-
bor (RkNN) query, extends the answer set to include objects who
perceive the query object as among their k nearest neighbors. Wu
et al. [16] study the RkNN query on continuously moving object-
s, which correlates two sets of moving objects according to their
closeness. The continuous join query on moving objects [18] al-
so correlates multiple sets, but it focuses on intersection of objects
with a time constraining technique rather than closeness. While
these studies work well for processing a single R(k)NN query, they
are not designed to compute R(k)NNs for large amount of objects
at the same time, which is one of the key difficulties in our study.

Regarding to facility location problems, the most relevant study [8]
ranks the candidate locations according to their influence values.
However, the proposed solution cannot find the top-k locations and
then early terminates the algorithm. Therefore, it does not solve our
problem, while our proposed algorithms can be used to rank the lo-
cations by setting k to the number of candidate locations. Other
studies on facility location problems have quite different problem
settings. Cabello et al. [2] propose a facility location problem based
on the MAXCOV optimization criterion, which is to find regions in
the data space to maximize the numbers of RNNs for the points in
these regions. The study gives a theoretical analysis, but no ef-
ficient algorithm is presented. Chen et al. [4] study this problem
further and propose an efficient solution for finding the nearest fa-
cilities. Xia et al. [17] propose the top-t most influential sites prob-
lem, which finds the top-t most influential existing sites within a
given region Q. Unlike our study, they do not consider any candi-
date locations. Du et al. [5] propose to find a point from a contin-
uous candidate region that can maximize the influence value. They
use L1 as the distance metric and have a strong assumption that
all the roads are either horizontal or vertical. We consider L2 dis-
tance, which is a more general problem setting. More importantly,
we consider a candidate location set instead of a candidate region.

This is a more practical problem setting because in many real ap-
plications, we can only choose from some candidate locations (e.g.
a McDonald’s restaurant can only be opened at a place for lease or
sale rather than anywhere in a region). Cheema et al. [3] propose
to find an influence zone for a query location c, where customers
inside this zone form exactly the RkNN query result of c. They
compute Voronoi cells on the fly for the query location to obtain
its RkNNs. Similarly, Wong et al. [15] propose to find the optimal
region in which all query objects are of the maximum influence.
Compared with this problem, our problem focuses on the number-
s of RNNs of the candidate locations instead of specific locations
of the RNNs. These problems use different settings from ours.
Therefore, their solutions do not apply.

3 Preliminaries
3.1 Problem Definition

We assume three object sets, namely, a set of customers M , a set
of existing facilities F and a set of candidate locations C. All the
data objects (customers, existing facilities or candidate locations)
are represented by points in an Euclidean space. We may refer to
a data object as a data point or simply as a point. The distance
between two points p1 and p2 is denoted as d(p1, p2).

Given a customer m ∈ M , we denote her nearest existing fa-
cility as nf(m), and call the distance between m and nf(m),
d(m,nf(m)), the nearest facility distance (NFD) of m. We say
that customer m is attracted by a candidate location c ∈ C if the
distance between m and c is less than the nearest facility distance of
m, i.e., d(m, c) < d(m,nf(m)). In this case, if we add a facility
at c, it will become the new nearest facility of m.

A candidate location c ∈ C may attract multiple customers.
The number of these attracted customers defines the influence of c,
inf(c). Formally, inf(c) = |{m ∈ M |d(m, c) < d(m,nf(m))}|.

The top-k most influential location selection query is to find k
candidate locations that attract the largest numbers of customers.

DEFINITION 1. Top-k Most Influential Location Selection (TILS)
Query: Given a constant k, a set of points M as customers, a set
of points F as existing facilities and a set of points C as candidate
locations, the top-k most influential location selection query finds
a set C′ ⊂ C with k points, so that ∀ci ∈ C′, cj ∈ C \ C′ :
inf(ci) ≥ inf(cj).

We call the subset C′ the top-k most influential location set and
denote it as TOPINF(K,M,F,C)1. Next, we present a naive algo-
rithm to find this subset.

3.2 A Naive Algorithm

A naive algorithm (NA) to process the TILS query is to first com-
pute the nearest facility distance for every m ∈ M , which is done
by scanning F to find m’s nearest existing facility. Then, for every
candidate location c ∈ C, we scan the customer set M . If the dis-
tance between c and a customer m, d(c,m), is less than the nearest
facility distance of m, i.e., c attracts m, then we increment the in-
fluence value of c. After we have scanned every pair of c and m, we
obtain the influence value for every c. We then sort the candidate
locations according to their influence values, and output the first k
candidate locations in the sorted result as the query answer set.

