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Abstract. We propose the flexible group spatial keyword query and al-
gorithms to process three variants of the query in the spatial textual
domain: (i) the group nearest neighbor with keywords query, which finds
the data object that optimizes the aggregate cost function for the whole
group Q of size n query objects, (ii) the subgroup nearest neighbor with
keywords query, which finds the optimal subgroup of query objects and
the data object that optimizes the aggregate cost function for a given sub-
group size m (m ≤ n), and (iii) the multiple subgroup nearest neighbor
with keywords query, which finds optimal subgroups and corresponding
data objects for each of the subgroup sizes in the range [m, n]. We design
query processing algorithms based on branch-and-bound and best-first
paradigms. Finally, we provide theoretical bounds and conduct exten-
sive experiments with two real datasets which verify the effectiveness
and efficiency of the proposed algorithms.

1 Introduction

The group nearest neighbor (GNN) query [11] and its variants, the flexible aggre-
gate nearest neighbor (FANN) [8] query and the consensus query [1] have been
previously studied in spatial database domain. Given a set Q of n queries and
a dataset D, a GNN query finds the data object that minimizes the aggregate
distance (e.g., sum or max) for the group, whereas an FANN query finds the op-
timal subgroup of query points and the data object that minimizes the aggregate
distance for a subgroup of size m, and a consensus query finds optimal subgroups
and the data objects for each of the subgroup sizes in the range [n′, n]. In all
of these studies, the aggregate similarity is computed based on only spatial (or
Euclidean) distances between a data point and a group of query points. In this
paper, we address all the three variants of the above queries in the context of
spatial textual domain, where both spatial proximity and keyword similarity for
a group or subgroups of users to data points need to be considered. We call this
class of query as the flexible spatial keyword query.

The flexible spatial keyword query has many applications in spatial and mul-
timedia database domain. For example, in a location-based social networks (e.g.,
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Fig. 1: An example of a group of users to find the optimal restaurant.

Foursquare), a group of users residing at their homes or offices can share their
locations as spatial coordinates and their preferences as sets of keywords, and in
order to find a Point of Interest (POI), e.g., restaurant or function venue, that
optimizes a cost function composed of aggregate spatial distances and keyword
similarities for the group. Since finding a POI that suits all group members might
be difficult due to the diverse nature of choices, the group might prefer a result
that is not optimal for the entire group, but is optimal for subset of it. In such
cases, we need to find optimal a subgroup of users and a POI that minimizes the
cost function for the subgroup.

Figure 1 shows an example, where a group of five friends {q1, q2, q3, q4, q5}
is trying to decide a restaurant for a Sunday brunch. Each person provides his
location and preferred type of food, represented by a set of keywords such as
{“Burger”, “Pizza”} or {“Italian”}, etc. There is a set of restaurants {o1, o2, ..., o7}
to be selected from, and each restaurant is identified by its location and by a
set of keywords describing the type of cuisine it offer, e.g., {“Pizza”, “Italian”}.
In general, it is preferred to find an answer that optimizes both spatial distance
and keyword set dissimilarity at the same time, and o7 is returned as the answer
if we consider the whole group. However, if we allow leaving out a user, say q4,
then more answer candidates will become available. In particular, o6 will now
become the best choice of the subgroup {q1, q2, q3, q5}, as it covers all the key-
words, and is the closest to members of the subgroup. In fact, leaving any other
query user out (e.g., q2) would not obtain a better cost function value. There-
fore, {q1, q2, q3, q5} is the optimal subgroup of size 4 and o6 is the corresponding
optimal data point.

We observe that in many practical applications relaxing the requirement,
i.e., not including all the query objects, has potential benefits in finding good
quality answer. For example, a company may want to find a location for holding
a marketing campaign, where it is often desired that the selected place optimizes
for at least 60% of the customers as it may be difficult to find a place that suits
all customers. Similarly, in a multimedia domain, one may want to find an image
that matches with a subgroup of query images, where an object or query image
is represented as a point (in a high-dimensional space) and a set of tag-words.
Generally, one may prefer the subgroup size to be maximized, and hence, it
might be beneficial to explore the optimal solutions for different subgroup sizes.

