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The statistical properties of wall turbulence in the logarithmic region are investigated
using structure functions of the streamwise velocity. To this end, datasets that span
several orders of magnitude of Reynolds numbers are used, up to Reτ = O(106),
providing uniquely large scale separations for scrutinising previously proposed
scaling laws. For the second-order structure functions strong support is found
simultaneously for power-law scalings in the Kolmogorov inertial subrange and
for logarithmic scaling at larger scales within the inertial range (z < r � δ, where
z is the distance from the wall, r the scale, and δ the boundary layer thickness).
The observed scalings are shown to agree between the datasets, which include both
temporal and spatial velocity signals and span from laboratory to atmospheric flows,
showing a degree of universality in the results presented. An examination of higher
even-order structure functions also shows support for logarithmic scaling behaviour
for z< r� δ, provided that the Reynolds number is sufficiently high. These findings
are interpreted by generalising the work of Meneveau & Marusic (J. Fluid Mech.,
vol. 719, 2013) and introducing bridging relations between higher-order moments
of velocity fluctuations and structure functions. Further, a physical model based on
the attached-eddy hypothesis is utilised to derive various properties of the structure
functions for the energy-containing scales of the logarithmic region. The descriptions
derived from the model are shown to be supported by the experimental data.
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1. Introduction
High-Reynolds-number wall turbulence is a commonly observed phenomenon and

plays a central role in many engineering, environmental and geophysical flows. A
robust feature of these flows, and one that is relied upon extensively for modelling
purposes, is the logarithmic region (Smits, McKeon & Marusic 2011; Jiménez 2012),
where the logarithmic law of the wall applies for the streamwise mean velocity.
More recently, however, there is growing evidence also for logarithmic behaviour
in the variance of both the streamwise (Hultmark 2012; Marusic et al. 2013) and
spanwise (Pirozzoli & Bernardini 2013; Sillero, Jiménez & Moser 2013; Talluru
et al. 2014) velocity fluctuations, and these observations are as predicted by the
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attached-eddy hypothesis of Townsend (1976). Townsend’s hypothesis has become the
basis of a physical model for wall turbulence (Perry & Chong 1982; Perry, Henbest
& Chong 1986; Perry & Marusic 1995; Marusic 2001), where the flow field in
the logarithmic region is modelled by a hierarchy of spatially self-similar eddies,
whose dimensions scale with their distance from the wall. Recently, Woodcock &
Marusic (2015) revisited the attached-eddy model and applied an extended form of
Campbell’s theorem to derive expressions for the functional forms of all moments
of the velocities, including cross-correlations. In this way, they were able to verify
the earlier results of Townsend (1976) and Perry & Chong (1982) for the mean
flow and the variances, and the recent findings of Meneveau & Marusic (2013)
that all even-ordered moments of the streamwise velocity also exhibit a logarithmic
dependence on the distance from the wall, once the Reynolds number is sufficiently
high.

The distribution of energy across spatial scales prevalent in the logarithmic region
is also of particular interest. This aspect has been studied extensively using both
the one-dimensional power spectrum and the second-order structure function for
the streamwise velocity. The k−1 spectral law (where k represents the streamwise
wavenumber) has been predicted in the one-dimensional power spectrum of the
streamwise velocity, φuu(k), by various physical arguments (Högström, Hunt &
Smedman 2002; Davidson & Krogstad 2009, and others) and has been directly
linked by Perry et al. (1986) to the logarithmic formulation for the streamwise
velocity variance by scaling arguments based on the attached-eddy hypothesis. While
experimental support for a k−1 spectral law at sufficiently high Reynolds numbers has
been reported by Nickels et al. (2005), in general definitive experimental evidence
has been elusive (Morrison et al. 2004; Zhao & Smits 2007). Concurrently, increased
support for a k−1 spectral law has also been presented from recent numerical
work as higher Reynolds numbers become realisable in simulations (Pirozzoli
& Bernardini 2013; Bernardini, Pirozzoli & Orlandi 2014; Lee & Moser 2015).
Davidson, Nickels & Krogstad (2006b) considered this issue in detail and concluded
that the one-dimensional spectrum of streamwise velocity is not the ideal parameter to
investigate scaling behaviour in the logarithmic region, due to measurement aliasing
and other challenges, and proposed that structure functions provided a diagnostic that
could be interpreted more clearly. Further, structure functions computed at higher
orders provide additional statistical information, which is not available in a spectral
space that only describes second-order statistics.

Davidson et al. (2006b) showed that the analogous counterpart to the k−1 spectral
law was a ln(r/z) law for the second-order structure function, where r is the
spatial separation in the streamwise direction and z is the distance from the wall.
Experimental evidence for a ln(r/z) law for the second-order structure function
was presented by Davidson and coworkers (Davidson, Krogstad & Nickels 2006a;
Davidson et al. 2006b; Davidson & Krogstad 2009). Their work shows that the
ln(r/z) law extends from the largest length scales that bound the Kolmogorov inertial
subrange from above, r ≈ z (see Tennekes & Lumley 1972), up to the large scale
contribution range associated with eddies that scale in the order of δ (boundary layer
thickness). More recent studies using structure functions have shown universality in
scaling behaviour using data from both smooth and rough boundary layers (Davidson
& Krogstad 2014), closely following the expected behaviour based on models and
outer layer similarity described in Perry & Li (1990) and Schultz & Flack (2005).

