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Abstract lishing a new public facility or business center on the res-
idents can be observed. In the multi-billion dollar com-
Given a set of clients and a set of existing facilities, theputer game industry, massively multiplayer online games
min-dist location selection query returns a location from a(MMOGS) like World of Warcrafthave group quests for
given set of potential locations for establishing a new fa-players to complete in teams, which mostly involve killing
cility so that the average distance between a client and henobs (monsters or other non-player characters). As the
nearest facility is minimized. This type of queries has aquests often take players days or even weeks to complete,
wide range of applications in marketing, decision supportt is common for players to leave and rejoin the game dur-
systems, urban development simulations and massivelyng a quest. When a player rejoins the game, the subquest
multiplayer online games. The computational cost of ashe was on may have been completed by her teammates
naive algorithm, which sequentially scans all the poténtiaand the team has moved on to another region to complete
locations, is too high to process this type of queries in reabther subquests. It would be a waste of time for this player
time. Motivated by this, we propose a branch and boundo rejoin the game from where she left. A very helpful util-
algorithm that exploits geometric properties of the dataity for the game is selecting a starting point from a set of
objects and early prunes unpromising potential locationgreset rejoin locations to minimize the average distance
from consideration to achieve a higher query processindgpetween a mob and its nearest player, so that players can
efficiency. We conduct a detailed cost analysis and extenfocus on fighting mobs rather than walking.
sive experiments to validate the efficiency of the branch
and bound algorithm. The results show that the proposed

algorithm outperforms the naive algorithm constantly. & client
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Many businesses or organizations manage large numbers G
of facilities. For example, Walmart has warehouses, and )
Australia Post has branch offices. It is a common need for Figure 1: An example for the query

a business to add facilities. For example, Walmart might i , ,
want to add a warehouse to reduce the distances between The example in Figure 1 illustrates the query:
its stores and warehouses; Australia Post might want tdC1,C2,....Cs} iS @ set of clients (residents or mobs),
add a new post office in an emerging suburb to reduce thef1, f2} is a set of existing facilities (public facilities or
traveling distances for their postmen. Usually, a set of poi€ammates) andps, p} is a set of potential locations
tential locations is available, typically from a real estat (candidate locations for new facility establishment or re-
agent (e.g., real estate websites provide hundreds of thoiRin). Now we need to select one from the potential lo-
sands of places for renting or buying). cations to establish a new facility. Before adding a new
This paper investigates the min-dist location selectiorfacility, f1 is the nearest facility oy, ¢z, ¢z andcs; f2 is
query, which selects a location (for Walmart or Australiathe nearest facility ofs, cs, ¢z andcs. If a new facility is
Post) that minimizes the average distance between a clieggtablished aps, it will become the nearest facility fam,
(a chain store or an addressee) and her nearest facilitéz andcs. If a new facility is established iy, it will be-
(warehouse or post office) to reduce logistics cost or to im€ome the nearest facility @ andcs. As we can observe,
prove the quality of service. We assume that the businesB2 results in a smaller average distance between a client
has knowledge about its client distribution from surveysand the nearest facility, so it is selected as the answer.
or past sales records. Although an existing commercial software (ArcGIS
The min-dist location selection query also has other ap2011) can solve several kinds of simpler location opti-
plications as follows. In urban development simulation, Mization problems, none can solve the min-dist location
very often urban planners need to simulate the above loselection problem, as we will detail in Section 2.
cation selection procedure, so that the influence of estab-

1.1 Contributions and Organization of the Paper
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e Based on the proposed pruning techniques, we pro- e \:\ -
pose a branch and bound method to efficiently pro- PN e N > ~ N
cess the query. ' e

e We perform an analytical cost study and an extensive N /i’7f/ /
experimental study. The results confirm the effec- | ~ &G~
tiveness of the proposed pruning techniques and the | “~----7-J4f
efficiency of the proposed algorithm. N ‘

The rest of the paper is organized as follows. Section 2 Na-7 S
reviews related work. Section 3 formulates the query and W S
presents a naive algorithm. Section 4 presents the branch RN A
and bound method. Section 5 analyzes the cost of the pro- NN T
posed method and Section 6 presents the experimental re- S Tt .
sults. Finally, Section 7 concludes the paper. N -

2 Related Work Figure 2: A max-inf problem (Cabello et al. 2005)

We review three categories of work below: work on the

reverse nearest neighbor (RNNmery, work onmax-inf Where_the NLC of a C||en¢ is a circle Cen?ered atwith
location optimization problems and work omin-distlo-  its radius being the distance betweeandc's nearest ex-