The NA algorithm is inefficient in that it has to scan every pair
of customer and existing facility to find customers’ nearest exist-
ing facilities, and every pair of candidate location and customer to
compute candidate locations’ influence values. This motivate us
1Note that there may be ties in the influence values. To simplify our
discussion, we always return the first k candidate locations found
that have the largest influence values.



to explore effective pruning techniques to reduce the search space.
We assume that the datasets are maintained in spatial indexes 2 and
propose two algorithms utilizing different geometric properties to
achieve effective pruning. In what follows, we present the overall
ideas of these two algorithms. Technical details are omitted due to
space limit and they are given in a technical report [9].

4 Estimation Expanding Pruning
In this section, we propose an algorithm that estimates the distances
to the nearest existing facilities for the customers and the numbers
of influenced customers for the candidate locations, and gradually
refines these estimations to obtain k candidate locations with the
largest influence values. We use two R-trees and an R-tree variant
to index the three datasets. The estimations and the refinement are
performed during a traversal on the trees (expanding tree nodes),
where the importance value is introduced to help achieve a best first
tree traversal while branch and bound techniques are introduced
to prune the search space. We call this algorithm the Estimation
Expanding Pruning (EEP) algorithm.

EEP indexes the set of existing facilities F and the set of can-
didate locations C with two R-trees trF and trC , respectively. It
indexes the set of customers M with an R-tree variant called the
aggregate R-tree (aR-tree) [11] trM , where a tree node stores the
number of data objects that are enclosed by its MBR in addition to
what is stored in a regular R-tree node. These three trees are tra-
versed simultaneously. The traversal is managed using three auxil-
iary lists LM , LF and LC , which store objects (either nodes or data
objects) from trM , trF and trC , respectively. For an object O in
an auxiliary list, we define its importance value with its estimated
distance to its nearest existing facility (if O is an object in the cus-
tomer tree trM ) or estimated number of influenced customers (if O
is an object in the existing facility tree trF or the candidate location
tree trC ). We use the importance value to determine which objects
should be accessed first, and which objects should be pruned. Ev-
ery object in these lists stores some influence relation information
that indicates its position relation with the objects in other lists and
will be used for importance value computation. Initially, each of
these three lists contains only the root node of the corresponding
tree. Then, these three lists are accessed repeatedly in the order of
LM , LF and LC .

Every time a list L is accessed, EEP computes the importance
value imp(O) for every object O contained in L. The object in
L with the largest importance value is accessed first. If the ac-
cessed object O is a node, the following 5 steps are performed: (i)
O’s child objects (either nodes or data objects) use O’s influence
relation information to compute their own influence relation infor-
mation according to their positions; (ii) EEP prunes a child object
O′ of O if the influence relation information of O′ indicates that
the data objects enclosed in O′ will not influence or be influenced
by the data objects enclosed in the objects of other lists; (iii) if
O is a node in trC , we compute an influence value upper bound
for each of its child objects O′, denoted by maxinf(O′), which
is an upper bound of the influence value for all the candidate lo-
cations enclosed by O′. We prune O′ if maxinf(O′) < infpr ,
where infpr is an influence threshold value used for pruning ob-
jects in trC from further consideration. (iv) the unpruned child
objects are used to update the influence relation information of the
objects in other lists and further prune some of the objects. (v) EEP
removes O and inserts the unpruned child objects of O into L. If
the accessed object O is a candidate location c ∈ C, EEP com-
putes the maximum and minimum possible influence values for c,

2We assume the R-tree [6] (or its variant), although our algorithms
apply to any hierarchical index.

denoted by maxinf(c) and mininf(c), and compare mininf(c)
with the largest maxinf value, infmx, for all the objects in LC .
If mininf(c) ≥ infmx, then c is put in the query answer set
TOPINF(K,M,F,C) and the pruning influence value infpr is updat-
ed to mininf(c). If O is an existing facility or a customer, there
is no computation required for processing O. However, we cannot
simply remove O because there are objects in other lists that are re-
lated to O. Therefore, EEP skips it and continues to access objects
in other lists. The algorithm terminates when TOPINF(K,M,F,C)
is filled with k candidate locations and no other candidate location
can have larger influence values than those obtained so far.

5 Bounding Influence Pruning
This section proposes a second strategy to estimate and refine the
influence values for candidate locations. This strategy employs the
concept of influencing region, which is a region computed from the
existing facilities near a candidate location c to enclose all the cus-
tomers who are influenced by c. The number of customers in this
region forms an upper bound for c’s influence value. By gradually
refining the influencing region (pruning customers), we reduce c’s
influence value upper bound until we get c’s exact influence value.

We present a branch and bound algorithm called the Bounding
Influence Pruning (BIP) algorithm that utilizes the above strategy
to process the TILS query. Like the EEP algorithm, the BIP algo-
rithm also indexes the set of candidate locations C and the set of
existing facilities F with two R-trees trC and trF . It indexes the
set of customers M with an aR-tree trM . BIP also takes a best first
approach. The algorithm uses a priority queue QC to perform a
best first traversal on trC , where each queue element is a node NC

from trC , associated with a set of relevant F nodes NC .RF from
trF for influencing region computation, a set of relevant M nodes
NC .RM from trM for influence value estimation, and an estimat-
ed upper bound for the influence values of the candidate locations
enclosed by the MBR of NC as NC ’s priority. To simplify the dis-
cussion, we call this upper bound the influence value upper bound
of NC . Initially, QC only contains the root node of trC , denoted as
rootC , with rootC .RF = {rootF } and rootC .RM = {rootM},
where rootF and rootM denote the root nodes of trF and trM .