At sufficiently high Reynolds numbers, one also expects an inertial subrange
residing at scales that are larger than the dissipative range but smaller than those
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associated with the k−1 spectral or ln(r/z) law. In this range, turbulence is expected
to be locally isotropic, as described by Kolmogorov (1941), with k−5/3 and (r/z)2/3
scalings for the spectrum and second-order structure function respectively. The notion
of universality provided great impetus for the study of small scales, which has
led to a wide array of studies (reviewed by Sreenivasan & Antonia 1997) that
extended the seminal work of Kolmogorov (1941). Of particular interest are the
scaling exponents of the power-law behaviour observed in structure functions within
the inertial subrange (Anselmet et al. 1984; Meneveau & Sreenivasan 1987; She &
Leveque 1994). Subsequently, the influence of intermittency in small-scale turbulence
has also gained attention in a range of studies, including wall-bounded turbulence
(Benzi et al. 1999; Toschi et al. 1999; Poggi, Porporato & Ridolfi 2003; Jacob et al.
2004, and others) and homogeneous shear flows (Gualtieri et al. 2002; Casciola et al.
2003, 2005), where focus is placed on improving intermittency models. Several of
these studies have shown the benefits of using the SO(3) decomposition to isolate
isotropic and anisotropic effects to observe scaling behaviour in inhomogeneous and
anisotropic turbulent flows. However, this approach requires spatial information and
is more readily applicable to numerical simulation databases (Arad et al. 1999).

Among the many studies that have considered structure functions in turbulent shear
flows one notable result is the presence of a transition length scale (Ls) (Hinze 1975;
Toschi et al. 1999). At scales larger than Ls shear is considered to be important,
whereas at smaller scales shear is relatively unimportant. Consequently, one expects
the structure function to scale differently on either side of Ls.

The results of Davidson and coworkers (Davidson et al. 2006a,b; Davidson &
Krogstad 2009) provide an interesting connection between the inertial subrange and
the scales above r/z ∼ 1 for the second-order structure functions. Insights relating
exponents and prefactors in the respective scaling laws were obtained by properly
matching the two behaviours at scales when r/z∼ 1.

Here, we consider the abovementioned scaling behaviours using five experimental
datasets in boundary layer flows that span several decades of Reynolds numbers
(Re). This significantly extends the range of scales available for the analysis and
enables us to observe scaling laws unambiguously. Moreover, we also consider
structure functions of higher orders. Using a uniquely large range of Re, the results
provide experimental evidence that scaling laws for higher-order moments also lead
to interesting connections between the two ranges that must meet at r/z ∼ 1. The
experimental results are complemented with analysis that aims at connecting the
results with those obtained in Meneveau & Marusic (2013). Furthermore, we explore
the predictive power of the attached-eddy hypothesis in studying the high-order
structure functions in the ln(r/z) range of r space.

The paper is organised as follows. Section 2 provides a short summary of prior
relevant results in scaling of second-order structure functions, higher-order moments
of the velocity fluctuations and anomalous scaling (intermittency) in the inertial range.
These prior results provide motivation for measurements of the structure functions over
a vast range of scales and distances to the wall. Section 3 provides a description of the
experimental datasets used. The main results obtained from each dataset for second-
and higher-order streamwise structure functions are presented in § 4. These results
are then followed in § 5 by a discussion of possible bridging relations connecting
the higher-order moments of structure functions to those of the velocity fluctuations,
generalising the results of Meneveau & Marusic (2013). Then we show how the results
in the ln(r/z) range are consistent with a physical model of the local large scales of
the flow in § 5.2. There it is shown that the attached-eddy hypothesis may in fact be
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used to compute high-order moments of the structure functions, leading to concrete
connections between the observed parameters of the scaling laws and those of the
assumed distributions of eddies in the hierarchy. Section 6 discusses the universality
of the coefficients computed for the scaling laws described in §§ 2 and 5, followed by
a discussion on modelling the behaviour of the streamwise structure function based on
established results from the inertial subrange.

Throughout this paper, the coordinate system x, y and z refers to the streamwise,
spanwise and wall-normal directions respectively. The corresponding instantaneous
streamwise, spanwise and wall-normal velocity fluctuations are represented by u, v
and w. Overbars and 〈 〉 indicate averaged quantities, and superscript and subscript
+ signs refer to normalisation by inner scales. For example, we use l+ = lUτ/ν for
length and u+ = u/Uτ for velocity, where Uτ is the mean friction velocity and ν is
the kinematic viscosity of the fluid.

2. Relevant details from prior works on structure functions and extensions
This section provides the relevant background on scaling laws for the streamwise

structure functions in turbulent boundary layers. Here, we define the streamwise
structure function following the common notation

〈1un(r)〉 = 〈[u(x+ ir)− u(x)]n〉, (2.1)

where r represents the spatial separation, n is a positive integer indicating the moment
order and i is the unit vector in the streamwise direction. As summarised by Davidson
et al. (2006b), the second-order structure functions in the logarithmic region of a
turbulent boundary layer are postulated to have four regions. At the smallest length
scales where r � z, Kolmogorov scaling is prevalent. At the other extreme r � δ,
〈1u2〉 is independent of r and asymptotes to twice the streamwise turbulence intensity
2〈u2〉. Here, we focus on the two regions in between. Nevertheless, a brief summary
of the relevant scaling for each of the four regions follows.