The key challenge in processing the group spatial keyword queries is how
to utilize both the spatial and keyword preferences and to efficiently prune the
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search space. Another major challenge is how to find the optimal subgroups of
various sizes in one pass over the data set. Our contributions are as follows:

– We propose a new class of group queries in the spatial textual domain: (i)
the group nearest neighbor with keywords (GNNK) query that finds the best
data with respect to our cost function for the whole group, (ii) the subgroup
nearest neighbor with keywords (SGNNK) that finds the optimal subgroup
and the corresponding best POI for a given subgroup size of size m (with
m ≤ n, the group size)and (iii) the multiple subgroup nearest neighbor with
keywords (MSGNNK) that returns in one pass the optimal subgroups and
corresponding POIs for all subgroups of size m, where n′ ≤ m ≤ n and n′

being the minimum subgroup size.
– We propose pruning strategies based on branch and bound as well as best-

first strategies for these three queries. The resultant algorithms can process
the queries in a single pass over the dataset.

– We provide theoretical bounds for our algorithms, and evaluate them through
an extensive experimental evaluation on real datasets. The results demon-
strate the effectiveness and efficiency of the proposed algorithms.

2 Problem Statement
Let D be a geo-textual dataset. Each object o ∈ D is defined as a pair (o.λ, o.ψ),
where o.λ is a location point and o.ψ is a set of keywords. A query object q is
similarly defined as a pair (q.λ, q.ψ). Let dist(q.λ, o.λ) be the spatial distance
between q and o, and similarity key(q.ψ, o.ψ) be the similarity between their
keyword sets. We normalize both dist(q.λ, o.λ) and similarity key(q.ψ, o.ψ) so
that their value lie between 0 and 1 (inclusive). The cost of o with respect to q
is expressed in terms of their spatial distance and keyword set distance:

cost(q, o) = α · dist(q.λ, o.λ) + (1− α) · (1− similarity key(q.ψ, o.ψ))

Here, α is a user-defined parameter to control the preference of spatial prox-
imity over keyword set similarity. The spatial distance is normalized by the
maximum spatial distance between any pair of objects in the dataset, dmax.
Thus,

dist(q.λ, o.λ) = euclidean distance(q.λ, o.λ)/dmax

Each keyword in the dataset is associated with a weight. The weight of each
keyword is normalized by the maximum keyword weight wmax present in the
dataset. Let y.w be the weight of keyword y. Then the text relevance between q
and o is the normalized sum of the weights of the keywords shared by q and o:

similarity key(q.ψ, o.ψ) =
1

|q.ψ|
∑

y∈q.ψ∩o.ψ

y.w

wmax

We formulate the GNNK, SGNNK and MSGNNK queries as follows.

Definition 1. (GNNK). Given a set D of spatio-textual objects, a set Q of
query objects {q1, q2, ..., qn}, and an aggregate function f , the GNNK query finds
an object oi ∈ D such that for any o′ ∈ D \ {oi},

f(cost(qj , oi) : qj ∈ Q) ≤ f(cost(qj , o
′) : qj ∈ Q)
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Definition 2. (SGNNK). Given a set D of spatio-textual objects, a set Q of
query objects {q1, q2, ..., qn}, an aggregate function f , a subgroup size m (m ≤ n),
and the set SGm of all possible subgroups of size m, the SGNNK query finds a
subgroup sgm ∈ SGm and an object oi ∈ D such that for any o′ ∈ D \ {oi},

f(cost(qj , oi) : qj ∈ sgm) ≤ f(cost(qj , o
′) : qj ∈ sgm)

and for any subgroup sg′m ∈ SGm \ {sgm},

f(cost(qj , oi) : qj ∈ sgm) ≤ f(cost(q′, o′) : q′ ∈ sg′m)

Definition 3. (MSGNNK). Given a set D of spatio-textual objects, a set Q
of query objects {q1, q2, ..., qn}, an aggregate function f , and minimum sub-
group size n′ (n′ ≤ n), the MSGNNK query returns a set S of (n − n′ + 1)
〈subgroup, data object〉 pairs such that, each pair 〈sgm, om〉 is the result of the
SGNNK query with subgroup size m (n′ ≤ m ≤ n).