cation Optimization prob]ems_ IStIng faCllIty To flndthe S_Olution for the MAXCOQV crite-
RNN query: Korn & Muthukrishnan (2000) define the 10N based problem is to find the regions that are enclosed
RNNs of an objecb to be the objects whose respective by the largest number of NLCs, which requires complex
nearest neighbor (NN) is. They propose aiRNN-tree ~computations. Wong et al. (2009) study this problem fur-
based solution to the query, where the RNN-tree is an Rther and propose a more efficient method to compute the
tree (Guttman 1984) variant that indexes NN circles of the'€gions overlapped by the largest number of NLCs. Xia
data objects rather than the data objects themselves. Hei@ al. (2005) propose the tdpnost influential sites prob-
the NN circle of an objecb is a circle that centers a  lem and a branch and bound algorithm to the problem.
with its radius being the distance betwesando's nearest ~ This problem finds the topmost influential existing sites
neighbor. Based on the NN circles, to find the RNN of anWithin a given regiorQ. Du et al. (2005) find a point from
objecto only requires checking which objects’ NN circles @ continuous candidate region that can maximize the in-
enclosen. However, the RNN-tree based solution has twofluence value. They uds as the distance metric and have
major drawbacks. One is that it requires the extra main& Strong assumption that all the roads are either horizontal
tenance of an RNN-tree. The other is that it requires pre©r vertical. Cheema et al. (2011) find an influence zone
computing the NN circles. Therefore, this solution cannotfor a query locatiorp, where the clients inside this zone
handle objects with frequent updates. To solve the firsform exactly the RNN query result ofp. A more recent
problem, Yang & Lin (2001) propose to integrate the NN Study (Huang, Wen, Pathan, Taylor & Zhang 2011) ranks
circle information into an R-tree that indexes the clientsthe candidate locations according to their influence val-
themselves, so that the resultant R-tree variantRifigN-  ues and another study (Huang, Wen, Qi, Zhang, Chen &
tree, can be used to process RNN queries as well as othdf€ 2011) contributes in efficient algorithms to compute
common types of queries on the clients, and thus avoid théhe topk most influential candidate locations. Unlike the
maintenance of an extra RNN-tree. To solve the secon@bove problems, which relate the influence values to the
problem, Stanoi et al. (2001) propose an approximationcardinalities of RNN sets, Gao et al. (2009) propose to find
refinement framework to compute the RNNs on the fly, sothe optimal locatiorp outside a given regioQ based on
that no precomputation is needed. locations’optimality, where the optimality of a locatiop
There are studies on RNN query variants under differiS modeled by the amount of clients@whose distances
ent settings. For example, teverse k nearest neigh- t0 P is within a given threshold. Intuitively, the more
bor (RKNN)query finds objects whoslke nearest neigh- clients p attracts, the greater its optimality. These studies
bors include the query object. Wu et al. (2008) Studyd_|ffer from ours in optimization functions and other set-
the RKNN query on continuously moving objects, which tings. Thus, their solutions do not apply.
correlates two ‘sets of moving objects according to their _ Min-dist problems: Qi et al. (2012) first propose the
closeness. The continuous join query on extended movin-dist location selection problem. Their study (Qi et al.
ing objects (Zhang et al. 2008, n.d.) also correlates multi2012) is a concurrent study of ours. In that paper, solu-
ple sets, but it focuses on intersecting objects with a timetions focus on how to efficiently identify the influenced
constraint technique rather than closeness. While thesglients for the potential locations, while this paper giges
approached work well for a single BNN query, they are solution on how to early prune unpromising potential lo-
not tailored for computing RNNSs for large amount of ob- cations from consideration. o .
jects at the same time, which is one of the key difficulties Papadias et al. (2005) find the existing facility that has
in our study. the smallest average distance to all the clients. They do not
Max-inf prob|ems: Max-inf location optimization consider estab.“Sh[ng a r]EW faClllty. Zhang et al. (2006)
problems aim at maximizing the influence of the loca-Propose the min-dist optimal-location problem. Given a
tions, where the influence of a location is defined by theclient setC, an existing facility seF and a regiorQ, it
number of clients it attracts. Here, the concept‘atf finds points withinQ so that if a new facility is established
tract” can have different meanings in different max-inf at any one of these points, the average distance of the
problems. Cabello et al. (2005) propose the MAXCOV clients to their respective nearest facilities is minindize
facility location problem, which finds regions in the data Figure 3 gives an example, whepe may be one of the
space to maximize the numbers of RNNs for the points inP0ints in the answer set and it is not the solutprto our
these regions. Figure 2 gives an example, where the grajfoblem. Zhang et al. (2006) propose a method that first
regions are the optimal regions. Points in these region&lentifies a set. of candidate locations fro® and then
have 4 RNNs, while any point outside of these regions ha&ividesL progressively until the answer set is found. Xiao
at most 3 RNNs. Cabello et al. (2005) introduce the con£t al. (2011) study the min-dist problem in road networks.
cept ofnearest location circle (NLCIp solve the problem, They have a candidate edge Bdbr the new facility to be



S Table 1: Frequently Used Symbols

& S Symbols Explanation
S e An entry in a R-tree node
c* R™o f l ) Any point in the data space
! Q t‘ dist(o1,02) | The distance between two poirdsando,
1o f2 P 4 G CF,P The set of clients, existing facilities
Crie_ e a and potential locations, respectively
B G N, N, Np | Cardinality ofC, F, andP, respectively
cf,p A client in C, an existing facility inF
Figure 3: The min-dist optimal-location problem and a potential location iR, respectively

established on. Their key insight is that the optimal loca-"éfer to the data objects data pointsor simply aspoints
tion on a candidate edge must be one of the endpoints dfetdist(01,02) denote the distance between two poinits

the edge. Thus, only the endpoints of the edges ireed ~ andoz, andnc be the number of clients. The min-dist loca-
to be checked for the problem solution. tion selection query is defined (Qi et al. 2012) as follows.

Zhang et al. (2006) and Xiao et al. (2011)'s StUdieSPefinition 1. Min-dist location selection query.
have the same min-dist optimization function as ours, but" " Gy en a set of points C as clients, a set of points F as

our study has a sé, the potential locations given as can- gisting facilities and a set of points P as potential loca-

didates for selection. In many real applications, we canjong the min-dist location selection query finds a poten-

only choose from some candidate locations, e.g., IVk:DO”EiaI location pn € P for a new facility to be established at,
ald’s may only open a new restaurant at a place for rené0 thatvp e P -1

or sale rather than anywhere in a region or on aroad. Th
main idea of Zhang et al.'s solution is the fast identificatio

of a small set. of candidate locations fror@. However, > cec{min{dist(c,0)jo € FUpm}}
the candidate locations ib could be any point fronQ, Ne

which may not even contain a potential location from our

potential location seP. Similarly, the endpoints of the < Y cec{min{dist(c,0)joe FUp}}

edges irE (Xiao et al. 2011) are different from the points

in P. This means that in the general case their approaches

cannot provide a correct answer to our problem, and thus Since the denominator is the same on both sides of

are not applicable. the inequality, the problem is equivalent to minimizing the
Note that in computational geometry, given a setsum (instead of the average) of the distances between the

C of object locations (e.g., clients), th&-medoid clients and their respective nearest facilities.

query (Mouratidis et al. 2005) finds a set of medoids

C’ C C with cardinalityk that minimizes the average dis- ; :

tance from each objeate C to its closest medoid . 3.2 ANaive Algorithm

Thek-median query is a variation, where we fikdoca- A straightforward algorithm to the min-dist location selec

tions called medians, not necessarilgirwhich minimize  tion query is to sequentially check all potential locations

the average distance (from each objeetC to its closest  For every new potential locatiop, we compute the sum

median). These two types of queries are actually using thef the distances of all clients to their respective neawest f

min-dist metric. However, our problem is different from cilities. The potential location with the smallest sum is th

both of them. A fundamental difference is that these probanswer. We call this algorithm theequential scan (SS)

lems do not assume a set of existing facilities or a set ohigorithm.

potential locations, but we do. If there is at least one exist

ing facility or some potential locations to be chosen from

in a specific location selection problefamedoid queries _ALGORITHM 1: SSC, P)

or k-median queries do not apply.