2.1. Structure functions at dissipative scales
At the smallest scales (Kolmogorov scales), using a Taylor series expansion with the
assumption of homogeneous isotropic turbulence at these scales (Frisch 1995) we
expect a scaling behaviour of 〈1u2〉 according to

〈1u2〉 = ε

15ν
r2, (2.2)

where ε denotes the dissipation rate. For the presented analysis we limit ourselves
to the logarithmic region in wall-normal space of high Reynolds number turbulent
boundary layers. Within this region, there is a near balance between the turbulent
production (P) and dissipation (ε) rates (Tennekes & Lumley 1972; Townsend 1976,
and others). Thus,

P ≈ ε ≈ U3
τ

κz
, (2.3)

where κ is von Kármán’s constant. We note that Davidson et al. (2006b) have
explored deviations from this equilibrium assumption at lower Re. In wall-bounded
turbulence at wall-normal locations within the logarithmic region (2.2) simplifies to

〈1u2
+〉 =

z+

15κ

(
r
z

)2

, (2.4)
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which holds at scales smaller than the Kolmogorov length, 0< r . η = (ν3/ε)1/4, i.e.
r/z . z−3/4

+ κ1/4. A Taylor series expansion also leads to integer scaling exponents for
higher-order structure functions (〈1un〉 ∼ rn) in the dissipative range (Nelkin 1990).

2.2. Structure functions in the inertial subrange η� r� z
At these scales we expect scaling behaviour to be representative of local isotropy.
Following Anselmet et al. (1984) the scaling in this inertial subrange can be expressed
as

〈1un〉 =Cn(εr)n/3
( r
`

)ξn−n/3
, (2.5)

where ξn is the anomalous scaling exponent and ` is a length scale. The Kolmogorov
1941 theory predicts ξ2 = 2/3 for the second-order structure function as well as ξn =
n/3 for higher-order moments. Data instead show anomalous scaling with ξn< n/3 for
n> 3 (Anselmet et al. 1984; Sreenivasan & Antonia 1997). The trends can be fitted
quite well empirically using the log-Poisson model of She & Leveque (1994),

ξn = n
9
+ 2

[
1−

(
2
3

)n/3
]
, (2.6)

or the p-model of Meneveau & Sreenivasan (1987),

ξn = 1− ln2(0.7n/3 + 0.3n/3). (2.7)

Thus, for even moments n= (2, 4, 6, 8, 10), we obtain from She & Leveque (1994)
ξn= (0.6959,1.2797,1.7778,2.2105,2.5934), and ξn= (0.6937,1.2822,1.7859,2.2289,
2.6321) for the p-model, essentially the same within experimental accuracy. For
concordance with recent work on even moments, we shall set n= 2p below and only
focus on even moments 2p. Moreover, for wall-bounded flow, using (2.3) and setting
`= z (the distance to the wall), in non-dimensional form we obtain

〈1u2p
+ 〉1/p =C1/p

2p κ
−2/3

(
r
z

)ξ2p/p

=Mp

(
r
z

)ξ2p/p

, (2.8)

with Mp=C1/p
2p κ

−2/3. For wall-bounded flows, in the logarithmic layer such scaling is
expected to hold in the range η� r� z, or z−3/4

+ κ1/4� r/z� 1.

2.3. Second-order structure functions at scales z< r� δ

Davidson et al. (2006b) argued that 〈1u2〉 can be considered as the cumulative energy
of eddies of size r and less. They postulated that at scales r > z, 〈1u2〉 will be
dominated by inertial-scale eddies whose heights are roughly between z and r, with
kinetic energy of order U2

τ . Accordingly, considering d〈1u2〉/dr as an energy density
Davidson et al. (2006b) proposed that rd〈1u2〉/dr is a constant proportional to U2

τ .
When integrated, a logarithmic law of the form

〈1u2
+〉 = E1 +D1 ln

r
z

(2.9)

is obtained. The coefficients D1 and E1 were evaluated by Davidson et al. (2006b)
based on modelling assumptions and moderate Reynolds number data.
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In a more detailed study, Davidson et al. (2006a) proposed that r should be
normalised by the length scale U3

τ/ε rather than z in (2.9). It is worth highlighting
that U3

τ/ε is equivalent to scaling with z (after substitution for ε using (2.3)), valid
at high Reynolds numbers assuming that equilibrium holds. Therefore, they proposed
that (2.9) should be replaced by

〈1u2
+〉 = E∗1 −D1 ln

κP

ε
+D1 ln

r
z
, (2.10)

where E∗1 is a constant of order unity. Based on their modelling, Davidson & Krogstad
(2009) postulated that E∗1 and D1 are universal constants in turbulent boundary layers.
Indeed, Davidson et al. (2006a) showed an improvement when using (2.10) (i.e. using
U3
τ/ε to normalise r rather than z). This can be attributed to the finite Re range studied.

Davidson & Krogstad (2014) further considered these issues for smooth and rough
wall flows for structure functions up to sixth order.

We note that for simplicity in the presentation hereafter, the range z< r� δ within
the inertial region of structure functions will be referred to as the ‘ln(r/z) region’,
following Davidson and coworkers.