If the users are interested in the k-best POIs then the queries can be gener-
alized as k-GNNK, k-SGNNK and k-MSGNNK queries. In this paper, we focus
providing efficient solutions for the above queries for aggregate functions SUM
(
∑
qj∈Q cost(qj , o)) and MAX (maxqj∈Q cost(qj , o)).

3 Related Work

Group Nearest Neighbor Queries. The depth-first (DF) [13] and the best-
first (BF) [7] algorithms are commonly used to process the k nearest neighbor
(kNN) queries in spatial database. They assume the data objects to be indexed
in a tree structure, e.g., the R-tree [6].

The group nearest neighbor (GNN) query [10] finds a data point that min-
imizes the aggregate distance for a group of query locations. SUM, MAX and
MIN are commonly used aggregate functions. The generalization of the GNN
query is the kGNN query, where k best group nearest neighbors are to be found.
Several methods for processing GNN queries have been presented in [11].

The flexible aggregate nearest neighbor (FANN) query [8] is a generalization
of the GNN query. It returns the data object that minimizes the aggregate
distance to any subset of φn query points, where n is the size of the query group
and 0 < φ ≤ 1. The query also returns the corresponding subset of query points.

A query similar to the FANN query called the consensus query [1] is the
main motivation of our paper. Given a minimum subgroup size m and a set of
n query points, the consensus query finds objects that minimize the aggregate
distance for all subgroups with sizes in the range [m,n]. A BF algorithm was
proposed to process the consensus query.

Spatial Keyword Queries. The spatial keyword query consists of a query
location and a set of query keywords. A spatio-textual data object is returned
based on its spatial proximity to the query location and textual similarity with
the query keywords. A number of indexing structures for processing the spatial
keyword query have been proposed [3, 5, 9, 12, 15, 16]. Among them, the IR-
tree [5, 9] has been shown to be a highly efficient one. The IR-tree augments
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each node of the R-tree with an inverted file corresponding to the keyword sets
of the child nodes.

A variant of the spatial keyword query, called spatial group keyword query
has been introduced [2,4]. It finds a group of objects that cover the keywords of a
single query such that both the aggregate distance of the objects from the query
location and the inter-object distances within the group are also minimized.
Exact and approximate algorithms for three types of aggregate functions (SUM,
MAX and MIN) have been presented in [2].

A work parallel to ours, the group top-k spatial keyword query (GLkT) has
been proposed recently [14]. This paper presents a branch-and-bound technique
to retrieve the top-k spatial keyword objects for only one group of queries. How-
ever, as we show in our experimental evaluation (Section 6), our best-first tech-
nique always outperforms the branch-and-bound method substantially even for
a single group query.

4 Our Approach

This section presents our algorithms to process the GNNK, SGNNK and MS-
GNNK queries. The key challenge is to utilize the spatial distance and keyword
preference together to constrain the search space as much as possible, since the
performance of the algorithms is directly proportional to the search space (in
both running time and I/O). Another challenge in the SGNNK and MSGNNK
queries is to find the optimal subgroup from all possible subgroups.