Every time QC is accessed, the first node NC in QC is popped
out. If NC is a non-leaf node, the algorithm (i) retrieves NC ’s child
nodes, (ii) constructs their own sets of relevant nodes according to
NC .RF and NC .RM , (iii) computes their influencing regions and
influence value upper bounds, (iv) removes a child node if its influ-
ence value upper bound is less than the smallest influence value of
the candidate locations in TOPINF(K,M,F,C), infpr , and (v) push-
es the unpruned child nodes into QC . If NC is a leaf node, the
algorithm (i) retrieves the candidate locations indexed in NC , (ii)
computes their own influencing regions and exact influence values
using NC .RF and NC .RM , (iii) inserts a candidate location into
TOPINF(K,M,F,C) if its influence value is larger than infpr , and
(v) updates infpr . The algorithm stops when QC = ∅.

6 Performance Study
6.1 Experimental Settings
All experiments were conducted on a PC with a 2GHz CPU and
2GB RAM. R-trees and aR-trees are used to index the datasets.
With practical cardinalities of the three datasets, the total data size
is less than 100MB. Given the current computer memory size, it is
reasonable to assume that all the datasets reside in the memory and
our performance measurement focuses on the total response time.
We also measure the number of distance metric computations of
the algorithms, which is a good indicator of their pruning power.

We conduct experiments on both synthetic and real datasets. Syn-
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Figure 2: Effect of dataset cardinality on the total response time

thetic datasets are generated in a space domain of 1000×1000. The
dataset cardinalities range from 1,000 to 2,000,000. To simulate
real-life scenarios, where residents and facilities’ distributions are
skewed while candidate locations’ distribution is relatively unifor-
m, we generate M and F with Zipfian distribution with α = 1.2,
and C with uniform distribution. To verify the effect of the value
of k, we use values ranging from 10 to 5,000. As previous stud-
ies [13, 7, 19] on main memory databases show, the tree node size
of main memory index has a significant impact on the index per-
formance. Therefore, we vary the node size ranging from 1K to
4K to study the effect of node size. By default, we use k = 10
and 2K as the tree node size. The real dataset we use is the North
East dataset [12]. which contains 123,593 postal addresses repre-
senting three metropolitan areas of the USA. We uniformly sample
from this dataset to generate M, F and C, with dataset cardinalities
ranging from 500 to 100,000.

6.2 Effect of Dataset Cardinality

Figure 2 shows the results of the experiments varying the dataset
cardinalities on the synthetic datasets. When varying the cardinali-
ty of one dataset, we set the cardinalities of the other two datasets
to their default values. The default values used are |M | = 1M,
|F |=50K and |C| = 10K.

From the figure, we can see that both the EEP and BIP algorithms
consistently outperform the NA algorithm in terms of the total re-
sponse time and the number of distance metric computations. This
is because of the pruning techniques used by EEP and BIP to reduce
the search space. We can also make other observations as follows.
(i) With the increase in the customer set cardinality, EEP and BIP
keep relatively stable performance, while NA’s performance deteri-
orates drastically (please note the logarithmic scale in the figures).
The reason is that NA sequentially scans all the datasets, and the
dataset cardinality directly affect the number of distance compu-
tations. In contrast, EEP and BIP use pruning techniques to keep
relatively small search spaces and thus achieve much better perfor-

mance. (ii) With the increase in the number of existing facilities,
the number of distance metric computations of BIP becomes small-
er. This is because BIP uses the set of F to prune some of the nodes
in trF as well as trM . More existing facilities means larger search
space can be pruned and BIP achieves better performance.

We have also performed similar experiments on real datasets,
experiments on the effect of tree node size, and experiments on
the effect of the value of k. The comparative performance of the
different methods are very similar to the above experiments. We
omit presenting the results due to space limit.

7 Conclusions
We formulated the top-k most influential location selection query
and conducted a comprehensive study on processing this query. We
first analyzed the basic properties of this query type and proposed a
naive algorithm (NA) to process the query. However, the NA algo-
rithm is inefficient due to repeated scanning on datasets. Motivated
by this, we explored geometric properties of spatial data objects,
and proposed techniques to prune the search space. This resulted
in two algorithms, the EEP algorithm and the BIP algorithm. Ex-
perimental results show that the proposed pruning techniques are
effective and the proposed algorithms outperform the naive algo-
rithm significantly. In most cases, BIP performs better than EEP.
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