
A Branch and Bound Method for Min-dist Location Selection Queries

Jianzhong Qi1 Zhenghua Xu2 Yuan Xue3 Zeyi Wen4

Department of Computing and Information Systems
University of Melbourne,

111 Barry St, Carlton, Victoria 3053, Australia

Email: 1,2,4{jiqi,zhxu,zeyiw}@csse.unimelb.edu.au
3yuaxue@unimelb.edu.au

Abstract

Given a set of clients and a set of existing facilities, the
min-dist location selection query returns a location from a
given set of potential locations for establishing a new fa-
cility so that the average distance between a client and her
nearest facility is minimized. This type of queries has a
wide range of applications in marketing, decision support
systems, urban development simulations and massively
multiplayer online games. The computational cost of a
naive algorithm, which sequentially scans all the potential
locations, is too high to process this type of queries in real
time. Motivated by this, we propose a branch and bound
algorithm that exploits geometric properties of the data
objects and early prunes unpromising potential locations
from consideration to achieve a higher query processing
efficiency. We conduct a detailed cost analysis and exten-
sive experiments to validate the efficiency of the branch
and bound algorithm. The results show that the proposed
algorithm outperforms the naive algorithm constantly.

Keywords: Spatial databases, optimal location selection,
min-dist metric

1 Introduction

Many businesses or organizations manage large numbers
of facilities. For example, Walmart has warehouses, and
Australia Post has branch offices. It is a common need for
a business to add facilities. For example, Walmart might
want to add a warehouse to reduce the distances between
its stores and warehouses; Australia Post might want to
add a new post office in an emerging suburb to reduce the
traveling distances for their postmen. Usually, a set of po-
tential locations is available, typically from a real estate
agent (e.g., real estate websites provide hundreds of thou-
sands of places for renting or buying).

This paper investigates the min-dist location selection
query, which selects a location (for Walmart or Australia
Post) that minimizes the average distance between a client
(a chain store or an addressee) and her nearest facility
(warehouse or post office) to reduce logistics cost or to im-
prove the quality of service. We assume that the business
has knowledge about its client distribution from surveys
or past sales records.

The min-dist location selection query also has other ap-
plications as follows. In urban development simulation,
very often urban planners need to simulate the above lo-
cation selection procedure, so that the influence of estab-

Copyright c©2012, Australian Computer Society, Inc. This paper ap-
peared at the 23rd Australasian Database Conference (ADC 2012), Mel-
bourne, Australia, January-February 2012. Conferences inResearch and
Practice in Information Technology (CRPIT), Vol. 124, Rui Zhang and
Yanchun Zhang, Ed. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

lishing a new public facility or business center on the res-
idents can be observed. In the multi-billion dollar com-
puter game industry, massively multiplayer online games
(MMOGs) like World of Warcrafthave group quests for
players to complete in teams, which mostly involve killing
mobs (monsters or other non-player characters). As the
quests often take players days or even weeks to complete,
it is common for players to leave and rejoin the game dur-
ing a quest. When a player rejoins the game, the subquest
she was on may have been completed by her teammates
and the team has moved on to another region to complete
other subquests. It would be a waste of time for this player
to rejoin the game from where she left. A very helpful util-
ity for the game is selecting a starting point from a set of
preset rejoin locations to minimize the average distance
between a mob and its nearest player, so that players can
focus on fighting mobs rather than walking.

2

c1

c3

p
1

c7

2
f

c8

c6

p
2

c5

c4

f
1

client

existing facility

potential location

c

Figure 1: An example for the query

The example in Figure 1 illustrates the query:
{c1,c2, ...,c8} is a set of clients (residents or mobs),
{ f1, f2} is a set of existing facilities (public facilities or
teammates) and{p1, p2} is a set of potential locations
(candidate locations for new facility establishment or re-
join). Now we need to select one from the potential lo-
cations to establish a new facility. Before adding a new
facility, f1 is the nearest facility ofc1, c2, c3 andc6; f2 is
the nearest facility ofc4, c5, c7 andc8. If a new facility is
established atp1, it will become the nearest facility forc1,
c2 andc3. If a new facility is established atp2, it will be-
come the nearest facility ofc4 andc5. As we can observe,
p2 results in a smaller average distance between a client
and the nearest facility, so it is selected as the answer.

Although an existing commercial software (ArcGIS
2011) can solve several kinds of simpler location opti-
mization problems, none can solve the min-dist location
selection problem, as we will detail in Section 2.

1.1 Contributions and Organization of the Paper

In this paper, we examine solutions to the min-dist loca-
tion selection query and make the following contributions.

• We analyze the properties of the min-dist location se-
lection query and propose pruning techniques to re-
duce the search space for processing the query.

• Based on the proposed pruning techniques, we pro-
pose a branch and bound method to efficiently pro-
cess the query.

• We perform an analytical cost study and an extensive
experimental study. The results confirm the effec-
tiveness of the proposed pruning techniques and the
efficiency of the proposed algorithm.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 formulates the query and
presents a naive algorithm. Section 4 presents the branch
and bound method. Section 5 analyzes the cost of the pro-
posed method and Section 6 presents the experimental re-
sults. Finally, Section 7 concludes the paper.

2 Related Work

We review three categories of work below: work on the
reverse nearest neighbor (RNN)query, work onmax-inf
location optimization problems and work onmin-dist lo-
cation optimization problems.

RNN query: Korn & Muthukrishnan (2000) define the
RNNs of an objecto to be the objects whose respective
nearest neighbor (NN) iso. They propose anRNN-tree
based solution to the query, where the RNN-tree is an R-
tree (Guttman 1984) variant that indexes NN circles of the
data objects rather than the data objects themselves. Here,
the NN circle of an objecto is a circle that centers ato
with its radius being the distance betweenoando’s nearest
neighbor. Based on the NN circles, to find the RNN of an
objecto only requires checking which objects’ NN circles
encloseo. However, the RNN-tree based solution has two
major drawbacks. One is that it requires the extra main-
tenance of an RNN-tree. The other is that it requires pre-
computing the NN circles. Therefore, this solution cannot
handle objects with frequent updates. To solve the first
problem, Yang & Lin (2001) propose to integrate the NN
circle information into an R-tree that indexes the clients
themselves, so that the resultant R-tree variant, theRdNN-
tree, can be used to process RNN queries as well as other
common types of queries on the clients, and thus avoid the
maintenance of an extra RNN-tree. To solve the second
problem, Stanoi et al. (2001) propose an approximation-
refinement framework to compute the RNNs on the fly, so
that no precomputation is needed.

There are studies on RNN query variants under differ-
ent settings. For example, thereverse k nearest neigh-
bor (RkNN)query finds objects whosek nearest neigh-
bors include the query object. Wu et al. (2008) study
the RkNN query on continuously moving objects, which
correlates two sets of moving objects according to their
closeness. The continuous join query on extended mov-
ing objects (Zhang et al. 2008, n.d.) also correlates multi-
ple sets, but it focuses on intersecting objects with a time-
constraint technique rather than closeness. While these
approached work well for a single R(k)NN query, they are
not tailored for computing RNNs for large amount of ob-
jects at the same time, which is one of the key difficulties
in our study.