4.1 Preliminaries

We use the IR-tree [5] to index our geo-textual dataset D. Other extensions of
the IR-tree, such as the CIR-tree, the DIR-tree or the CDIR-tree [5] can be used
as well. The IR-tree is essentially an inverted file augmented R-tree [6]. The leaf
nodes of the IR-tree contain references to the objects from dataset D. Each leaf
node has also a pointer to an inverted file index corresponding to the keyword
sets of the objects stored in that node. The inverted file index stores a mapping
from the keywords to the objects where the keywords appear. Each node N
of the IR-tree has the form (N.Λ, N.Ψ), where N.Λ is the minimum bounding
rectangle (MBR) that bounds the child node entries, and N.Ψ is the union of
the keyword sets in the child node entries.

The cost of an IR-tree node is defined similarly to the cost of a data object:

cost(q,N) = α min dist(q.λ,N.Λ) + (1− α) (1− similarity key(q.ψ,N.Ψ))

Here, min dist(q.λ,N.Λ) is the minimum spatial distance between the query
object location q.λ and the MBR of N ; similarity key(q.ψ,N.Ψ) is the textual
similarity between the query keywords and the keywords of the node. The cost
of an IR-tree node gives a lower bound over the cost of its children, as formalized
by the following lemma:

Lemma 1. Let N be an IR-tree node and q be a query object. If Nc is a child
of N , then cost(q,N) ≤ cost(q,Nc).
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Proof. The child Nc can either be a data object or an IR-tree node. In either
case min dist(q.λ,N.Λ) is smaller than or equal to that of Nc according to the
R-tree structure. Meanwhile, the keyword set of Nc is a subset of the keyword
set of N . Thus, N will have a higher (or equal) textual similarity value (and
hence lower keyword set distance) with the query keywords. Overall, we have
cost(q,N) ≤ cost(q,Nc).

4.2 Branch and Bound Algorithms for GNNK and SGNNK

Traditional nearest neighbor algorithms access the data indexed in a spatial
index (e.g., R-tree) and restricts its search space by pruning bounds [13]. We
extend the idea to design two branch and bound algorithms for the GNNK and
SGNNK queries. These algorithms work as the baseline in our experiments.

Branch and Bound Algorithm for GNNK. We use the following heuris-
tic to prune the unnecessary nodes while searching the IR-tree for the best object
with the minimum aggregate cost.

Heuristic 1. A node N can be safely pruned if its aggregate cost with respect
to the query set Q is greater than or equal to the smallest cost of any object
retrieved so far.

This heuristic is derived from Lemma 1. As f is a monotonic function and
cost(q,N) ≤ cost(q,Nc) for any child Nc of N , f(cost(Q,N)) ≤ f(cost(Q,Nc)).
Let min cost be the smallest cost of any data object retrieved so far. Then
f(cost(Q,N)) ≥ min cost implies that the cost of any descendant of N is greater
than or equal to min cost, and we can safely prune N .

The branch and bound algorithm for GNNK is based on the heuristic and
denoted by GNNK-BB. The algorithm keeps a stack and inserts the child nodes of
the IR-tree into the stack, if the aggregate cost of the node is less than min cost.
After all the nodes are explored, the leaf node for the min cost is returned.

Branch and Bound Algorithm for SGNNK. We design a similar branch
and bound algorithm named SGNNK-BB for the SGNNK query. The following
heuristic is used for pruning.

Heuristic 2. Let N be an IR-tree node and m be the required subgroup size. If
sgm is the best subgroup of size m, and min cost is the smallest cost of any size-m
subgroup retrieved so far, we can safely prune N if f(cost(sgm, N)) ≥ min cost.

This heuristic is derived from Lemma 1. Let Nc be a child of N and sg′m
be the best subgroup corresponding to Nc. Then we have f(cost(sg′m, N)) ≤
f(cost(sg′m, Nc)). Meanwhile sgm is the best subgroup for N among all possible
subgroups of size m. Thus, f(cost(sgm, N)) ≤ f(cost(sg′m, N)).