2.4. Second- and higher-order moments of streamwise velocity
As summarised in the introduction, there is growing evidence of logarithmic behaviour
in the variance of the streamwise velocity fluctuations (Hultmark 2012; Marusic et al.
2013), and a similar behaviour in high-order moments has been observed (Meneveau
& Marusic 2013). For arbitrary even-order moments, this can be written according to

〈u2p
+ 〉1/p = Bp − Ap ln

z
δ
, (2.11)

where for p = 1 the scaling of the variance involves the ‘Townsend–Perry constant’
A1 ≈ 1.25. For Gaussian statistics, Meneveau & Marusic (2013) pointed out that
Ap = [(2p− 1)!!]1/pA1 for higher-order even moments. They found that the values of
Ap for p > 1 measured from experimental data display sub-Gaussian behaviour, i.e.
Ap < [(2p − 1)!!]1/pA1. Such results have also been recently obtained in large-eddy
simulations by Stevens, Wilczek & Meneveau (2014). Preliminary discussions are
also presented for the spanwise and wall-normal velocity components as all velocity
components are available from the LES datasets.

It can be noted (Davidson & Krogstad 2009) that (2.11) and (2.9) (evaluated at
r= δ) display a dependence on height z that is consistent with the expected limiting
behaviour when r� δ, 〈1u2

+〉 = 2〈u2
+〉, with D1 = 2A1.

2.5. Postulate for higher-order structure functions at scales z< r� δ

Having considered the points summarised in the preceding sections, we now consider
higher-order structure functions in the range z< r� δ (the ln(r/z) region). If in that
range the variance of the velocity increment follows a logarithmic law as in (2.9),
then following the same arguments as Meneveau & Marusic (2013) for higher-order
moments of velocity fluctuations, one can postulate the following scaling for higher-
order structure functions:

〈1u2p
+ 〉1/p = Ep +Dp ln

r
z
. (2.12)

In particular, when r = δ, one can show (see § 5.1 for more details) that this
expression recovers the limiting behaviour consistent with (2.11) for the z dependence
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of the logarithmic behaviour of high-order moments at r � δ. Further motivation
for expecting a logarithmic behaviour of the high-order structure functions can be
provided by model calculations based on the attached-eddy hypothesis. As shown in
§ 5.2, the spatial structure that arises from a superposition of attached eddies can be
used to compute velocity increments, and their moments in that range lead directly
to logarithmic scaling.

However, first, in the next sections we present empirical evidence for (2.12) based
on the experimental data. The analysis of data is presented in § 4.2. Further derivations
and the modelling of higher-order structure functions based on the attached-eddy
hypothesis are subsequently presented in § 5.

3. The experimental data

The present study utilises five experimental databases, with key parameters provided
in table 1. For the present analysis we have chosen databases that have friction
Reynolds numbers that exceed Reτ & 5000. This threshold satisfies multiple criteria to
consider a boundary layer to be a high Reynolds number flow, which are summarised
in a recent review article by Smits et al. (2011). These criteria include sufficient
scale separation to decouple the viscous and energetic scales (McKeon & Morrison
2007), a constant wake factor (Coles 1962) and over a decade of logarithmic velocity
variation in z+, to name a few. Four datasets were acquired from the High Reynolds
Number Boundary Layer Wind Tunnel (HRNBLWT) at the University of Melbourne.
This facility has a large working section of 27 m in length, with a cross-sectional area
of approximately 2 m× 1 m. The long working section provides a long development
length, leading to a boundary layer thickness of approximately 0.35 m at the end
of the working section, and thus presents less acute spatial resolution issues. Further
details of the facility are provided in Nickels et al. (2005). The two single-wire
hot-wire anemometry measurements from this facility are at different streamwise
positions and free stream velocities, but are more or less comparable otherwise. Both
use 2.5 µm diameter Wollaston wires operated by an in-house constant-temperature
anemometer (MUCTA). The spatial resolution in viscous units is shown in table 1
and is considered to be sufficient to resolve the turbulence intensity accurately
within the logarithmic region wall-normal locations considered in this study based
on the guidelines laid out by Hutchins et al. (2009). The other datasets from the
Melbourne wind tunnel were obtained from a planar PIV measurement using a
unique experimental set-up with multiple cameras to obtain a large field of view
(streamwise extent > 2δ) with targeted spatial resolution closer to the wall where it
is most critical (de Silva et al. 2014). The highly magnified field of view (high-mag
FOV) targeted at the near-wall region is ideally suited for this analysis, and provides
spatial information across the sublayer and lower region of the logarithmic layer with
a spatial resolution of a few viscous length scales. Meanwhile, the large-FOV PIV
provides direct spatial information for a large streamwise extent of the order δ.