Ne

) ) . 1 optLoc« NULL; // optLocis the optimal location;
Related commercial software: As mentioned in the > for pe Pdo
Introduction, an existing commercial software (ArcGIS 3 p.distSumx— 0;
2011) can solve several kinds of simpler location opti- 4 for ceCdo
mization problems. The most related problem this soft- 5 if dist(p,c) < c.dnn(c,F) then

ware can solve is called thminimize impedance query L /1 cdnnc,F) is preconputed
which finds locations for a set of new facilities to minimize ; ' ; : .
the sum of distances between clients and their respective p-distSume— p.distSumt- dist(p, c);
nearest facilities. However, this problem does not comside 7 else )
existing facilities. If we use this software to find a set of 8 | p.distSum— p.distSumtc.dnn(c,F);
locationsS for new facilities, there is no guarantee tisat .
will contain all the points in the set of existing facilities ~ ° | If do' pttIS_OC: NUI{E ord. tsunth
Therefore, this software does not solve our problem. p-distsum< optLocdistsuninen

10 | optLoc« p;

3 Preliminaries 11 returnoptLog

This section presents the definition of the min-dist logatio
selection query and a naive algorithm to process the query,;
Frequently used symbols are summarized in Table 1.

In SS, repeatedly finding the nearest facility to each
ent for every potential location is too expensive. There
fore, we precompute the distances of all the clients to their
respective nearest facilities and store the distancess Thi
3.1 Problem Definition precomputation involves a nested loop iterating through

All data objects (clients, facilities and potential locais) INote that there may be ties in the average distances. To simplify our distuss

are represented by points in an Euclidean space. We madsptalways return the first potential location found that have the smallest averag
Istance.



every client and for every client iterating through every

facility. KNN-join algorithms (e.g., Yu et al. (2010)) can c, a

do this more efficiently and maintain the results dynami- . S

cally when clients and facilities are updated. The SS al- Doz - Ap-----

gorithm with precomputation is shown in Algorithm 1, ce 1 °of 0 :

wherec.dnn(c, F) denoteg’s precomputed distance to her | f !

closest existing facility and is stored witts record. 10,0 2 Ne S
We see that even with precomputation SS is still very oA Qs B c

costly as it has to access the whole client daté%eimes, G o

whereny, is the cardinality of® andC,, is the capacity of . )

a block forP (assuming we reaf in disk blocks). There- Figure 4:1S(Np)

fore, the need for an efficient algorithm is obvious.

Before explaining the BB method, we need to extend
4 A Branch and Bound Method the concept of the influence set of a point to thélu-
ence set of a nodn Re. Let Np be a node inRp.
In this section, we propose a brand and bound method thathe influence set of the nodés is defined agS(Np) =
exploits data objects’ geometric properties to prune un{cjc € C and3o € Np.mbr : dist(c,0) < dnn(c,F)}. A
promising potential locations from consideration, so thatclient is in IS(Np) if there is a point (not necessarily a
the min-dist location selection query can be processegotential location) in the minimum bounding rectangle
more efficiently. This method requires the query to be(MBR) of Np that can reduce the client’s NFD. Intuitively,
redefined in a form that enables the computation for the S(Np) defines the set of clients which might achieve dis-

bounds. Next, we start with redefining the query. tance reduction without knowing which potential loca-
tions are actually if\Np; it is the union ofIS(o) for any
4.1 Query Redefinition possible pointo in the MBR of Np. Figure 4 gives an

example. NodeNp indexes two potential locationpy
We call the distance between a cliemtand her near- and p,. We can observe thdS(p;) = {c1,¢2,c3} and
est facility thenearest facility distance (NFD)f c. Let  1S(p2) = {ca,C5}. Also, there are three pointg, oz and
dnn(o,S) denote the distance between a panand its 03 in the MBR of Np. We havedist(01,Cs) < dn ca,Fg,
nearest point in a s& Thendnn(c,F) anddnn(c,FUp)  dist(op,¢7) < dnn(cz,F) and dist(03,cg) < dnn(cg,F
denote the NFD of before and after a new facility is Therefore]S(Np) = {c1,Cp, ...,Cs}.

established on a potential locatign respectively. The The idea of the BB method is as follows. We traverse
min-dist location selection query is actually minimizing Rp in a depth-first order and simultaneously traverse the
the sum of all the clients’ NFD. _ R-tree variant orC, R (recall that this R-tree maintains

If o is a point not in the seF and dist(c,0) <  some additional information for computing bounds). We
dnn(c,F), then establishing a new facility @ will re-  use the tree structure to narrow down the clients we have

duce the NFD ofc. In this case, we say thatcan get  to examine for identifying the influence sets of a potential
anNFD reductionfrom o. We define thenfluence sedf  |ocation. As we visit a nod&lp of Re (supposeNp is in

0, denoted byS(0), as the set of clients that can get NFD leveli of Rp), we identify a set of nodes from leviebf %

reduction fromo. Formally,|S(o) = {c|c € C,dist(c,0) < ; ;
dnn(c,F)}. The influence set of a potential locatiqn whose subtrees must cover all the clientd®Np); we

includes all the clients that will reduce their NFD if a call this set of nodes frorR theinfluence nodeéiN) of
new facility is established gi. For example, in Figure 1, Np and denote it byN(Np). Based on the MBR dfl> and
IS(p1) = {c1,C2,¢3}, andIS(pz) = {c4,Cs}. the aggregate information stored in the nodefNofNp),

If 1S(p) # O for a potential locatiorp, then establish- we can compute a lower bound and an upper bound for the
ing a new facility atp will reduce the sum of the clients’ distance reduction of all the potential locations contdine
NFD. We call the sum of the clients’ NFD reduced py in the subtree rooted &. As we traverse dowRp, the
the distance reductiomf p, denoted bydr(p). Formally,  bounds will become tighter. We record the largest lower
dr(p) = Yceis(p) (dnn(c,F) —dnn(c, F U p)g_ Minimizing bound so far during traversal, which serves as a pruning
the sum of the clients’ NFD when adding a facility pis ~ distance, denoted gsd. If at any time we encounter a

equivalent to maximizingir(p). Therefore, the min-dist node inRe with an upper bound of distance reduction
location selection query can be redefined as follows. ~ Smaller tharpd, then that node can be discarded from the

search, since our goal is to find the potential location with
Definition 2. Given a set of points C as clients, a set the largest distance reduction. When we reach the leaf
of points F as existing facilities and a set of points P aslevel of Rp, we get the exact information of the potential
potential locations, the min-dist location selection quer locations and can compute their exact distance reductions.
finds a potential location pe P, so thatvp € P: dr(p) < If pdis smaller than an exact distance reduction, thdn

dr(pm)- gets updated to it. The search stops as we finish traversing
Rp and the potential location with the largekt value is
4.2 The Branch and Bound Algorithm the answer.