Max-inf problems: Max-inf location optimization
problems aim at maximizing the influence of the loca-
tions, where the influence of a location is defined by the
number of clients it attracts. Here, the concept of“at-
tract” can have different meanings in different max-inf
problems. Cabello et al. (2005) propose the MAXCOV
facility location problem, which finds regions in the data
space to maximize the numbers of RNNs for the points in
these regions. Figure 2 gives an example, where the gray
regions are the optimal regions. Points in these regions
have 4 RNNs, while any point outside of these regions has
at most 3 RNNs. Cabello et al. (2005) introduce the con-
cept ofnearest location circle (NLC)to solve the problem,

8

7c f
2

f
1c3

c2

c1

c6

c4

c5

c

Figure 2: A max-inf problem (Cabello et al. 2005)

where the NLC of a clientc is a circle centered atc with
its radius being the distance betweenc andc’s nearest ex-
isting facility. To find the solution for the MAXCOV crite-
rion based problem is to find the regions that are enclosed
by the largest number of NLCs, which requires complex
computations. Wong et al. (2009) study this problem fur-
ther and propose a more efficient method to compute the
regions overlapped by the largest number of NLCs. Xia
et al. (2005) propose the top-t most influential sites prob-
lem and a branch and bound algorithm to the problem.
This problem finds the top-t most influential existing sites
within a given regionQ. Du et al. (2005) find a point from
a continuous candidate region that can maximize the in-
fluence value. They useL1 as the distance metric and have
a strong assumption that all the roads are either horizontal
or vertical. Cheema et al. (2011) find an influence zone
for a query locationp, where the clients inside this zone
form exactly the RkNN query result ofp. A more recent
study (Huang, Wen, Pathan, Taylor & Zhang 2011) ranks
the candidate locations according to their influence val-
ues and another study (Huang, Wen, Qi, Zhang, Chen &
He 2011) contributes in efficient algorithms to compute
the top-k most influential candidate locations. Unlike the
above problems, which relate the influence values to the
cardinalities of RNN sets, Gao et al. (2009) propose to find
the optimal locationp outside a given regionQ based on
locations’optimality, where the optimality of a locationp
is modeled by the amount of clients inQ whose distances
to p is within a given thresholdt. Intuitively, the more
clientsp attracts, the greater its optimality. These studies
differ from ours in optimization functions and other set-
tings. Thus, their solutions do not apply.

Min-dist problems: Qi et al. (2012) first propose the
min-dist location selection problem. Their study (Qi et al.
2012) is a concurrent study of ours. In that paper, solu-
tions focus on how to efficiently identify the influenced
clients for the potential locations, while this paper givesa
solution on how to early prune unpromising potential lo-
cations from consideration.

Papadias et al. (2005) find the existing facility that has
the smallest average distance to all the clients. They do not
consider establishing a new facility. Zhang et al. (2006)
propose the min-dist optimal-location problem. Given a
client setC, an existing facility setF and a regionQ, it
finds points withinQ so that if a new facility is established
at any one of these points, the average distance of the
clients to their respective nearest facilities is minimized.
Figure 3 gives an example, wherept may be one of the
points in the answer set and it is not the solutionp2 to our
problem. Zhang et al. (2006) propose a method that first
identifies a setL of candidate locations fromQ and then
dividesL progressively until the answer set is found. Xiao
et al. (2011) study the min-dist problem in road networks.
They have a candidate edge setE for the new facility to be

pt

2

c3

c1

p
1 f

1

6c

f
2

c7

c8 p
2

c5

c4

Q

c

Figure 3: The min-dist optimal-location problem

established on. Their key insight is that the optimal loca-
tion on a candidate edge must be one of the endpoints of
the edge. Thus, only the endpoints of the edges inE need
to be checked for the problem solution.

Zhang et al. (2006) and Xiao et al. (2011)’s studies
have the same min-dist optimization function as ours, but
our study has a setP, the potential locations given as can-
didates for selection. In many real applications, we can
only choose from some candidate locations, e.g., McDon-
ald’s may only open a new restaurant at a place for rent
or sale rather than anywhere in a region or on a road. The
main idea of Zhang et al.’s solution is the fast identification
of a small setL of candidate locations fromQ. However,
the candidate locations inL could be any point fromQ,
which may not even contain a potential location from our
potential location setP. Similarly, the endpoints of the
edges inE (Xiao et al. 2011) are different from the points
in P. This means that in the general case their approaches
cannot provide a correct answer to our problem, and thus
are not applicable.

Note that in computational geometry, given a set
C of object locations (e.g., clients), thek-medoid
query (Mouratidis et al. 2005) finds a set of medoids
C′ ⊆C with cardinalityk that minimizes the average dis-
tance from each objectc ∈ C to its closest medoid inC.
Thek-median query is a variation, where we findk loca-
tions called medians, not necessarily inC, which minimize
the average distance (from each objectc∈C to its closest
median). These two types of queries are actually using the
min-dist metric. However, our problem is different from
both of them. A fundamental difference is that these prob-
lems do not assume a set of existing facilities or a set of
potential locations, but we do. If there is at least one exist-
ing facility or some potential locations to be chosen from
in a specific location selection problem,k-medoid queries
or k-median queries do not apply.

Related commercial software: As mentioned in the
Introduction, an existing commercial software (ArcGIS
2011) can solve several kinds of simpler location opti-
mization problems. The most related problem this soft-
ware can solve is called theminimize impedance query,
which finds locations for a set of new facilities to minimize
the sum of distances between clients and their respective
nearest facilities. However, this problem does not consider
existing facilities. If we use this software to find a set of
locationsSl for new facilities, there is no guarantee thatSl
will contain all the points in the set of existing facilitiesF .
Therefore, this software does not solve our problem.

3 Preliminaries

This section presents the definition of the min-dist location
selection query and a naive algorithm to process the query.
Frequently used symbols are summarized in Table 1.

3.1 Problem Definition

All data objects (clients, facilities and potential locations)
are represented by points in an Euclidean space. We may

Table 1: Frequently Used Symbols
Symbols Explanation
e An entry in a R-tree node
o Any point in the data space
dist(o1,o2) The distance between two pointso1 ando2
C, F , P The set of clients, existing facilities

and potential locations, respectively
nc, nf , np Cardinality ofC, F , andP, respectively
c, f , p A client in C, an existing facility inF

and a potential location inP, respectively

refer to the data objects asdata pointsor simply aspoints.
Let dist(o1,o2) denote the distance between two pointso1
ando2, andnc be the number of clients. The min-dist loca-
tion selection query is defined (Qi et al. 2012) as follows.

Definition 1. Min-dist location selection query.
Given a set of points C as clients, a set of points F as

existing facilities and a set of points P as potential loca-
tions, the min-dist location selection query finds a poten-
tial location pm∈ P for a new facility to be established at,
so that∀p∈ P :1

∑c∈C{min{dist(c,o)|o∈ F ∪ pm}}

nc

≤
∑c∈C{min{dist(c,o)|o∈ F ∪ p}}

nc
.