The final dataset to be considered was acquired using hot-wire anemometry in
the surface layer of the atmospheric boundary layer at the Surface Layer Turbulence
and Environmental Test Facility (SLTEST) located at the Utah salt flats (Kunkel &
Marusic 2006). The measurements involved a vertical array of ten 2.5 µm diameter
platinum-coated tungsten wires mounted from z= 0.005–2 m (spaced logarithmically
in z), The placement of the wires was such that a large proportion of the velocity
signals obtained were well within the logarithmic region of the flow. This dataset
proved valuable for this work due to the significantly higher Reynolds number of the
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Symbol Facility Reference Technique ≈Reτ ≈1x+ ≈1y+ ≈1z+

@ Melbourne Hutchins et al. (2009) Hot-wire 2 800 — 20 —
♦ Melbourne Hutchins et al. (2009) Hot-wire 19 000 — 20 —
E Melbourne de Silva et al. (2014) High-mag PIV 19 000 15 30 15
u Melbourne de Silva et al. (2014) Large-FOV PIV 14 500 40 30 40
A SLTEST Kunkel & Marusic (2006) Hot-wire 3× 106 — 15 —

TABLE 1. Summary of experiments.

atmospheric boundary layer compared with laboratory experiments. Further details on
all measurements can be found in their respective publications.

For consistency, the friction velocity for the dataset from Hutchins et al. (2009)
was recomputed using the composite velocity profile of Chauhan, Monkewitz & Nagib
(2009) with constants κ= 0.384 and A= 4.17. Similarly, the same constants were used
for the atmospheric boundary layer dataset of Kunkel & Marusic (2006). However,
since velocity signals are only available within the logarithmic region for this dataset,
a simple modified Clauser chart fit was employed using the same log-law constants
rather than a composite velocity profile.

For the PIV measurement typically the interrogation window size dictates the spatial
resolution. However, PIV is usually impacted by experimental noise to a higher degree
than its hot-wire counterpart. The influence of noise on turbulence intensity statistics
has been studied previously by drawing comparisons between PIV datasets and hot-
wire/DNS datasets to determine the noise floor for PIV measurements (Atkinson et al.
2013). Following a similar approach, we selected the smallest separation r to compute
structure functions such that it was above the noise floor for each PIV measurement.
Here the cutoff was chosen based on a direct comparison with a hot-wire dataset at
a comparable Reynolds number.

As a final note, prior to proceeding with computing the higher-order moments
of the streamwise structure function, the degree of convergence at higher moments
needs to be considered. To assess the degree of convergence following the approach
described in Meneveau & Marusic (2013) the pre-multiplied probability density
function for velocity fluctuations 1u2p

+ P(1u+) was computed. The results are shown
in figure 1, where (a) corresponds to a hot-wire dataset of Hutchins et al. (2009)
and (b) represents the PIV dataset of de Silva et al. (2014). For the hot-wire dataset
acceptable convergence is observed up to 2p= 10 in the sense that the area under the
curve seems to be captured well with the amount of data available. Conversely, the
PIV dataset only shows good convergence up to 2p= 6, as one may expect due to the
significantly lower number of ensembles available (≈6 × 106 for the hot-wire signal
of Hutchins et al. 2009 and ≈1 × 106 after considering all captured large-FOV PIV
frames of de Silva et al. 2014). We note that similar results are obtained for the other
datasets employed, where all hot-wire datasets utilised show reasonable convergence
up to 2p= 10 and the high-mag FOV PIV shows a similar degree of convergence to
the large-FOV PIV up to 2p= 6. Therefore, for the subsequent analysis results from
the PIV datasets at 2p> 6 should be considered with due caution.

4. Experimental results
In this section we present results for the structure function of the streamwise

velocity across all datasets considered. Here, we place emphasis mainly on the ranges
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FIGURE 1. (Colour online) Premultiplied probability density function of 1u at r ≈ z+,
where z+ ≈ 800. Both measurements were made in the HRNBLWT. (a) Hot-wire data of
Hutchins et al. (2009), (b) large-FOV PIV of de Silva et al. (2014). The moments 2p= 2,
6 and 10 are represented by E, @ and A respectively. The curves are separated by an
arbitrary factor Kp for clarity.

η� r� z and z< r� δ to investigate the appropriate scaling behaviour. It is noted
that the high-mag PIV from the HRNBLWT facility has adequate spatial resolution
and streamwise extent to accommodate the inertial subrange (η� r� z), but does not
provide sufficient spatial information for the ln(r/z) range (z< r� δ). However, the
high-mag and large-FOV PIV datasets have been measured simultaneously, and thus
the large-FOV PIV dataset, with a spatial extent of the order of δ (de Silva et al.
2014), provides the results in the range z< r� δ. The PIV data also provide direct
spatial information without the need to invoke Taylor’s hypothesis, as required for
the hot-wire datasets. When Taylor’s hypothesis is used in this paper, the convection
velocity is taken to be the local mean velocity.

4.1. Scaling of the second-order structure function and influence of the wall-normal
location

It is valuable to consider how the second-order structure function varies with both
the wall-normal position and the spatial separation, and an attempt to illustrate
this is shown in figure 2. Here, a three-dimensional view of 〈1u2

+〉 is presented
at all measurement locations across the boundary layer height for the hot-wire
dataset from Hutchins et al. (2009) at Reτ = 19 000 with 50 wall-normal locations.
The region highlighted in green on the surface formed from these profiles denotes
the inertial scaling region where a ln(r/z) law is observed. Further, the presented
three-dimensional surface provides a visual representation of the relationship between
the linear–log region observed in 2〈u2