The derivation of the upper boumaaxdrand the lower

The Branch and Bound (BBjnethod estimates the po- boundmindr are presented in Sections 4.3 and 4.4, re-
tential locations'dr values to achieve early pruning. It spectively. The condition to identifiS(Np) of Np, and
assumes that the datasets are indexed in spatial indexele structure oF% are related to the upper bound, so we
Specifically, it assumes an R-trBg to index the potential present them in Section 4.3.
location seP, and an R-tree variaf@ to index the client ~ The recursive part of the BB algorithm is summarized
setC and store some other information for the comput-in Algorithm 2. We explain the algorithm together with
ing the bounds (details are in Section 4.3), although théhe example in Figure 5, where the nodes within a dot-
method can be easily adapted to any hierarchical spatided rectangle represent the IN of a nodeRn Initially,
index. The branch and bound scheme is performed durindlp is set to the root node d®, which isNp, IN is set
a traversal on both trees. to the root node o, Ng, pd is set to 0 andptLocis

set toNULL. For each nodé&lp being accessed, we con-



structIN (ep) for each of its entry, using the child nodes gated attributes stored in the parent entrie8N\dfep). The
of the nodes iNN(Np) (lines 1 to 3). In Figure 5, we child node ofe, will be pruned ifmaxdr< pd (line 4). if

havelN (e1) = {NP}, IN(e2) = {N2,N2} andIN (e3) = 0.
These actually meanhl (Ny) = {NP}, IN(Np) = {N2, N2}
andIN(Nz) = 0. Then the child nodes df;, N, and N3

will use the child nodes of these INs to construct their own
INs. For example|N(Ny1) is constructed with the child

nodes oNP, and the resultaiN (Ny1) is {N2;,NP,}. Sim-

mindr > pd, pd will be updated to bemindr (lines 3 to

6). Then the child nodes of the unpruned entriellpare
traversed (line 7). Note that the heightd?a:fandF{% may

be different. Thus, there are different procedures for the
condition where the traversal reaches the leaf level of only
one tree. (i) If the traversal reaches an non-leaf ndge

of Rp, andIN(Np) are leaf nodes, we construct the INs of

ilarly, IN(N21) andIN (Ng2) are constructed with the child the child nodes op using nodes ofN (Np) since there is

nodes o2 andN®, which results inN (Nz;) = {N2; } and
IN(N22) = {N5,,NB; N2, }.  This ensures that the level of

ALGORITHM 2: BB(Np, IN, pd, optLog

1

3

N o b

10
11

12
13

14

15
16

17

18

19

20

21
22

if Np is a non-leaf nodéhen

for e, € Np do
ConstruciN(ep), computemaxdrand
mindr;

if maxdr> pdthen

if mindr> pdthen

| pd < mindr,

BB(ep.childnode IN(ep), pd, optLog;
else if Np is a leaf node but nodes in IN are
non-leaf nodeshen

for N2 € IN do
IN" < 0;
for €2 € N2, € satisfies IN conditions of N
do
| IN"«+ IN'U€.childnode
BB( Np, IN’, pd, optLoc);

else

/1 Np and nodes in IN are all
| eaf nodes

for N2 € IN do

for e, € Np do
for €2 € Nc, dist(ep, €?) < e2.dnn(c,F)
do
ep.dr
ep.dr+el.dnn(c,F) — dist(ep, €2);
if optLoc= NULL or ep.dr > optLocdr

then
| optLoc< ep;

if¥optLocdr > pdthen
| pd< optLocdr;

N
N N
) ;
[N ] [N ] [N ] [Ne | [N | [INao ] N ] [ Neo | [ s |
/ 1 , \ /\\
! ,

IN(Np) and that ofNp are the same. The boundsaxdr
andmindr of an entrye, are computed using the aggre-

Figure 5: Example of algorithm BB

no child node for the nodes IIN(Np) (lines 1 to 7). (ii) If
the traversal reaches a leaf nddieof Rp, andIN(Np) are
non-leaf nodes, we construct a subsetNdfNp) with the

entries of each nodd2 € IN(Np), denote it aN’(Np),

and perform algorithm BB oMp and IN’(Np) (lines 8

to 13). Doing this recursively guarantees that all clients
contained in the subtrees of the nodesNH{Np) will be
accessed, which meahS(Np) is fully accessed. The ad-
vantage of this method compared to the construction of
INs for the data entries directly is its reduction of node ac-

cesses iRR. Since entries of a same node tend to have

similarIN’s, if we access the nodes iN(Np) directly for

each data entry dflr, many nodes (and their descendant
nodes) will be accessed repeatedly and the number of node
accesses will be large. When the traversal reaches the leaf
nodes of both trees, for each data ermgyf a nodeNp of

Rp, all entries of each nodlﬁcb € IN(Np) are accessed to
updateep.dr (lines 14 to 18)pptLocand pd are updated
accordingly (lines 19 to 22). When the traversal ernbls,
has been accessed for all potential locationsapttLocis
found.

4.3 An Upper Bound

We derive an upper bounthaxdr for the distance re-
duction of all potential locations contained in the sub-
tree rooted at a noddp. To simplify our discussion, we
usesul(N) to denote the set of data entries contained in
the subtree rooted at the noble Then|sul(N)| denotes
the cardinality ofsul(N). For examplesul(Np) denotes
the set{p|pis a potential location indexed in the subtree
root at nodeNp}.