The above two inequalities imply that f(cost(sgm, N)) ≤ f(cost(sg′m, Nc)),
i.e., the aggregate cost for the best size-m subgroup of N is lower than or
equal to that of the best size-m subgroup of any of its children. Therefore, if
f(cost(sgm, N)) ≥ min cost, f(cost(sgm, Nc)) will also be greater than or equal
to min cost, and we should prune N . The overall tree traversal procedure is
similar to that of the GNNK-BB algorithm. The difference is in the calculation
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of the optimization function, where the optimization function value is computed
based on the the top-m queries with the lowest costs.

4.3 Best-first Algorithms for GNNK and SGNNK

Branch and bound techniques may access unnecessary nodes during query pro-
cessing. To improve the query efficiency by reducing disk accesses, we propose
in this section best-first search techniques that only access the necessary nodes.

Best-first algorithm for GNNK. The best-first procedure for the GNNK
query is denoted by GNNK-BF. This algorithm uses a minimum priority queue
to maintain the nodes/objects to be visited according to their aggregate costs. If
an intermediate node (leaf node) is popped, all the child nodes (child objects) are
pushed into the queue. When an object is first popped from the queue, it denotes
the minimum cost object and is returned as the query result. The algorithm is
not shown due to space limitation.

Algorithm 1 SGNNK-BF (R,Q,m, f)

INPUT: IR-tree index R, n query points Q = {q1, q2, ..., qn}, subgroup size m, f .
OUTPUT: A data object o and a set of m query points sgm that minimize f(cost(sgm, o))
1: Initialize a new min priority queue P and P.push(root, 0)
2: repeat
3: E ← P.pop()
4: if E is an intermediate node N then
5: for all Nc in N.children do
6: Compute cost(q1, Nc), ..., cost(qn, Nc)
7: sgm ← first m query points with the lowest cost values
8: P.push(Nc, f(cost(sgm, Nc)))

9: else if E is a leaf node N then
10: for all o in N.children do
11: Compute cost(q1, o), ..., cost(qn, o)
12: sgm ← first m query points with the lowest cost values
13: o.best subgroup = sgm
14: P.push(o, f(cost(sgm, o))

15: else if E is a data object o then
16: return (o, o.best subgroup)

17: until P is empty
18: return null

Best-first Algorithm for SGNNK. The best-first algorithm for the SGNNK
query, denoted by SGNNK-BF, is similar to GNNK-BF algorithm. Here, the op-
timization function is computed for top-m queries. Best subgroup is chosen from
the lowest m query points, and pushed into the priority queue. For an inter-
mediate node, aggregate costs and best subgroup are calculated for all the child
nodes of the node. For a leaf node, it is done for all the children objects, and then
pushed into the priority queue. When an object is first popped, it is returned as
the result. The pseudocode is shown in Algorithm 1.

4.4 Algorithms for MSGNNK

To process the MSGNNK query with a minimum subgroup size m, we can run
SGNNK-BF n−m+ 1 times (for subgroup sizes m,m+ 1, ..., n) and return the
combined results. We call this the MSGNNK-N algorithm. However, MSGNNK-
N requires accessing the dataset n−m+1 times, which is too expensive. To avoid
this repeated data access, we design an algorithm based on best-first method that
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Algorithm 2 MSGNNK-BF (R,Q,m, f)

INPUT: Index R of objects, query set Q, min subgroup size m(m ≤ n), and f .
OUTPUT: A set of 〈data object, subgroup〉 pairs 〈o∗k, sg

∗
k〉 for all subgroup sizes between m and

n (inclusive), where 〈o∗k, sg
∗
k〉 minimizes f(cost(sgk, o)).