+〉 (u symbols) and the ln(r/z) law in 〈1u2
+〉

with the same multiplicative constant A1 (for p= 1; (2.11)).
In the following we will focus primarily on data from within the logarithmic region,

which we take to be nominally within the range 3
√

Reτ . z+ . 0.15Reτ following
recent observations using high Reynolds number datasets (Klewicki, Fife & Wei
2009; Marusic et al. 2013; Chin et al. 2014). The two thicker, dark grey lines (red
online) shown in figure 2 demarcate this region. The results in figure 2 indicate good
support for (2.9), where z is used as the normalising length scale. It is worthwhile to
consider whether the refined formulation (2.10) of Davidson et al. (2006a) is required
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FIGURE 2. (Colour online) Three-dimensional surface generated using profiles of 〈1u2
+〉

versus r/z at all wall-normal locations from the hot-wire dataset of Hutchins et al. (2009)
at Reτ ≈19 000. Theu symbols correspond to 2u2 at each wall-normal location. The green
shaded region corresponds to where a ln(r/z) law is expected at wall-normal locations
within the logarithmic region, highlighted by the darker contours. The indicated slopes
are detailed further in § 6.

0

5

10

15

0

5

10

15
(a) (b)

10210110010–110–2 10210110010–110–2

FIGURE 3. (Colour online) (a) A plot of 〈1u2
+〉 versus r/z from hot-wire data at Reτ =

19 000 of Hutchins et al. (2009). Wall-normal locations: A, z+ ≈ 400; D, 700; @, 1000;
B, 1900. The locations are selected to be within the logarithmic region. (b) A plot of
〈1u2

+〉 versus r/z after applying the correction outlined in (2.10) following Davidson et al.
(2006a). The solid lines correspond to formulations based on (2.9) and (2.10) in (a)
and (b) respectively.

at higher Reynolds numbers. Figure 3 shows a comparison between formulations (2.9)
and (2.10) for results within the logarithmic region for the same data as in figure 2.
The results show that inclusion of the extra term involving production and dissipation
slightly improves the collapse of the data in the inertial range (z< r� δ), although
its effect is probably not required at this Reynolds number. This is primarily due
to the fact that the turbulent production and dissipation rates are nominally equal in
the logarithmic region at sufficiently high Reynolds numbers (Tennekes & Lumley
1972; Townsend 1976). Moreover, accurate estimation of the turbulent production
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≈z+ 15ν(∂u/∂x)2 15ν
∫ ∞

0
k2

1φ11(k1)dk1 Third-order structure function

300 0.53× 10−2 0.57× 10−2 0.58× 10−2

400 0.41× 10−2 0.44× 10−2 0.47× 10−2

500 0.33× 10−2 0.34× 10−2 0.37× 10−2

800 0.23× 10−2 0.24× 10−2 0.25× 10−2

1600 0.12× 10−2 0.13× 10−2 0.12× 10−2

TABLE 2. Dissipation rates ε (given in m2 s−3) computed from the hot-wire dataset of
Hutchins et al. (2009) at Reτ ≈ 19 000, using three different methods.

and dissipation rates is a challenge experimentally. Here, we estimate production
using P ≈ 1/κz+, while for the dissipation rate several estimates can be employed
and are summarised in table 2 for the hot-wire dataset at Reτ ≈ 19 000 (Hutchins
et al. 2009). All the estimates use the assumption of isotropy (see Pope (2000) for a
detailed comparison); however, the third method (column 3) based on the third-order
structure function has been reported to have less ambiguity (Sreenivasan & Antonia
1997). The estimates of ε show an uncertainty of ≈±20 % between the methods
used, comparable with prior observations by Kunkel & Marusic (2006) and others.
It is also worth highlighting that recent work particularly using numerical databases
(where one can accurately compute P and ε) has aimed to answer the validity of
the balance between P and ε in the inertial region of wall turbulence (Hoyas &
Jiménez 2006; Bernardini et al. 2014; Lee & Moser 2015, and others). The results
have largely shown support for the validity of an approximate balance, thus matching
prior experimental observations.

In figure 4 we consider data in the logarithmic region across the other datasets
at varying Reynolds numbers. Results are presented on both log–log and log–linear
scales to highlight the scaling described previously in § 2. For the inertial subrange
shown in figure 4(a) evidence of a power-law scaling given by (2.8) is prevalent in
all datasets with a scaling exponent close to 2/3. Similarly, a power-law scaling given
by (2.4) is observed at the smallest scales within the dissipative range with a scaling
exponent of 2. Further, a ln(r/z) law in the form given by (2.9) is observed at scales
larger than the inertial subrange in figure 4(b). All scaling regimes are indicated
by the solid lines, together with their corresponding coefficients. The low Reynolds
number dataset (@ symbols) is included to demonstrate a clear trend with changing
Reynolds number, and it emphasises the importance of higher Reynolds number data
(Reτ = O(104–105)) to obtain a sufficiently large scale separation and thus observe
all scaling behaviours simultaneously. In future efforts, it will also be valuable to
consider whether the scaling behaviour reported extends to the transverse structure
function, which has been examined previously by Kurien et al. (2000), Jacob et al.
(2004) and others. As a final note, certain studies have reported power-law behaviour
for structure functions (Benzi et al. 1999; Toschi et al. 1999; Jacob et al. 2004,
and others), albeit with particular focus on the smaller scales. Our analysis shows
clear evidence of a power law in the range η � r � z and a ln(r/z) law in the
range z< r� δ. Some of these differences in interpretation may be attributed to the
substantially higher Reynolds numbers examined in this study compared with prior
work. This provides a large scale separation (large logarithmic region) enabling us
to better discern any scaling behaviour. Moreover, a large proportion of studies that
reported power-law behaviour alone employed decompositions primarily due to the
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FIGURE 4. (Colour online) Plots of 〈1u2
+〉 versus r/z on (a) log–log and (b) linear–log