The following discussion holds for any R-tree based

index on the set of clients, we ud& (instead ofN&
used in the above subsection) to denote a node in such
an index. Recall the definition afr of a potential loca-
tion p, dr(p) = ZCE|S(p)(dnr(CaF) - dni‘(C,F U p)) We
derive maxdr in a similar way. Since we are using a
set of nodes to computmaxdr for a nodeNp of Rp,
maxdi(Ne) = ¥.cs(SUBNG)| - (91(Ne) — G2(Ne. Ne))),
whereSis a set of client R-tree nodeg, is a metric related

to a nodd\c, andg is a metric related tdlc andNp. We
use|sul(Nc)| because, in an ideal condition, every client
c € subN¢) is in IS(p) of some potential locatiop € Np.

To derive a reasonable upper bound, we try to find small
Sandgi(Nc) and a largega(Nc,Np). We use the metrics,
maxF DistandminDist, asg; andgy, respectivelylN (Np)

is used a$ which will be established based oraxF Dist
and minDist. The definitions ofmaxF Distand minDist

are as follows.

Definition 3. The largest NFD value (maxFDist) for all
clients that are in the subtree rooted at a node N

This metric is proposed by Yang & Lin (2001) as
maxdnn and it is defined in a bottom-up fashion.
For the leaf nodes, maxFDiBt:) is defined as the
largest NFD value for all the clients indexed incN
i.e., maxFDistNc) = max{dnn(c,F)|c € Nc }, while
for the non-leaf nodes, maxFDi#) is defined as the
largest maxF Dist value for all the child nodes of N.e,



maxF Dis{Nc) = max{maxF Dis{e..childnodg|e; € Nc Hence, ifminDist(Nc,Np) > maxFDis(N¢), we can

obtain:
Figure 6 gives an example, wherdnn(cs,F), veces vp € subNp)
dnn(cg,F) anddnn(cs,F) are the largest NFD values of Ut(l;jlics)t(g p) ;tén?()c F).
the clients indexed in the leaf noddls, N> and Ns, re- = ’
spectively. The three NFD values are picked as the reThereforesut(Nc)ﬂIS(Np) —0. 0

spectivemaxF Distvalues of the three nodes. Meanwhile,
the largest value amonmaxFDis{N;), maxFDis{N)
andmaxFDis{N3) is picked as thenaxF Distof the par-
ent node ;) of these three nodes. Therefore, we get
maxF Dis{Ns) = maxFDis{N3) = dnn(cs,F), which is
effectively the largest NFD value for all the clients in the
subtree rooted at,.

maxFDist(Nc )

maxFDistfN, ),i=1,2,3

Figure 8: Example of Theorem 1

Figure 8 illustrates Theorem 1. Here, the rounded
FDist rectangle represents a region whenénDist(Nc,Np) <
maxFDIstN. ) maxFDis{Nc). If a point p lies outside the rectangle,
_ _ it satisfies the condition of Theorem 1, hence no client
Figure 6: Example ofmaxF Dist c € sul{Nc) is contained byS(p).
The following theorem defines and proves the upper

Definition 4. The smallest distance (minDist) betweenPoundmaxdr

two objects. Theorem 2. The following expression defines an upper
This metric is proposed by Roussopoulos et al. (1995)p0und for the dr values of all data points indexed in the
We use minDigt, Np) to denote the smallest distance be- syptree rooted at a nodephdf Ro.

tween a point ¢ and the MBR of a node.NIf c is

within the MBR of N, then minDistc,Np) = 0. Oth- S .

erwise, minDistc,Np) is the distance between c and its z'\'CE'N(NPfrﬂa;g[';ﬁ)(',\b) — minDist(Ne, Ne)]}
nearest point on the MBR of N Similarly, we use P

minDist(Nc, Np) to denote the smallest distance between T S
the MBR of I and the MBR of N. If these two Proof. An implicit statement about the definition of

N T ; dr(p) (cf. Section 4.1) for a potential locatiomis that

Mﬁ%isst?,\\/grﬁp'_thefn MinDiiic, Np) = 0. - Otherwise, dnn(c,F) > dist(c, p). However, this may not be true if
;Np)=min {dist(0,02)|01,07 are points IN(Np) is used instead ofS(p) whenc € sub(Nc) and
on the MBRs of Nand Ns, respectively. (Figure 7) Nc € IN(Np) butc ¢ 15(p). Let us define a sey(Nc)

which contains the clients isub(Nc) who are also in
IS(p). Formally,

minDistCs Ne )
G minDistE Ne ) Sp(Ne) = {c/dnn(c,F) —dist(c, p) > 0,
EZ\P/I.CS c € suliNc),Nc € IN(Np), p € sub(Np)}.
R \ We can see tha,(Nc) C sub(Nc). Take advantage of the
S 'N following relationships.
1 N <
o i 0 ! _-QIS (1)Vp € sub(Np) :
Wl e zallie {c|c e suliNc),Nc € IN(Np)} 2 IS(Np) 2 1S(p);
G o (2)Vc e subNe) :
minDistNe N» ) maxF Dis{Nc) > dnn(c,F);
(3)Ve € sul(Nc)Vp € sub(Np) :
Figure 7: Example ofninDist minDist(Nc,Np) < dist(c, p).

The following theorem guarantees that the subtree$or any potential locatiop € sub(Np), we obtain:
of the nodes in{Nc|minDist(Nc,Np) < maxFDis{N¢)}

cover all the clients inS(Np). This set define&N (Np). dr(p) = Yceis(p [dnn(c,F) —dist(c, p)]
Theorem 1. Given two nodes &l and N, sublNc) N = Y NeelN(Np) 2 ceSp(Ne) [ANN(C, F.)*diSt(C, p)]
IS(Np) = 0 if minDist(Nc,Np) > maxF Dis{Nc). < I NceIN(Ne) Zeesy(Ne) [MaXFDIs(N) —

minDist(Nc, Np)]

< I NeelN(Np) 2 cesuting) [MaxFDistNc) —
minDist(Nc, Np)]

Proof. According to the definitions ofminDist and
maxFDist we have:

1)V v Np) : = Y NeeIN(Np) 1 [SURNG) |-
e S T e e Ne): N axF DIStNe) — minDist(Ne, Ne)]}
(2)Vc e subNe) :

maxFDis{N¢) > dnn(c,F). Thus, the upper bound holds. O



To computemaxdrin the process of traversal, each en-
try €2 of RR stores|sub(N)| andmaxF Dis{Ng), denoted
ascNumand maxFDist for its child nodeN2. For the
data entriescNum= 1 andmaxF Dist= dnn(e2, F). Re-
cursively from the leaf nodes to the root node, the values

of the two new attributes can be computed for each en-
try of the non-leaf nodes based on their definitions. When

there is an update iR2, the structure can be maintained
efficiently in a similar recursive manner. Tr88 can also

intersection points

minExistDNNN¢c Ne )

be used in processing conventional queries on an R-tree ef-

ficiently, since adding two attributes will not significantl
increase the height of the tree. This will be validated in
our cost analysis and the experiments.