1: Initialize a new min priority queue P and P.push(root, 0)
2: min costs[i]←∞ and root.query costs[i]← 0 for m ≤ i ≤ n
3: repeat
4: E ← P.pop()
5: if ∃i ∈ [m,n]: E.query costs[i] < min costs[i] then
6: if E is an intermediate node then
7: for all Nc in E.children do
8: Compute cost(q1, Nc), ..., cost(qn, Nc)
9: total cost← 0
10: for i = m→ n do
11: sgi ← top i lowest cost query points
12: total cost += f(cost(sgi, Nc))
13: Nc.query costs[i] = f(cost(sgi, Nc))

14: if f(cost(sgi, Nc)) < min costs[i] for any subgroup size i ∈ [m,n] then
15: P.push(Nc, total cost)

16: else if E is a leaf node then
17: for all o in N.children do
18: Compute cost(q1, o), ..., cost(qn, o)
19: for i = m→ n do
20: sgi ← top i lowest cost query points
21: if f(cost(sgi, o)) < min costs[i] then
22: min costs[i]← f(cost(sgi, o))
23: best objects[i]← o
24: best subgroups[i]← sgi

25: until P is empty
26: return best objects, best subgroups

can find the best data objects for all subgroup sizes between m and n in a single
pass over the dataset. Algorithm 2 summarizes the proposed procedure, denoted
as MSGNNK-BF. The algorithm is based on the following heuristic.

Heuristic 3. Let N be an IR-tree node and m be the minimum subgroup size.
Let sgi be the best subgroup of size i (m ≤ i ≤ n), and min costi be the smallest
cost for subgroup size i from any object retrieved so far. We can safely prune N
if f(cost(sgi, N)) ≥ min costi for any i.

The proof of correctness is straightforward based on Heuristic 1 and Heuris-
tic 2, and is omitted due to space limit.

A relaxed pruning bound. A possible simplification of Heuristic 3 is to
only test whether f(cost(sgm, N)) ≥ min costn, i.e., whether the best subgroup
of size m corresponding to N has a cost lower than the min cost for the whole
group of size n found so far. If this holds, then N can be safely pruned, as
formalized by the following heuristic.

Heuristic 4. Let N be an IR-tree node and m be the minimum subgroup size.
Let sgm be the best subgroup of size m corresponding to N , and min costn be
the smallest cost for the whole group of size n from any object retrieved so far.
We can safely prune N if f(cost(sgm, N)) ≥ min costn.

The proof is straightforward and thus omitted. Note that, while this heuristic
simplifies the node pruning computation (Lines 12 to 17 in Algorithm 2), it also
relaxes the pruning bound, which may cause more nodes to be processed.
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5 Cost Analysis

We analytically compare the I/O cost and CPU cost of the proposed algorithms.
We use the following notations in the analysis. Let Cm be the maximum number
of entries in a disk block, Ce be the effective capacity of the IR-tree used to
index the dataset D, and |D| be the size of D. We assume that an IR-tree node
size equals a disk block. I/O cost and CPU cost of the preloading is denoted
by ioi and cpui, respectively. We quantify the percentage of pruned nodes in
the tree traversal as the pruning power, denoted by w and is represented by
wgb, wgf , wsb, wsf , and wmb for GNNK-BB, GNNK-BF, SGNNK-BB, SGNNK-
BF, and MSGNNK-BF, respectively. We denote the I/O cost of accessing the
inverted index by iol, and the associated CPU cost by cpul. Per node CPU cost
of GNNK-BB and GNNK-BF is denoted by cpug, SGNNK-BB and SGNNK-BF
by cpus and MSGNNK-BF by cpum. Table 1 summarizes the analytical results.
Details calculation of cost analysis is omitted due to page limitation.