Since the denominator is the same on both sides of
the inequality, the problem is equivalent to minimizing the
sum (instead of the average) of the distances between the
clients and their respective nearest facilities.

3.2 A Naive Algorithm

A straightforward algorithm to the min-dist location selec-
tion query is to sequentially check all potential locations.
For every new potential locationp, we compute the sum
of the distances of all clients to their respective nearest fa-
cilities. The potential location with the smallest sum is the
answer. We call this algorithm thesequential scan (SS)
algorithm.

ALGORITHM 1: SS(C, P)

1 optLoc← NULL; // optLocis the optimal location;
2 for p∈ P do
3 p.distSum← 0;
4 for c∈C do
5 if dist(p,c)< c.dnn(c,F) then

// c.dnn(c,F) is precomputed
6 p.distSum← p.distSum+dist(p,c);
7 else
8 p.distSum← p.distSum+c.dnn(c,F);

9 if optLoc= NULL or
p.distSum< optLoc.distSumthen

10 optLoc← p;

11 returnoptLoc;

In SS, repeatedly finding the nearest facility to each
client for every potential location is too expensive. There-
fore, we precompute the distances of all the clients to their
respective nearest facilities and store the distances. This
precomputation involves a nested loop iterating through

1Note that there may be ties in the average distances. To simplify our discussion,
we always return the first potential location found that have the smallest average
distance.

every client and for every client iterating through every
facility. KNN-join algorithms (e.g., Yu et al. (2010)) can
do this more efficiently and maintain the results dynami-
cally when clients and facilities are updated. The SS al-
gorithm with precomputation is shown in Algorithm 1,
wherec.dnn(c,F) denotesc’s precomputed distance to her
closest existing facility and is stored withc’s record.

We see that even with precomputation SS is still very
costly as it has to access the whole client datasetnp

Cp
times,

wherenp is the cardinality ofP andCp is the capacity of
a block forP (assuming we readP in disk blocks). There-
fore, the need for an efficient algorithm is obvious.

4 A Branch and Bound Method

In this section, we propose a brand and bound method that
exploits data objects’ geometric properties to prune un-
promising potential locations from consideration, so that
the min-dist location selection query can be processed
more efficiently. This method requires the query to be
redefined in a form that enables the computation for the
bounds. Next, we start with redefining the query.

4.1 Query Redefinition

We call the distance between a clientc and her near-
est facility thenearest facility distance (NFD)of c. Let
dnn(o,S) denote the distance between a pointo and its
nearest point in a setS. Thendnn(c,F) anddnn(c,F ∪ p)
denote the NFD ofc before and after a new facility is
established on a potential locationp, respectively. The
min-dist location selection query is actually minimizing
the sum of all the clients’ NFD.

If o is a point not in the setF and dist(c,o) <
dnn(c,F), then establishing a new facility ato will re-
duce the NFD ofc. In this case, we say thatc can get
anNFD reductionfrom o. We define theinfluence setof
o, denoted byIS(o), as the set of clients that can get NFD
reduction fromo. Formally,IS(o) = {c|c∈C,dist(c,o)<
dnn(c,F)}. The influence set of a potential locationp
includes all the clients that will reduce their NFD if a
new facility is established atp. For example, in Figure 1,
IS(p1) = {c1,c2,c3}, andIS(p2) = {c4,c5}.

If IS(p) 6= /0 for a potential locationp, then establish-
ing a new facility atp will reduce the sum of the clients’
NFD. We call the sum of the clients’ NFD reduced byp
thedistance reductionof p, denoted bydr(p). Formally,
dr(p) = ∑c∈IS(p)(dnn(c,F)−dnn(c,F ∪ p)). Minimizing
the sum of the clients’ NFD when adding a facility onp is
equivalent to maximizingdr(p). Therefore, the min-dist
location selection query can be redefined as follows.

Definition 2. Given a set of points C as clients, a set
of points F as existing facilities and a set of points P as
potential locations, the min-dist location selection query
finds a potential location pm∈ P, so that∀p∈ P: dr(p)≤
dr(pm).

4.2 The Branch and Bound Algorithm

The Branch and Bound (BB)method estimates the po-
tential locations’dr values to achieve early pruning. It
assumes that the datasets are indexed in spatial indexes.
Specifically, it assumes an R-treeRP to index the potential
location setP, and an R-tree variantRb

C to index the client
setC and store some other information for the comput-
ing the bounds (details are in Section 4.3), although the
method can be easily adapted to any hierarchical spatial
index. The branch and bound scheme is performed during
a traversal on both trees.

3

2

c1

c6

o1

p
2

c5

c4c8

c7

o2

f
2

c3

p
1

o

c

1
f

NP

Figure 4:IS(NP)

Before explaining the BB method, we need to extend
the concept of the influence set of a point to theinflu-
ence set of a nodein RP. Let NP be a node inRP.
The influence set of the nodeNP is defined asIS(NP) =
{c|c ∈ C and∃o ∈ NP.mbr : dist(c,o) < dnn(c,F)}. A
client is in IS(NP) if there is a point (not necessarily a
potential location) in the minimum bounding rectangle
(MBR) of NP that can reduce the client’s NFD. Intuitively,
IS(NP) defines the set of clients which might achieve dis-
tance reduction without knowing which potential loca-
tions are actually inNP; it is the union ofIS(o) for any
possible pointo in the MBR of NP. Figure 4 gives an
example. NodeNP indexes two potential locationsp1
and p2. We can observe thatIS(p1) = {c1,c2,c3} and
IS(p2) = {c4,c5}. Also, there are three pointso1, o2 and
o3 in the MBR ofNP. We havedist(o1,c6) < dnn(c6,F),
dist(o2,c7) < dnn(c7,F) and dist(o3,c8) < dnn(c8,F).
Therefore,IS(NP) = {c1,c2, ...,c8}.

The idea of the BB method is as follows. We traverse
RP in a depth-first order and simultaneously traverse the
R-tree variant onC, Rb

C (recall that this R-tree maintains
some additional information for computing bounds). We
use the tree structure to narrow down the clients we have
to examine for identifying the influence sets of a potential
location. As we visit a nodeNP of RP (supposeNP is in
level i of RP), we identify a set of nodes from leveli of Rb

C
whose subtrees must cover all the clients inIS(NP); we
call this set of nodes fromRb

C the influence nodes(IN) of
NP and denote it byIN(NP). Based on the MBR ofNP and
the aggregate information stored in the nodes ofIN(NP),
we can compute a lower bound and an upper bound for the
distance reduction of all the potential locations contained
in the subtree rooted atNP. As we traverse downRP, the
bounds will become tighter. We record the largest lower
bound so far during traversal, which serves as a pruning
distance, denoted aspd. If at any time we encounter a
node in RP with an upper bound of distance reduction
smaller thanpd, then that node can be discarded from the
search, since our goal is to find the potential location with
the largest distance reduction. When we reach the leaf
level of RP, we get the exact information of the potential
locations and can compute their exact distance reductions.
If pd is smaller than an exact distance reduction, thenpd
gets updated to it. The search stops as we finish traversing
RP and the potential location with the largestdr value is
the answer.