4.4 A Lower Bound

The way we derive the lower bourdindr is similar to
that of derivingmaxdr. We definemindr(Np) in the form
of max{g1(Nc) —92(Nc,Np)|Nc € S}, whereSis a set of
client R-tree nodegy; is a metric related to a nodé:, and
02 is a metric related tdlc andNp. We use the maximum

Figure 10: Example ofminExistDNN

we draw the four perpendicular bisectors M§.mbr's
edges and diagonals, they interddgtmbr at eight points.
These points are called thetersection point¢Xia et al.
2005) of Nc. Xia et al. prove that for any point
0 € Nc.mbr, there is a corner point or an intersection
point o' of Nc.mbr, such thatminMaxDis{o/,Np) >
minMaxDis{o,Np). As a result, the computation of
minExistDNNNc, Np) requires checking at most twelve

value instead of the sum value because it is possible fopoints.

the 1S(p) of a potential locatiorp to be indexed in only
one subtree rooted at a nodeR¥. We usemaxFDistas

01, andminExistDNNasg,. IN(Np) is used asS. Met-
ric minExistDNNis defined based aminMaxDist These

two metrics are proposed by Roussopoulos et al. (19954

Now we have the following theorem to define and
prove the lower boundhindr.

Theorem 3. The following expression defines a lower
bound for the dr value of all data points indexed in the
ubtree rooted at a nodepMof Rp.

and Xia et al. (2005), respectively. We present their defi-

nitions before presenting the definitionmfndr.

Definition 5. The minimum upper bound of the distance

between a point and its nearest data point o in another,

MBR (minMaxDist).

minMaxDis{c, Np) denotes the minimum upper bound
of the distance from a client c to her nearest potential lo-
cation in sulfNp). It is the distance between ¢ and the
second nearest corner ofplnbr since there must be a
potential location p on the side joining the nearest and
the second nearest corners, and the distance between
and p must be equal to or less than minMaxDishp).
(Figure 9)

minMaxDist¢ N- )i=3,5,6,8

Figure 9: Example ofninMaxDist

max{maxF Dis{N¢)—
MINEXistDNNNc, Np)|Nc € IN(Np) }.

Proof. The definition ofminExistDNNimplies:

Ve € sub(Nc)3p € sub(Np) :
MInEXistDNNNc, Np) > dist(c, p)

= Vc € subNg)3Ip € sul(Np) :
—minExistDNNNc, Np) < —dist(c, p),

¢ Also,3ce subNe) :

maxFDis{Nc) = dnn(c,F)

Hence 3c € sul(Nc)3p € sul(Np) :
maxF Dis{Nc) — minExistDNNNc, Np)
<dnn(c,F) —dist(c,p) < dr(p).

Therefore, the lower bound holds. O

4.5 Discussion

Let us revisit the BB method. Its core idea is that a depth-
first traversal is performed oRp while a global lower
boundpd is used to prune the subtrees. The pruning dis-
tancepd is updated oncenindr of some node odr of
some potential location is found to be larger than it. The
pruning power relies on the fast increasepof The rea-
son why we do not use a best-first traversal is thiaidr is
rather small. Thus the main reason fmfto increase is the
update of newly found largedr value. If we use a best-

first traversaldr value will not be found until the traversal

Definition 6. The minimum upper bound of the distance reaches the leaf nodes of both trees, which means almost
between a point in the MBR of some nodedits nearest  all non-leaf nodes may end up staying in the active page
data point o contained in the MBR of another nodg N list waiting to be pruned. The space requirement for this
(minExistDNN). process is too high. Hence, we opt to use the depth-first

We use minExistDN{Wc, Np) to denote the minimum traversal.
upper bound of the distance between a point o within the
MBR of N;, Nc.mbr, and its nearest potential location
p € sul(Np). Formally,

MINEXistDNNNc, Np) =
max{minMaxDis{0,Np)|0 € Nc.mbr}.

5 Cost Analysis

In this section, we analyze the I/O cost and CPU cost of
the BB method and compare them with those of the SS
method.

We first introduce the notation and equations used in
the analysis. We assume an R-tree node has the size of

Xia et al. (2005) propose a method to efficiently com-
pute minExistDNNNc,Np). As shown in Figure 10, if



a disk block. LetCy, be the maximum number of entries
in a disk block(i.e.,Cy = block size / size of a data enjry
andCq be the effective capacity of an R-tree node, i.e., the
average number of entries in an R-tree node. Then the
average height of an R-trek, is computed asloge_n|,
wheren is the cardinality of the dataset (we denote the

Table 2: Parameters and Their Settings

Parameter

Setting

Data distribution

Uniform, Gaussian, Zipfian

Client set size

10K, 50K, 100K, 500K, 1000K

Existing facility set size

0.1K, 0.5K, 1K,5K, 10K

Potential location set size

1K, 5K, 10K, 50K, 100K

cardinalities ofC, F andP by nc, nt andnp, respectively). u (Gaussian distribution ) | 0
The expected number of nodes in an R-tree is the total [ ¢? (Gaussian distribution ] 0.125, 0.25, 0,51, 2
number of nodes in all tree levels (leaf nodes being level | N (Zipfian distribution) 1000

a (Zipfian distribution) 0.1,0.3,0.60.9,1.2

1 and the root node being levk), which is zihzlcﬂ,
e
n(;+¢+...+ 1) = (1- )~
C "2 co Ce—1 ch Co—1 .
1’0 cést: For the SS method, the data points a_re6'1 Experimental Setup
retrieved in blocks from the disk, and the 1/O cost is All experiments were conducted on a personal computer
10s = et = & - For the BB method, the I/O cost with 3GB RAM and 2.66GHz Intel(R) Core(TM)2 Quad
depencs o e Rumber o o podes acessed. i V. The 561t e s bty S
method,Rp is traversed in a depth-first order and for ev- ) . -
ery nodeNp of Re, we need to Fr)etrieve the nodes in the _ We conduct experiments on synthetic and real datasets.
client R-tree that satisfies certain conditions whth In fggghetl'% ggta_?ﬁts darte g(%[neraé(_ad }’.‘{!th a spac? dor%a|1nKof
the worst case, every nodeRs is traversed, and for every 1OSOK Th e aas? dcar inaliues rangin rom ©.
node ofRp, the whole client R-tree is traversed. Therefore, 0 - Three types of datasets are usedU(ijform