Table 1: Summary of Costs
Algorithm I/O CPU

GNNK-BB ioi + (1 − wgb)(
|D|

Ce−1
+ |D|

Ce
· iol) cpui + (1 − wgb)(

|D|
Ce−1

· cpug + |D|
Ce

· cpul)

GNNK-BF ioi + (1 − wgf )( |D|
Ce−1

+ |D|
Ce

· iol) cpui + (1 − wgf )( |D|
Ce−1

· cpug + |D|
Ce

· cpul)

SGNNK-BB ioi + (1 − wsb)(
|D|

Ce−1
+ |D|

Ce
· iol) cpui + (1 − wsb)(

|D|
Ce−1

· cpus + |D|
Ce

· cpul)

SGNNK-BF ioi + (1 − wsf )( |D|
Ce−1

+ |D|
Ce

· iol) cpui + (1 − wsf )( |D|
Ce−1

· cpus + |D|
Ce

· cpul)

MSGNNK-N ioi + (n−m + 1)(1 − wsf )( |D|
Ce−1

+ |D|
Ce

· iol) cpui + (n−m + 1)(1 − wsf )( |D|
Ce−1

· cpus + |D|
Ce

· cpul)

MSGNNK-BF ioi + (1 − wmb)(
|D|

Ce−1
+ |D|

Ce
· iol) cpui + (1 − wmb)(

|D|
Ce−1

· cpum + |D|
Ce

· cpul)

6 Experimental Evaluation

6.1 Experimental Settings

We evaluate the performance of the proposed algorithms. The BB algorithms
are used as the baseline to compare with the BF algorithms for the GNNK and
SGNNK queries. We use the MSGNNK-N algorithm as the baseline algorithm
for the MSGNNK queries, and compare it with the MSGNNK-BF algorithm.

Table 2: Dataset properties
Parameter Flickr Yelp

Dataset size 1,500,000 60,667
Number of unique keywords 566,432 783
Total number of keywords 11,579,622 176,697

Avg. number of keywords per object 7.72 2.91

Table 3: Query parameters
Parameter name Values Default Value

Number of queried data points (k) 1, 10, 20, 30, 40, 50 10
Query group size (n) 10, 20, 40, 60, 80 10

Subgroup size (m, %n) 40%, 50%, 60%, 70%, 80% 60%
Number of query keywords 1, 2, 4, 6, 8, 10 4

Size of the query space .001%, .01%, .02%, .03%, .04%, .05% 0.01%
Size of the query keyword set 1%, 2%, 3%, 4%, 5% 3%

Spatial vs. textual preference (α) 0.1, 0.3, 0.5, 0.7, 1.0 0.5
Dataset Size (Flickr) 1M, 1.5M, 2M, 2.5M 1.5M
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We use two real datasets from Yahoo! Flickr4 and Yelp5 in our experiments.
The properties of these two datasets are detailed in Table 2. We generate 20
groups of query objects for each experiment and average the results. Each query
object contains a location and a set of keywords. Locations are generated uni-
formly inside a square query space area. For generating the query keywords,
a subset of keywords from all keywords inside the query space is first chosen,
and then the required of number of keywords are selected from this subset. The
parameters that are varied are shown in Table 3.

We use the IR-tree to index the datasets, which is disk resident. The fanout
of the IR-tree is chosen to be 50, and the page size is 4KB. All the algorithms
are implemented in Java and the experiments are conducted on a Core i7-4790
CPU @ 3.60 GHz with 4 GB of RAM. We measure the running time and the
I/O cost (number of disk page accesses), where the running time includes the
computation and I/O time. We use Flickr as our default dataset.
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Fig. 2: The effect of varying k (a-b), query group size (c-d), number of query keywords
(e-f), query keyword set size (g-h) and dataset size (i-j) in running time and I/O

6.2 The GNNK Query Algorithms

We conduct seven sets of experiments to evaluate the performance of GNNK-
BB and GNNK-BF. In each set of experiments, one parameter is varied while all
other parameters are set to their default values. GNNK-BF outperforms GNNK-
BB in all experiments both in terms of running time and I/O cost.

Varying k. Figure 2 (a-b) shows that for both GNNNK-BB and GNNK-BF,
the processing time and the I/O cost increase with the increase of k. For both
SUM and MAX, on average GNNK-BF runs 3.5 times faster than GNNK-BB.
The I/O cost of GNNK-BF is much less than that of GNNK-BB as GNNK-BF
only accesses the necessary nodes.