The derivation of the upper boundmaxdrand the lower
boundmindr are presented in Sections 4.3 and 4.4, re-
spectively. The condition to identifyIS(NP) of NP, and
the structure ofRb

C are related to the upper bound, so we
present them in Section 4.3.

The recursive part of the BB algorithm is summarized
in Algorithm 2. We explain the algorithm together with
the example in Figure 5, where the nodes within a dot-
ted rectangle represent the IN of a node inRP. Initially,
NP is set to the root node ofRP, which is N0, IN is set
to the root node ofRb

C, Nb
0 , pd is set to 0 andoptLoc is

set toNULL. For each nodeNP being accessed, we con-

structIN(ep) for each of its entryep using the child nodes
of the nodes inIN(NP) (lines 1 to 3). In Figure 5, we
haveIN(e1) = {Nb

1}, IN(e2) = {Nb
2 ,N

b
3} andIN(e3) = /0.

These actually meansIN(N1)= {Nb
1}, IN(N2)= {Nb

2 ,N
b
3}

and IN(N3) = /0. Then the child nodes ofN1, N2 andN3
will use the child nodes of these INs to construct their own
INs. For example,IN(N11) is constructed with the child
nodes ofNb

1 , and the resultantIN(N11) is {Nb
11,N

b
12}. Sim-

ilarly, IN(N21) andIN(N22) are constructed with the child
nodes ofNb

2 andNb
3 , which results inIN(N21)= {Nb

21} and
IN(N22) = {Nb

22,N
b
23,N

b
31}. This ensures that the level of

ALGORITHM 2: BB(NP, IN, pd, optLoc)
1 if NP is a non-leaf nodethen
2 for ep ∈ NP do
3 ConstructIN(ep), computemaxdrand

mindr;
4 if maxdr> pd then
5 if mindr> pd then
6 pd←mindr;

7 BB(ep.childnode, IN(ep), pd, optLoc);

8 else if NP is a leaf node but nodes in IN are
non-leaf nodesthen

9 for Nb
C ∈ IN do

10 IN′← /0;
11 for eb

c ∈ Nb
C, eb

c satisfies IN conditions of NP
do

12 IN′← IN′∪e′c.childnode;

13 BB(NP, IN′, pd, optLoc);

14 else
// NP and nodes in IN are all

leaf nodes
15 for Nb

C ∈ IN do
16 for ep ∈ NP do
17 for eb

c ∈ NC, dist(ep,eb
c)< eb

c.dnn(c,F)
do

18 ep.dr←
ep.dr+eb

c.dnn(c,F)−dist(ep,eb
c);

19 if optLoc= NULL or ep.dr > optLoc.dr
then

20 optLoc← ep;

21 if optLoc.dr > pd then
22 pd← optLoc.dr;

N

N

3N2N1N

N11 N1312N 21N N22 23N N31 32N N33

b b b

bb

PR

e11 e12 e13

e1 e2 3e

31e 32e 33e21e 22e 23e

Nb
1

bR
C

N b
0

1e b e32e

N3
b

b b be33e32e31e23e22e21

b
2Nbb b

13e12e11e

11
bN N b

12 13
bN Nb

21 22
bN Nb

23 31
bN Nb

32 33
b

0

Figure 5: Example of algorithm BB

IN(NP) and that ofNP are the same. The boundsmaxdr
andmindr of an entryep are computed using the aggre-

gated attributes stored in the parent entries ofIN(ep). The
child node ofep will be pruned ifmaxdr≤ pd (line 4). if
mindr> pd, pd will be updated to bemindr (lines 3 to
6). Then the child nodes of the unpruned entries ofNP are
traversed (line 7). Note that the heights ofRP andRb

C may
be different. Thus, there are different procedures for the
condition where the traversal reaches the leaf level of only
one tree. (i) If the traversal reaches an non-leaf nodeNP
of RP, andIN(NP) are leaf nodes, we construct the INs of
the child nodes ofNP using nodes ofIN(NP) since there is
no child node for the nodes inIN(NP) (lines 1 to 7). (ii) If
the traversal reaches a leaf nodeNP of RP, andIN(NP) are
non-leaf nodes, we construct a subset ofIN(NP) with the
entries of each nodeNb

C ∈ IN(NP), denote it asIN′(NP),
and perform algorithm BB onNP and IN′(NP) (lines 8
to 13). Doing this recursively guarantees that all clients
contained in the subtrees of the nodes inIN(NP) will be
accessed, which meansIS(NP) is fully accessed. The ad-
vantage of this method compared to the construction of
INs for the data entries directly is its reduction of node ac-
cesses inRb

C. Since entries of a same node tend to have
similar IN′s, if we access the nodes inIN(NP) directly for
each data entry ofNP, many nodes (and their descendant
nodes) will be accessed repeatedly and the number of node
accesses will be large. When the traversal reaches the leaf
nodes of both trees, for each data entryep of a nodeNP of
RP, all entries of each nodeNb

C ∈ IN(NP) are accessed to
updateep.dr (lines 14 to 18);optLocandpd are updated
accordingly (lines 19 to 22). When the traversal ends,IN
has been accessed for all potential locations andoptLocis
found.

4.3 An Upper Bound

We derive an upper boundmaxdr for the distance re-
duction of all potential locations contained in the sub-
tree rooted at a nodeNP. To simplify our discussion, we
usesub(N) to denote the set of data entries contained in
the subtree rooted at the nodeN. Then|sub(N)| denotes
the cardinality ofsub(N). For example,sub(NP) denotes
the set{p|p is a potential location indexed in the subtree
root at nodeNP}.

The following discussion holds for any R-tree based
index on the set of clients, we useNC (instead ofNb

C
used in the above subsection) to denote a node in such
an index. Recall the definition ofdr of a potential loca-
tion p, dr(p) = ∑c∈IS(p)(dnn(c,F)−dnn(c,F ∪ p)). We
derive maxdr in a similar way. Since we are using a
set of nodes to computemaxdr for a nodeNP of RP,
maxdr(NP) = ∑NC∈S(|sub(NC)| · (g1(NC)− g2(NC,NP))),
whereSis a set of client R-tree nodes,g1 is a metric related
to a nodeNC, andg2 is a metric related toNC andNP. We
use|sub(NC)| because, in an ideal condition, every client
c∈ sub(NC) is in IS(p) of some potential locationp∈NP.
To derive a reasonable upper bound, we try to find small
Sandg1(NC) and a largeg2(NC,NP). We use the metrics,
maxFDistandminDist, asg1 andg2, respectively.IN(NP)
is used asS, which will be established based onmaxFDist
and minDist. The definitions ofmaxFDist and minDist
are as follows.

Definition 3. The largest NFD value (maxFDist) for all
clients that are in the subtree rooted at a node NC.