-~ il ne __Nphe i ; datasets where data points are generated randomly ac-
the worst-case /O costig 2y ¢, 5 (Ce—12 While this cording to a uniform distribution; (iiGaussian datasets

worst-case 1/O cost is worse than the 1/0 cost of the SQyhere data points follow the Gaussian distribution; (iii)
method becaus€e < Cr, in practice, many nodes of the 7zipfian datasetswhere data points follow the Zipfian dis-
R-trees are pruned during the traversal. We quantify theribution. The parameters used in the experiments on syn-
percentages of the pruned nodeR&:nanng as the prun- thetic datasets are summarized in Table 2, where values in
ing power, and denote them ly, andw, respectively.  bold denote default values.
Then we have the the average 1/O cost of the BB method, We adopt two groups of real datasets provided by Dig-
1Oy = (1—Wp)(1—Wc)£cz- The superiority of the BB  ital Chart of the World (RtreePortal 2011), which contain
(Ce1) andwe. In our per the points of populated places and cultural landmarks in
C- -

%Erﬁlgr?cgvg[;g;/ev%e?vrxnl?tshhoo%\)iﬁsﬁhe pruning techniquesthe US and in North America. We name them as the US
used in the BB method are effective ata}, is constantly group and the NA group, respectively. For each group of

h less thato datasets, the populated places are used as the cligiit set
mugpgsgost‘?‘ s The cultural landmark dataset is divided into two datasets.

The CPU cost can be considered as the
; Half of the cultural landmarks are chosen randomly to
product of the CPU cost per disk block (R-tree node) mul-, ., yhe existing facility seff, and the remaining are used

tiplied by the number of disk blocks (R-tree nodes) ac-,q the potential location set For the US group, the cardi-

cessed. The I/O cost analysis provides the number o alities ofC. F. P are 15206. 3008 and 3009. res ;
; ,F, , , respectively,
nodes accessed. The CPU cost per disk block (R-tregyiie those for the NA group are 24493, 4601 and 4602.

node), typically involves distance metric computations. i ;
For every pair of disk blocks accessed, the SS methogar}/gﬁt :Zﬁggin%érr?ﬁng;;cnc@gg mlgtShAgdghd its proposed

computedlist(c, p) for every pair of client and potential
locationp. So there ar€3, distance metric computations. . i«
For every pair of R-tree node®p, Nc), the BB method 62 Experiments on Uniform Datasets

only computes the values of several distance metrics tqhis subsection focuses on the effect of dataset cardinali-
determine whetheXc should be put idN(Np) for further  tjes. We vary the sizes &, F andP independently.
process. Thus, the BB method has a much smaller num-

ber of distance metric computations to process a pair of . .
R-tree nodes than that of the SS method to process a pa2.1 Varying the Number of Clients
of disk blocks. We have also shown that on average, the

BB method has a much smaller 1/O cost than that of the

[
(=]
=)

SS method. Therefore, the CPU cost of the BB method is_ 10° 555 s ©
much smaller than that of the SS method. Z  of BB b 8.5 B 1

v 10 8 910 a

T I T
6 A Performance Study £ o 2 T

é 10° ¢ P {1 210°F e 4
In this section, we report the results of our performance ;1" . w w 10 w w w

10k 50k 100k 500k 1000k 10k 50k 100k 500k 1000k

study. experimental setting is presented in Section 6.1. To
evaluate the performance of the proposed method under
different environments, . Specifically, Section 6.2 présen
experiments onwe conduct experiments on both synthetic
and real datasets datasets with uniform distribution vary-
ing the size of the datasets. Section 6.3 presents experi-
ments on datasets with Gaussian distribution varying the i
variance of the distribution function. Section 6.4 present _ The results for the experiments that vary the number of
experiments on datasets with Zipfian distribution varyingclients are shown in Figure 11. From this figure, we can
the alpha value of the distribution function. Section 6.55€€ that the BB method outperforms the SS method by
presents experiments on real datasets. almost ten times in terms of both the running time and the

number of I/Os. This is because of the pruning techniques
used by the BB method to reduce the search space for the

Client Set Cardinality
(a) Running time

Client Set Cardinality
(b) Number of I/0s

Figure 11: The effect of client set cardinality



query answer, and this result confirms our cost analysis, We observe that, generally, the growth in the number
where the average cost of the BB method is shown to bef potential locations has the similar effect on the running
much smaller than that of the SS method. time and the number of 1/0Os as increasing the number of
We also see that even with a small set of clients (10K)clients. We also notice that, as the number of potential
it takes the SS method seconds to process the query. Colocations increases, the running time and the number of
sidering the capability of human perception, 0.1 second#/Os of the BB method increase much slower than those
may be a preferable choice for processing a query (Morsef the SS method do (please note the logarithmic scale).
1996). Then the SS method is far inferior and is unable tdrhis is because when the number of potential locations
produce the query answer in time, especially for the urbatecomes larger, the height Bf increases and every time
development simulations and the MMOG applications. Asa non-leaf node ifRp is pruned, more potential locations
for the BB method, it computes the query answer in lessare pruned. When the number of potential locatiops
than 0.1 seconds for the 10K dataset. Even for a very largbecomes very large (i.@, > 10K), the proposed pruning
dataset (1000K), it computes the query answer within sectechniques function even better and the advantage of the
onds. With some upgrades in hardware, it is still realisticBB method becomes significant.
for the BB method to produce the query answer in time.