scales. The symbols represent different datasets and are defined in table 1. Wall-normal
locations:@, z+ ≈ 200; ♦, z+ ≈ 800;A, z+ ≈ 1.6× 104;E,u, z+ ≈ 800. The solid lines
correspond to fits (detailed further in § 6) in the ranges η� r� z and z < r� δ. The
heavy solid lines in (a) at the smallest r/z represent fits to each hot-wire dataset in the
dissipative range.

lack of any scaling behaviour for the structure function in its classical form at the
Reynolds numbers considered. Here, we present the structure function in its classical
form, where the reported scaling behaviour is clearly observed.

The good agreement between the PIV (denoted by E, u symbols) and hot-wire
results in figure 4 highlights that the use of Taylor’s frozen turbulence hypothesis
to convert the time-series information from the hot wires to spatial information is
justified for the data presented here, at least up to r< δ. This concurs with previous
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FIGURE 5. (Colour online) Three-dimensional surface generated using profiles of 〈1u8
+〉1/4

versus r/z from the same dataset as presented in figure 2. The symbols are defined in
figure 2. The indicated slopes are detailed further in § 6.

findings where other statistical information is compared when Taylor’s approximation
is invoked, such as in the study of Dennis & Nickels (2008). Other studies that
have assessed the accuracy of invoking Taylor’s hypothesis include Del Alamo
& Jiménez (2009), Chung & McKeon (2010) and Atkinson, Buchmann & Soria
(2014).

4.2. Higher-order structure functions

Previously, we described the analogous postulate for higher-order structure functions
in (2.12), extending prior work by Meneveau & Marusic (2013) for higher-order
moments of velocity fluctuations. This section considers empirical evidence for (2.12)
based on the experimental data.

To begin, we apply the format used in figure 2 for the eighth-order structure
function, which is shown in figure 5. It is immediately evident from figure 5 that
the behaviour of the eighth-order structure function (after taking the 1/4 root) is
qualitatively comparable with its second-order counterpart. The region highlighted in
green on the surface denotes the region where a ln(r/z) law seems to be prevalent,
thus providing empirical support for (2.12). To further validate this observation,
figure 6 presents results for the even higher-order moments at a single wall-normal
location within the logarithmic region across all the experimental datasets considered,
here shown up to 2p = 10. To accentuate the analogous scaling behaviour observed
in the second-order structure function (see figure 4), the solid lines from 2p = 4–10
in figure 6 represent power- and log-law fits to the HRNBLWT hot-wire dataset.
The corresponding coefficients are also indicated in the figure. The universality of
these coefficients for the datasets considered will be explored in § 6. The low Re
dataset at higher moments shows a deviation from the high Re datasets. This can
be attributed to a much smaller logarithmic layer at low Re. Similar Re dependence
was also observed by Meneveau & Marusic (2013) for higher-order moments of
the streamwise velocity fluctuations below Reτ < 7000. Our results from structure



Structure functions in turbulent boundary layers 667

102

100

10–2

102

100

10–2

102

100

10–2

102

100

10–2

0

5

10

15

20

25

0

10

20

30

40

0

10

20

30

40

50

0

20

40

60

10210110010–110–2 10210110010–110–2

(a) (b)

(c) (d )

(e) ( f )

(g) (h)

FIGURE 6. (Colour online) Higher-order even structure functions for the same datasets as
presented in figure 4: (a,b) 2p= 4; (c,d) 2p= 6; (e,f ) 2p= 8; (g,h) 2p= 10. The symbols,
solid lines and wall positions are defined in table 1 and figure 4 respectively.
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FIGURE 7. (Colour online) Higher-order even structure functions for the same data as
presented in figure 3 for various wall-normal positions throughout the logarithmic region
for Reτ = 19 000: (a,b) 2p= 6; (c,d) 2p= 10. The symbols, solid lines and wall positions
are defined in table 1 and figure 3 respectively.

functions of higher orders are consistent with these findings; that is, beyond this
threshold, the higher-order moments are independent of Re. Therefore, we omit
the low Re dataset in the subsequent analyses, particularly when computing the
coefficients associated with the scaling fits described in § 5.

Figure 7 shows the higher-order results for the data shown in figure 3(a) for
various wall-normal positions throughout the logarithmic region. The results show
good collapse of the higher moments up to 2p = 10 and provide further direct
support for (2.12) across the entire extent of the logarithmic region.