This metric is proposed by Yang & Lin (2001) as
max dnn and it is defined in a bottom-up fashion.
For the leaf nodes, maxFDist(NC) is defined as the
largest NFD value for all the clients indexed in NC,
i.e., maxFDist(NC) = max{dnn(c,F)|c ∈ NC }, while
for the non-leaf nodes, maxFDist(NC) is defined as the
largest maxFDist value for all the child nodes of NC, i.e,

maxFDist(NC) = max{maxFDist(ec.childnode)|ec ∈ NC
}.

Figure 6 gives an example, wherednn(c3,F),
dnn(c6,F) anddnn(c4,F) are the largest NFD values of
the clients indexed in the leaf nodesN1, N2 and N3, re-
spectively. The three NFD values are picked as the re-
spectivemaxFDistvalues of the three nodes. Meanwhile,
the largest value amongmaxFDist(N1), maxFDist(N2)
andmaxFDist(N3) is picked as themaxFDistof the par-
ent node (N4) of these three nodes. Therefore, we get
maxFDist(N4) = maxFDist(N3) = dnn(c4,F), which is
effectively the largest NFD value for all the clients in the
subtree rooted atN4.

f

NmaxFDist(), i = 1, 2, 3

c8

c2
c1 c6

c5

c4

c7

f
2

c3

N1

2N
N3

N4

1

i

4maxFDist()N

Figure 6: Example ofmaxFDist

Definition 4. The smallest distance (minDist) between
two objects.

This metric is proposed by Roussopoulos et al. (1995).
We use minDist(c,NP) to denote the smallest distance be-
tween a point c and the MBR of a node NP. If c is
within the MBR of NP, then minDist(c,NP) = 0. Oth-
erwise, minDist(c,NP) is the distance between c and its
nearest point on the MBR of NP. Similarly, we use
minDist(NC,NP) to denote the smallest distance between
the MBR of NC and the MBR of NP. If these two
MBRs overlap, then minDist(NC,NP) = 0. Otherwise,
minDist(NC,NP)=min{dist(o1,o2)|o1,o2 are points
on the MBRs of NC and NP, respectively}. (Figure 7)

6

c

PNc3minDist(,)

PNCNminDist(,)

NP2cminDist(,)

1
p

2
p

NCNP

c1

c2

c7

c8

c4

c5

c

3

Figure 7: Example ofminDist

The following theorem guarantees that the subtrees
of the nodes in{NC|minDist(NC,NP) < maxFDist(NC)}
cover all the clients inIS(NP). This set definesIN(NP).

Theorem 1. Given two nodes NC and NP, sub(NC) ∩
IS(NP) = /0 if minDist(NC,NP)≥maxFDist(NC).

Proof. According to the definitions ofminDist and
maxFDist, we have:

(1)∀c∈ sub(NC)∀p∈ sub(NP) :
dist(c, p)≥minDist(NC,NP);

(2)∀c∈ sub(NC) :
maxFDist(NC)≥ dnn(c,F).

Hence, ifminDist(NC,NP) ≥ maxFDist(NC), we can
obtain:

∀c∈ sub(NC)∀p∈ sub(NP) :
dist(c, p)≥ dnn(c,F).

Therefore,sub(NC)∩ IS(NP) = /0.

1
fNC

NCmaxFDist()

1c

2c

3c

Figure 8: Example of Theorem 1

Figure 8 illustrates Theorem 1. Here, the rounded
rectangle represents a region whereminDist(NC,NP) <
maxFDist(NC). If a point p lies outside the rectangle,
it satisfies the condition of Theorem 1, hence no client
c∈ sub(NC) is contained byIS(p).

The following theorem defines and proves the upper
boundmaxdr.

Theorem 2. The following expression defines an upper
bound for the dr values of all data points indexed in the
subtree rooted at a node NP of RP.

∑NC∈IN(NP){|sub(NC)|·
[maxFDist(NC)−minDist(NC,NP)]}

Proof. An implicit statement about the definition of
dr(p) (cf. Section 4.1) for a potential locationp is that
dnn(c,F) > dist(c, p). However, this may not be true if
IN(NP) is used instead ofIS(p) when c ∈ sub(NC) and
NC ∈ IN(NP) but c /∈ IS(p). Let us define a setSp(NC)
which contains the clients insub(NC) who are also in
IS(p). Formally,

Sp(NC) = {c|dnn(c,F)−dist(c, p)> 0,
c∈ sub(NC),NC ∈ IN(NP), p∈ sub(NP)}.

We can see thatSp(NC)⊆ sub(NC). Take advantage of the
following relationships.

(1)∀p∈ sub(NP) :
{c|c∈ sub(NC),NC ∈ IN(NP)} ⊇ IS(NP)⊇ IS(p);
(2)∀c∈ sub(NC) :

maxFDist(NC)≥ dnn(c,F);
(3)∀c∈ sub(NC)∀p∈ sub(NP) :

minDist(NC,NP)≤ dist(c, p).

For any potential locationp∈ sub(NP), we obtain:

dr(p) = ∑c∈IS(p) [dnn(c,F)−dist(c, p)]
= ∑NC∈IN(NP) ∑c∈Sp(NC)[dnn(c,F)−dist(c, p)]
≤ ∑NC∈IN(NP) ∑c∈Sp(NC)[maxFDist(NC)−

minDist(NC,NP)]
≤ ∑NC∈IN(NP) ∑c∈sub(NC)[maxFDist(NC)−

minDist(NC,NP)]
= ∑NC∈IN(NP){|sub(NC)|·

[maxFDist(NC)−minDist(NC,NP)]}

Thus, the upper bound holds.

To computemaxdrin the process of traversal, each en-
try eb

c of Rb
C stores|sub(Nb

C)| andmaxFDist(Nb
C), denoted

as cNumand maxFDist, for its child nodeNb
C. For the

data entries,cNum= 1 andmaxFDist= dnn(eb
c,F). Re-

cursively from the leaf nodes to the root node, the values
of the two new attributes can be computed for each en-
try of the non-leaf nodes based on their definitions. When
there is an update inRb

C, the structure can be maintained
efficiently in a similar recursive manner. TreeRb

C can also
be used in processing conventional queries on an R-tree ef-
ficiently, since adding two attributes will not significantly
increase the height of the tree. This will be validated in
our cost analysis and the experiments.

4.4 A Lower Bound

The way we derive the lower boundmindr is similar to
that of derivingmaxdr. We definemindr(NP) in the form
of max{g1(NC)−g2(NC,NP)|NC ∈ S}, whereS is a set of
client R-tree nodes,g1 is a metric related to a nodeNC, and
g2 is a metric related toNC andNP. We use the maximum
value instead of the sum value because it is possible for
the IS(p) of a potential locationp to be indexed in only
one subtree rooted at a node ofRb

C. We usemaxFDistas
g1, andminExistDNNasg2. IN(NP) is used asS. Met-
ric minExistDNNis defined based onminMaxDist. These
two metrics are proposed by Roussopoulos et al. (1995)
and Xia et al. (2005), respectively. We present their defi-
nitions before presenting the definition ofmindr.