6.3 Experiments on Gaussian Datasets
6.2.2 Varying the Number of Existing Facilities
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Variance
(a) Running time

Variance

(b) Number of I/0s

. - . o Figure 14: The effect of2 in Gaussian distribution
Figure 12: The effect of existing facility set cardinality

. . In the following experiments, we vary the distribution
The results of the experiments varying the number ofy¢ he datasets. g exp y

]gxistingtéacigges a;ﬁ Sdho"r‘]’” in FiguLe blztt Agair}, in this " Figure 14 shows the results of experiments conducted
igure, the method shows much better performanc .
than the SS method in terms of both the running time an%S the Gaussian datasets where we vary the valu#’of

the number of 1/0s because of the pruning techniques usegr the Gaussian datasets, varyinymeans varying the

to reduce the search space. egree of the inclination for the data points to cluster at
Another observation is that an increase in the numbethe central area of the distribution. Increasogleads to

of facilities yields a drop in both the running time and the less dense data points at the center. We observe that, com-

number of I/Os for the BB method. The reason is that onpared with varying dataset cardinalities, varyin§ does

average the more the facilities, the shorter the nearest farot affect much of the algorithm performance. The BB

cility distances for the clients. In other wordsnn(c,F) method still outperforms the SS method in terms of both

decreases with the increase of the number of existing facilthe running time and the number of I/Os, which confirms

ities. As a resultmaxFDis{Nc) decreases and the prun- the results of our cost analysis.

ing power of the BB method to prune nodesR@ is en-
are reduced. SS is not affected due to its lack of pruning
capability and it does not access the seEdfit accesses

F for dnn(c,F) computation, which is assumed to be pre-
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o
o
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® ot ‘ ‘ ‘ Lo Figure 15: The effect ofr in Zipfian distribution

10
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Potential Location Set Cardinality
(b) Number of 1/0s

1k 5k 10k 50k 100k

Potential Location Set Cardinality

i Locaton Sel We vary the value ofr in the experiments conducted
a, unning time

on the Zipfian datasets and the results are shown in Fig-
ure 15. Like the Gaussian datasets, we notice that the
value of a does not affect much of the algorithm per-
Figure 13: The effect of potential location set cardinality formance. We also notice that the resultant running time
and number of I/Os are similar to those of the experiments
Results of the experiments that vary the number of poconducted on the Gaussian datasets. We further compare
tential locations are shown in Figure 13. The BB methodthese results with those of the experiments conducted on
still shows high efficiency in these experiments. the uniform datasets with the same dataset cardinalities,



and find that the differences among them are small, tocDu, Y., Zhang, D. & Xia, T. (2005), The optimal-location
Thus, we can conclude that the effect of different distribu- query.,in ‘SSTD’.

tions on the proposed method is trivial. Gao, Y. Zheng, B., Chen, G. & Li, Q. (2009),
‘Optimal-location-selection query processing in spatial

6.5 Experiments on Real Datasets databasesTKDE 21, 1162—-1177.
Guttman, A. (1984), R-trees: A dynamic index structure
1ot 10t for spatial searchingin ‘SIGMOD’.
SS Xx1 SS XX1
N 8 BB wes Huang, J., Wen, Z., Pathan, M., Taylor, K. & Zhang, R.
E Lv 5 (2011), Ranking Locations for Facility Selection based
R B g0 F S— on Potential Influence# ‘the 37th Annual Conference
£ 2} E 5 = 2 of the IEEE Industrial Electronics Society’.
4 52 IS SO0 ]
10° 53 102 el LS Huang, J., Wen, Z., Qi, J., Zhang, R., Chen, J. & He, Z.
us us NA (2011), Top-k Most Influential Location Selectioim
Dataset Group Dataset Group ‘Cl KM’
(a) Running time (b) Number of I/0s .

Korn, F. & Muthukrishnan, S. (2000), Influence sets based
on reverse nearest neighbor querigs:SIGMOD’.

Figure 16: Performance comparison on real datasets .
9 P Morse, K. L. (1996), Interest management in large-scale

The experimental results on real datasets are shown in distributed simulations, Technical Report ICS-TR-96-

Figure 16. The comparative performance of the methods

is similar to that of experiments conducted on the synthetigviouratidis, K., Papadias, D. & Papadimitriou, S. (2005),
datasets. The BB method still outperforms the SS methods Medoid queries in large spatial databases'SSTD'.
significantly for both US and NA datasets. . - .

Overall, we see that the BB method outperforms thePapadias, D., Tao, Y., Mouratidis, K. & Hui, C. K.
SS methods constantly because of the pruning techniques (2005), ‘Aggregate nearest neighbor queries in spatial
used to reduce the search space for the query answer. databasesACM Trans. Database Sysi0, 529-576.
When the dataset cardinalities become large, the advarn; ; ;
tage of the BB method becomes more significant. Thesrg"n‘]]i'r’]_%?s&ﬂgé;iéﬁglgfél&i’olalrau%m& )I(g(E)EY (2012), The
results agree with our cost analysis. '

Roussopoulos, N., Kelley, S. & Vincent, F. (1995), Near-

7 Conclusions est neighbor queried ‘SIGMOD'.

d J o g threePortaI (2011), ‘http://www.rtreeportal.org’.
We conducted a comprehensive study on processing t . . .
min-dist location selecr:)tion query. We first IEz:malyzed thegtano" |, Riedewald, M., Agrawal, D. & Abbadi, A. E.
basic properties of this query type and presented a naive (2001), Discovery of influence sets in frequently up-
algorithm (SS) to process the query. However, the SS al- dated databaseis, "VLDB'.

gorithm is inefficient due to repeated scanning on datasetspong, R. C.-W.,Ozsu, M. T., Yu, P. S., Fu, A. W.-
We explored geometric properties of spatial data objects, c."& Liu, L. (2009), ‘Efficient method for maxi-
and proposed techniques to prune the search space. Thismizing bichromatic reverse nearest neighb@V/LDB
resulted in a branch and bound algorithm (BB). We pro- 2 1126-1137.

vided a detailed comparative cost analysis for the BB

method and performed extensive experiments to evaluatd/u, W., Yang, F., Chan, C. Y. & Tan, K.-L. (2008),
the empirical performance of the method. The experimen- Continuous Reverse k-Nearest-Neighbor Monitoring,
tal results show that the BB method constantly outper- in ‘The Ninth International Conference on Mobile Data
forms the SS method, and when the dataset cardinalities Management'.

become large, the advantage of the BB method become)%a’ T. Zhang, D., Kanoulas, E. & Du, Y. (2005),

more significant. As future work, we will compare the ; } ; ; A
BB method with the methods proposed by Qi et al. (2012) ﬁ’,‘[gg,mp“““g top-t most influential spatial sites,

both analytically and experimentally.
Xiao, X., Yao, B. & Li, F. (2011), Optimal location queries
in road network databases,'ICDE’.
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