Varying Query Group Size. Figure 2 (c-d) shows the effect of the query
group size (n). The query processing costs of both algorithms increase as the
value of n increases. On average, GNNK-BF runs approximately 4 times faster
than GNNK-BB.
4 https://webscope.sandbox.yahoo.com
5 https://www.yelp.com/academic_dataset

https://webscope.sandbox.yahoo.com
https://www.yelp.com/academic_dataset
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Varying Number of Query Keywords. Figure 2 (e-f) shows the effect of
the number of keywords in each query object. GNNK-BF again outruns GNNK-
BB in all the experiments. Also, the query processing costs of both algorithms
increase as the number of keywords in each query object increases. This can be
explained by that a larger set of query keywords takes more time to compute
the aggregate cost function.

Varying Query Space Size. We observe that the running time of our
algorithms remains almost constant with the change of the query space area (not
shown in graphs). Since varied query space areas are insignificant in compared
to the data space, we do not observe any significant change in this experiment.

Varying Query Keyword Set Size. We see that the running time of
our algorithms do not follow any regular pattern with the change of the query
keyword set size and remains relatively stable for varying of query keyword set
size (the subset of keywords from where the query keywords are generated).

Varying α. We observe that, as α increases, the query costs decrease. A
larger α means that spatial proximity is deemed more important than tex-
tual similarity. When α increases, the impact of the keyword similarity becomes
smaller and algorithms converge faster (not shown in graphs).

Varying Dataset Size. Figure 2 (g-h) shows the effect of varying number
of objects. Both running time and I/O cost of our proposed algorithms increase
at a lower rate than the baseline algorithms.
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Fig. 3: The effect of varying subgroup size m (a-b) and minimum subgroup size (c-d)

6.3 The SGNNK Query Algorithms

We performed experiments on SGNNK-BB and SGNNK-BF, by varying query
group size, subgroup size, number of query keywords, query space size, query
keyword set size, k, dataset size, and α. SGNNK-BF outperforms SGNNK-BB
in all the experiments. For space constraints, we only show the effect of varying
the subgroup size (in % n) in Figure 3 (a-b). On average, SGNNK-BF runs 3.5
times faster and takes 40% less I/O than SGNNK-BB.

6.4 The MSGNNK Query Algorithms

We performed similar experiments on MSGNNK-N and MSGNNK-BF. In all
the experiments MSGNNK-BF significantly outperforms MSGNNK-N. Due to
space constraints, we only show the effect of varying the minimum subgroup
size (in percentage of n) in Figure 3 (c-d). When the minimum subgroup size
increases, the running time of both algorithms decrease as expected. Meanwhile,
the costs of MSGNNK-BF change in a much smaller scale, which demonstrates
the better scalability of MSGNNK-BF. On average, MSGNNK-BF runs about
4 times faster than MSGNNK-N.
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6.5 Experiments on Yelp dataset

We have run the same set of experiments as mentioned above on the Yelp dataset.
All of our experimental results show similar trends in both datasets. Due to page
limitations, we only present the experimental results for varying group size for
GNNK queries and minimum subgroup size for MSGNNK queries with Yelp
dataset in Figure 4 (a-b) and Figure 4 (c-d), respectively.
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Fig. 4: The effect of varying group size (a-b) and minimum subgroup size (c-d)

7 Conclusion

In this paper, we have presented a new type of group spatial keyword query
suitable for a collaborative environment. This query aims to find the best POI
that minimizes the aggregate distance and maximizes the text relevancy for a
group of users. We have studied three instances of this query, which return (i)
the best POI for the whole group, (ii) the optimal subgroup with the best POI
given a subgroup size m, and (iii) the optimal subgroups and the corresponding
best POIs of different subgroup sizes in m,m+ 1, ..., n. In all these queries, our
proposed best-first approach runs approximately 4 times faster (on average) than
the branch and bound approach for both real datasets.
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