Definition 5. The minimum upper bound of the distance
between a point and its nearest data point o in another
MBR (minMaxDist).

minMaxDist(c,NP) denotes the minimum upper bound
of the distance from a client c to her nearest potential lo-
cation in sub(NP). It is the distance between c and the
second nearest corner of NP.mbr since there must be a
potential location p on the side joining the nearest and
the second nearest corners, and the distance between c
and p must be equal to or less than minMaxDist(c,NP).
(Figure 9)

6

c

5

NPicminMaxDist(,) i = 3, 5, 6, 8

1
p

2
p

NP

c1
c2

c3

c7 c8

c

c

4

Figure 9: Example ofminMaxDist

Definition 6. The minimum upper bound of the distance
between a point in the MBR of some node N1 to its nearest
data point o contained in the MBR of another node N2
(minExistDNN).

We use minExistDNN(NC,NP) to denote the minimum
upper bound of the distance between a point o within the
MBR of NC, NC.mbr, and its nearest potential location
p∈ sub(NP). Formally,

minExistDNN(NC,NP) =
max{minMaxDist(o,NP)|o∈ NC.mbr}.

Xia et al. (2005) propose a method to efficiently com-
pute minExistDNN(NC,NP). As shown in Figure 10, if

c c

NPNCminExistDNN(,)
c4

NC

p
2

p
1

intersection points

PN 5c

6c
1c

2c

3c

7
8

Figure 10: Example ofminExistDNN

we draw the four perpendicular bisectors ofNC.mbr’s
edges and diagonals, they intersectNC.mbrat eight points.
These points are called theintersection points(Xia et al.
2005) of NC. Xia et al. prove that for any point
o ∈ NC.mbr, there is a corner point or an intersection
point o′ of NC.mbr, such thatminMaxDist(o′,NP) ≥
minMaxDist(o,NP). As a result, the computation of
minExistDNN(NC,NP) requires checking at most twelve
points.

Now we have the following theorem to define and
prove the lower boundmindr.

Theorem 3. The following expression defines a lower
bound for the dr value of all data points indexed in the
subtree rooted at a node NP of RP.

max{maxFDist(NC)−
minExistDNN(NC,NP)|NC ∈ IN(NP)}.

Proof. The definition ofminExistDNNimplies:

∀c∈ sub(NC)∃p∈ sub(NP) :
minExistDNN(NC,NP)≥ dist(c, p)

⇒∀c∈ sub(NC)∃p∈ sub(NP) :
−minExistDNN(NC,NP)≤−dist(c, p),

Also,∃c∈ sub(NC) :
maxFDist(NC) = dnn(c,F)

Hence,∃c∈ sub(NC)∃p∈ sub(NP) :
maxFDist(NC)−minExistDNN(NC,NP)
≤ dnn(c,F)−dist(c, p)≤ dr(p).

Therefore, the lower bound holds.

4.5 Discussion

Let us revisit the BB method. Its core idea is that a depth-
first traversal is performed onRP while a global lower
boundpd is used to prune the subtrees. The pruning dis-
tancepd is updated oncemindr of some node ordr of
some potential location is found to be larger than it. The
pruning power relies on the fast increase ofpd. The rea-
son why we do not use a best-first traversal is thatmindr is
rather small. Thus the main reason forpd to increase is the
update of newly found largerdr value. If we use a best-
first traversal,dr value will not be found until the traversal
reaches the leaf nodes of both trees, which means almost
all non-leaf nodes may end up staying in the active page
list waiting to be pruned. The space requirement for this
process is too high. Hence, we opt to use the depth-first
traversal.

5 Cost Analysis

In this section, we analyze the I/O cost and CPU cost of
the BB method and compare them with those of the SS
method.

We first introduce the notation and equations used in
the analysis. We assume an R-tree node has the size of

a disk block. LetCm be the maximum number of entries
in a disk block(i.e.,Cm = block size / size of a data entry)
andCe be the effective capacity of an R-tree node, i.e., the
average number of entries in an R-tree node. Then the
average height of an R-tree,h, is computed as

⌈

logCe
n
⌉

,
wheren is the cardinality of the dataset (we denote the
cardinalities ofC, F andP by nc,nf andnp, respectively).
The expected number of nodes in an R-tree is the total
number of nodes in all tree levels (leaf nodes being level
1 and the root node being levelh), which is ∑h

i=1
n

Ci
e
=

n
(

1
Ce

+ 1
C2

e
+ · · ·+ 1

Ch
e

)

= n
Ce−1(1−

1
Ch

e
)≈ n

Ce−1.

I/O cost: For the SS method, the data points are
retrieved in blocks from the disk, and the I/O cost is
IOs =

np
Cm

nc
Cm

=
npnc

C2
m

. For the BB method, the I/O cost

depends on the number of R-tree nodes accessed. In the
method,RP is traversed in a depth-first order and for ev-
ery nodeNP of RP, we need to retrieve the nodes in the
client R-tree that satisfies certain conditions withNP. In
the worst case, every node ofRP is traversed, and for every
node ofRP, the whole client R-tree is traversed. Therefore,
the worst-case I/O cost is:np

Ce−1
nc

Ce−1 =
npnc

(Ce−1)2
. While this

worst-case I/O cost is worse than the I/O cost of the SS
method becauseCe < Cm, in practice, many nodes of the
R-trees are pruned during the traversal. We quantify the
percentages of the pruned nodes inRP andRb

C as the prun-
ing power, and denote them bywp andwc, respectively.
Then we have the the average I/O cost of the BB method,
IOb = (1−wp)(1−wc)

npnc

(Ce−1)2
. The superiority of the BB

method over the SS method lies inwp andwc. In our per-
formance study, we will show that the pruning techniques
used in the BB method are effective andIOb is constantly
much less thanIOs.

CPU cost: The CPU cost can be considered as the
product of the CPU cost per disk block (R-tree node) mul-
tiplied by the number of disk blocks (R-tree nodes) ac-
cessed. The I/O cost analysis provides the number of
nodes accessed. The CPU cost per disk block (R-tree
node), typically involves distance metric computations.
For every pair of disk blocks accessed, the SS method
computesdist(c, p) for every pair of clientc and potential
locationp. So there areC2

m distance metric computations.
For every pair of R-tree nodes(NP,NC), the BB method
only computes the values of several distance metrics to
determine whetherNC should be put inIN(NP) for further
process. Thus, the BB method has a much smaller num-
ber of distance metric computations to process a pair of
R-tree nodes than that of the SS method to process a pair
of disk blocks. We have also shown that on average, the
BB method has a much smaller I/O cost than that of the
SS method. Therefore, the CPU cost of the BB method is
much smaller than that of the SS method.

6 A Performance Study

In this section, we report the results of our performance
study. experimental setting is presented in Section 6.1. To
evaluate the performance of the proposed method under
different environments, . Specifically, Section 6.2 presents
experiments onwe conduct experiments on both synthetic
and real datasets datasets with uniform distribution vary-
ing the size of the datasets. Section 6.3 presents experi-
ments on datasets with Gaussian distribution varying the
variance of the distribution function. Section 6.4 presents
experiments on datasets with Zipfian distribution varying
the alpha value of the distribution function. Section 6.5
presents experiments on real datasets.

Table 2: Parameters and Their Settings
Parameter Setting
Data distribution Uniform , Gaussian, Zipfian
Client set size 10K, 50K,100K, 500K, 1000K
Existing facility set size 0.1K, 0.5K, 1K,5K, 10K
Potential location set size 1K, 5K, 10K, 50K, 100K
µ (Gaussian distribution) 0
σ2 (Gaussian distribution) 0.125, 0.25, 0,5,1, 2
N (Zipfian distribution) 1000
α (Zipfian distribution) 0.1, 0.3, 0.6,0.9, 1.2

6.1 Experimental Setup

All experiments were conducted on a personal computer
with 3GB RAM and 2.66GHz Intel(R) Core(TM)2 Quad
CPU. The disk page size is 4K bytes, and no buffer is used.
We measure the running time and the number of I/Os.

We conduct experiments on synthetic and real datasets.
Synthetic datasets are generated with a space domain of
1000× 1000. The dataset cardinalities range from 0.1K
to 1000K. Three types of datasets are used: (i)Uniform
datasets, where data points are generated randomly ac-
cording to a uniform distribution; (ii)Gaussian datasets,
where data points follow the Gaussian distribution; (iii)
Zipfian datasets, where data points follow the Zipfian dis-
tribution. The parameters used in the experiments on syn-
thetic datasets are summarized in Table 2, where values in
bold denote default values.

We adopt two groups of real datasets provided by Dig-
ital Chart of the World (RtreePortal 2011), which contain
the points of populated places and cultural landmarks in
the US and in North America. We name them as the US
group and the NA group, respectively. For each group of
datasets, the populated places are used as the client setC.
The cultural landmark dataset is divided into two datasets.
Half of the cultural landmarks are chosen randomly to
form the existing facility setF , and the remaining are used
as the potential location setP. For the US group, the cardi-
nalities ofC, F , P are 15206, 3008 and 3009, respectively,
while those for the NA group are 24493, 4601 and 4602.

We use the R-tree (Guttman 1984) and its proposed
variant as the underlying access methods.

6.2 Experiments on Uniform Datasets

This subsection focuses on the effect of dataset cardinali-
ties. We vary the sizes ofC, F andP independently.

6.2.1 Varying the Number of Clients

10-1

100

101

102

103

10k 50k 100k 500k 1000k

R
un

ni
ng

 T
im

e
(s

)

Client Set Cardinality

SS
BB

(a) Running time

102

103

104

105

106

10k 50k 100k 500k 1000k

N
um

be
r

of
 I/

O
s

Client Set Cardinality

SS
BB

(b) Number of I/Os

Figure 11: The effect of client set cardinality

The results for the experiments that vary the number of
clients are shown in Figure 11. From this figure, we can
see that the BB method outperforms the SS method by
almost ten times in terms of both the running time and the
number of I/Os. This is because of the pruning techniques
used by the BB method to reduce the search space for the

query answer, and this result confirms our cost analysis,
where the average cost of the BB method is shown to be
much smaller than that of the SS method.

We also see that even with a small set of clients (10K),
it takes the SS method seconds to process the query. Con-
sidering the capability of human perception, 0.1 seconds
may be a preferable choice for processing a query (Morse
1996). Then the SS method is far inferior and is unable to
produce the query answer in time, especially for the urban
development simulations and the MMOG applications. As
for the BB method, it computes the query answer in less
than 0.1 seconds for the 10K dataset. Even for a very large
dataset (1000K), it computes the query answer within sec-
onds. With some upgrades in hardware, it is still realistic
for the BB method to produce the query answer in time.

6.2.2 Varying the Number of Existing Facilities

10-1

100

101

102

0.1k 0.5k 1k 5k 10k

R
un

ni
ng

 T
im

e
(s

)

Existing Facility Set Cardinality

SS
BB

(a) Running time

103

104

105

0.1k 0.5k 1k 5k 10k

N
um

be
r

of
 I/

O
s

Existing Facility Set Cardinality

SS
BB

(b) Number of I/Os

Figure 12: The effect of existing facility set cardinality

The results of the experiments varying the number of
existing facilities are shown in Figure 12. Again, in this
figure, the BB method shows much better performance
than the SS method in terms of both the running time and
the number of I/Os because of the pruning techniques used
to reduce the search space.

Another observation is that an increase in the number
of facilities yields a drop in both the running time and the
number of I/Os for the BB method. The reason is that on
average the more the facilities, the shorter the nearest fa-
cility distances for the clients. In other words,dnn(c,F)
decreases with the increase of the number of existing facil-
ities. As a result,maxFDist(NC) decreases and the prun-
ing power of the BB method to prune nodes inRb

C is en-
hanced. Therefore, the number of I/Os and running time
are reduced. SS is not affected due to its lack of pruning
capability and it does not access the set ofF (it accesses
F for dnn(c,F) computation, which is assumed to be pre-
computed).

6.2.3 Varying the Number of Potential Locations

10-1

100

101

102

103

1k 5k 10k 50k 100k

R
un

ni
ng

 T
im

e
(s

)

Potential Location Set Cardinality

SS
BB

(a) Running time

103

104

105

106

1k 5k 10k 50k 100k

N
um

be
r

of
 I/

O
s

Potential Location Set Cardinality

SS
BB

(b) Number of I/Os

Figure 13: The effect of potential location set cardinality

Results of the experiments that vary the number of po-
tential locations are shown in Figure 13. The BB method
still shows high efficiency in these experiments.

We observe that, generally, the growth in the number
of potential locations has the similar effect on the running
time and the number of I/Os as increasing the number of
clients. We also notice that, as the number of potential
locations increases, the running time and the number of
I/Os of the BB method increase much slower than those
of the SS method do (please note the logarithmic scale).
This is because when the number of potential locations
becomes larger, the height ofRP increases and every time
a non-leaf node inRP is pruned, more potential locations
are pruned. When the number of potential locationsnp
becomes very large (i.e.np≥ 10K), the proposed pruning
techniques function even better and the advantage of the
BB method becomes significant.

6.3 Experiments on Gaussian Datasets

10-1

100

101

102

0.125 0.25 0.5 1 2

R
un

ni
ng

 T
im

e
(s

)
Variance

SS
BB

(a) Running time

103

104

105

0.125 0.25 0.5 1 2

N
um

be
r

of
 I/

O
s

Variance

SS
BB

(b) Number of I/Os

Figure 14: The effect ofσ2 in Gaussian distribution

In the following experiments, we vary the distribution
of the datasets.

Figure 14 shows the results of experiments conducted
on the Gaussian datasets where we vary the value ofσ2.
For the Gaussian datasets, varyingσ2 means varying the
degree of the inclination for the data points to cluster at
the central area of the distribution. Increasingσ2 leads to
less dense data points at the center. We observe that, com-
pared with varying dataset cardinalities, varyingσ2 does
not affect much of the algorithm performance. The BB
method still outperforms the SS method in terms of both
the running time and the number of I/Os, which confirms
the results of our cost analysis.

6.4 Experiments on Zipfian Datasets

10-1

100

101

102

0.1 0.3 0.6 0.9 1.2

R
un

ni
ng

 T
im

e
(s

)

Alpha

SS
BB

(a) Running time

103

104

105

0.1 0.3 0.6 0.9 1.2

N
um

be
r

of
 I/

O
s

Alpha

SS
BB

(b) Number of I/Os

Figure 15: The effect ofα in Zipfian distribution

We vary the value ofα in the experiments conducted
on the Zipfian datasets and the results are shown in Fig-
ure 15. Like the Gaussian datasets, we notice that the
value of α does not affect much of the algorithm per-
formance. We also notice that the resultant running time
and number of I/Os are similar to those of the experiments
conducted on the Gaussian datasets. We further compare
these results with those of the experiments conducted on
the uniform datasets with the same dataset cardinalities,

and find that the differences among them are small, too.
Thus, we can conclude that the effect of different distribu-
tions on the proposed method is trivial.

6.5 Experiments on Real Datasets

10-3

10-2

10-1

100

101

US NA

R
un

ni
ng

 T
im

e
(s

)

Dataset Group

SS
BB

(a) Running time

102

103

104

US NA
N

um
be

r
of

 I/
O

s

Dataset Group

SS
BB

(b) Number of I/Os

Figure 16: Performance comparison on real datasets

The experimental results on real datasets are shown in
Figure 16. The comparative performance of the methods
is similar to that of experiments conducted on the synthetic
datasets. The BB method still outperforms the SS methods
significantly for both US and NA datasets.

Overall, we see that the BB method outperforms the
SS methods constantly because of the pruning techniques
used to reduce the search space for the query answer.
When the dataset cardinalities become large, the advan-
tage of the BB method becomes more significant. These
results agree with our cost analysis.

7 Conclusions

We conducted a comprehensive study on processing the
min-dist location selection query. We first analyzed the
basic properties of this query type and presented a naive
algorithm (SS) to process the query. However, the SS al-
gorithm is inefficient due to repeated scanning on datasets.
We explored geometric properties of spatial data objects,
and proposed techniques to prune the search space. This
resulted in a branch and bound algorithm (BB). We pro-
vided a detailed comparative cost analysis for the BB
method and performed extensive experiments to evaluate
the empirical performance of the method. The experimen-
tal results show that the BB method constantly outper-
forms the SS method, and when the dataset cardinalities
become large, the advantage of the BB method becomes
more significant. As future work, we will compare the
BB method with the methods proposed by Qi et al. (2012)
both analytically and experimentally.

Acknowledgment

This work is supported by the Australian Research
Council’s Discovery funding scheme (project numbers
DP0880250 and DP0880215).

References

ArcGIS (2011), ‘http://www.esri.com/’.

Cabello, S., D́ıaz-B́añez, J. M., Langerman, S., Seara, C.
& Ventura, I. (2005), Reverse facility location prob-
lems.,in ‘CCCG’.

Cheema, M. A., Lin, X., Zhang, W. & Zhang, Y. (2011),
Influence Zone : Efficiently Processing Reverse k Near-
est Neighbors Queries,in ‘ICDE’.

Du, Y., Zhang, D. & Xia, T. (2005), The optimal-location
query.,in ‘SSTD’.

Gao, Y., Zheng, B., Chen, G. & Li, Q. (2009),
‘Optimal-location-selection query processing in spatial
databases’,TKDE 21, 1162–1177.

Guttman, A. (1984), R-trees: A dynamic index structure
for spatial searching.,in ‘SIGMOD’.

Huang, J., Wen, Z., Pathan, M., Taylor, K. & Zhang, R.
(2011), Ranking Locations for Facility Selection based
on Potential Influences,in ‘the 37th Annual Conference
of the IEEE Industrial Electronics Society’.

Huang, J., Wen, Z., Qi, J., Zhang, R., Chen, J. & He, Z.
(2011), Top-k Most Influential Location Selection,in
‘CIKM’.

Korn, F. & Muthukrishnan, S. (2000), Influence sets based
on reverse nearest neighbor queries.,in ‘SIGMOD’.

Morse, K. L. (1996), Interest management in large-scale
distributed simulations, Technical Report ICS-TR-96-
27.

Mouratidis, K., Papadias, D. & Papadimitriou, S. (2005),
Medoid queries in large spatial databases.,in ‘SSTD’.

Papadias, D., Tao, Y., Mouratidis, K. & Hui, C. K.
(2005), ‘Aggregate nearest neighbor queries in spatial
databases’,ACM Trans. Database Syst.30, 529–576.

Qi, J., Zhang, R., Kulik, L., Lin, D. & Xue, Y. (2012), The
min-dist location selection query,in ‘ICDE’.

Roussopoulos, N., Kelley, S. & Vincent, F. (1995), Near-
est neighbor queries,in ‘SIGMOD’.

RtreePortal (2011), ‘http://www.rtreeportal.org’.

Stanoi, I., Riedewald, M., Agrawal, D. & Abbadi, A. E.
(2001), Discovery of influence sets in frequently up-
dated databases,in ‘VLDB’.

Wong, R. C.-W., Özsu, M. T., Yu, P. S., Fu, A. W.-
C. & Liu, L. (2009), ‘Efficient method for maxi-
mizing bichromatic reverse nearest neighbor.’,PVLDB
2, 1126–1137.

Wu, W., Yang, F., Chan, C. Y. & Tan, K.-L. (2008),
Continuous Reverse k-Nearest-Neighbor Monitoring,
in ‘The Ninth International Conference on Mobile Data
Management’.

Xia, T., Zhang, D., Kanoulas, E. & Du, Y. (2005),
On computing top-t most influential spatial sites.,in
‘VLDB’.

Xiao, X., Yao, B. & Li, F. (2011), Optimal location queries
in road network databases,in ‘ICDE’.

Yang, C. & Lin, K.-I. (2001), An index structure for effi-
cient reverse nearest neighbor queries,in ‘ICDE’.

Yu, C., Zhang, R., Huang, Y. & Xiong, H. (2010),
‘High-dimensional knn joins with incremental updates’,
Geoinformatica14, 55–82.

Zhang, D., Du, Y., Xia, T. & Tao, Y. (2006), Progressive
computation of the min-dist optimal-location query,in
‘VLDB’.

Zhang, R., Lin, D., Kotagiri, R. & Bertino, E. (2008),
Continuous intersection joins over moving objects.,in
‘ICDE’.

Zhang, R., Qi, J., Lin, D., Wang, W. & Wong, R. C.-W.
(n.d.), ‘A highly optimized algorithm for continuous in-
tersection join queries over moving objects’,to appear
in the VLDB Journal.