5. Statistical and attached-eddy interpretations in the ln(r/z) range

In light of the supportive empirical results from the experimental data in § 4.2 for
all even higher-order moments based on (2.12), we now aim to bridge the relations
previously postulated for the higher-order structure functions with high-order moments
of velocity fluctuations. We note that the analysis to follow applies to the inertial range
of structure functions within the bounds z< r� δ. Two approaches are described in
this work. First, we propose a generalisation of the work of Meneveau & Marusic
(2013) to higher-order structure functions. We subsequently complement the findings
that arise from this generalisation with a physical model of a turbulent boundary layer
based on the attached-eddy hypothesis.
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5.1. Relations between high-order moments of velocity fluctuations and structure
functions

Previously, § 2.4 summarised the results from Meneveau & Marusic (2013) for the
general behaviour of higher-order velocity fluctuations. Following their work, it is
fruitful to develop the limit of structure functions at r � δ, by making use of the
binomial theorem:

〈1u2p
+ 〉 =

2p∑

k=0

(
2p
k

)
(−1)k〈u+(x+ r)2p−ku+(x)k〉. (5.1)

When r� δ, we expect u+(x+ r) and u+(x) to become statistically independent, and
hence 〈u+(x+ r)au+(x)b〉 = 〈u+(x)a〉〈u+(x)b〉. Therefore,

〈1u2p
+ 〉→

2p∑

k=0

(
2p
k

)
(−1)k〈u2p−k

+ 〉〈uk
+〉. (5.2)

If we assume that the odd moments all vanish, then this is equivalent to only adding
the positive even terms:

〈1u2p
+ 〉→

p∑

k=0

(2p)!
(2k)!(2p− 2k)! 〈u

2p−2k
+ 〉〈u2k

+ 〉. (5.3)

For p= 1, this becomes the familiar 〈[u+(x+ ir)− u+(x)]2〉→ 2〈u2
+〉. For p= 2, the

relationship is 〈[u+(x+ ir)− u+(x)]4〉→ 2〈u4
+〉 + 6〈u2

+〉2. Using this in the context of
the generalised logarithmic laws, for even moments only, we expect

〈1u2p
+ 〉→

p∑

k=0

(
2p
2k

) (
Bp−k − Ap−k ln(z/δ)

)p−k
(Bk − Ak ln(z/δ))k . (5.4)

To simplify, it is useful to absorb the coefficient Bk inside the logarithm, by setting
ck = exp(Bk/Ak), then we obtain

〈1u2p
+ 〉→

p∑

k=0

(2p)!
(2k)!(2p− 2k)!

[
Ap−k ln(cp−kδ/z)

]p−k [
Ak ln(ckδ/z)

]k
. (5.5)

Next, we make the reasonable assumption that Bp (as well as cp) does not depend
much on the moment order (e.g. that the intercepts of all moment log-laws occur
roughly at the same outer length scale cpδ ≈ cδ, and based on the measurements of
B1 ≈ 1.7 and A1 ≈ 1.25 we may estimate c ≈ 4); this seems to be supported by the
data. We can then write

〈1u2p
+ 〉→

[
ln(cδ/z)

]p
p∑

k=0

(2p)!
(2k)!(2p− 2k)!A

p−k
p−kA

k
k, (5.6)

and we obtain a logarithmic dependence of the structure function asymptote at r� δ:

〈1u2p
+ 〉1/p→Gp ln

(
cδ
z

)
, (5.7)
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where

Gp =
(

p∑

k=0

(2p)!
(2k)!(2p− 2k)!A

p−k
p−kA

k
k

)1/p

. (5.8)

Given numeric values for Ap for p= 1–5 measured in Meneveau & Marusic (2013),
numerical values for Gp can be obtained. For instance, for second-order structure
functions, p= 1, we obtain

G1 = 2A1 ≈ 2× 1.25≈ 2.5 (5.9)

and for fourth-order ones, p= 2, we have

G2 = [2(A2
2 + 3A2

1)]1/2 ≈ [2(1.922 + 3× 1.252)]1/2 ≈ 4.09. (5.10)

A comparison of these coefficients against experimental results will be presented
in § 6.

5.2. The attached-eddy hypothesis and higher-order moments
In this section, we compare the observed statistical behaviour of the structure functions
with that predicted by modelling the flow from elementary physical principles. To this
end, we derive various properties of the structure functions in the logarithmic region
from the attached-eddy hypothesis. This hypothesis states that the logarithmic region
is dominated and characterised by the presence of a hierarchy of self-similar coherent
structures, or ‘eddies’, whose sizes scale with their distances from the wall. It is in this
loose sense that the eddies are said to be ‘attached’ to the wall. This will enable us to
explore the validity of the current manifestation of the attached-eddy hypothesis as a
potential predictive model for structure functions in the logarithmic region of turbulent
wall flows.

The attached-eddy hypothesis, as it is applied here, assumes that the locations of
the eddies on the wall are perfectly random and independent of each other. This has
allowed the statistical properties of the flow to be derived via Campbell’s theorem.
This model has been used by Woodcock & Marusic (2015) to derive the moments of
the velocity in the logarithmic region. The model treats the flow as a superposition of
the velocity fields corresponding to each of a multitude of geometrically equivalent
eddies. The locations of the eddies are perfectly random and are unaffected by
the presence of nearby eddies. (This means that the eddies are not prevented from
overlapping, and two or more eddies may occupy the same region of space.) The
eddies are identical once scaled by their heights, and their shapes are unaffected by
the presence of nearby eddies. The reasoning behind the attached-eddy hypothesis, as
well as the derivation extended here, has been further elaborated upon by Woodcock
& Marusic (2015).

The height of any particular eddy, h, is assumed to be between hmin and hmax. We
can therefore equate hmax with δ, the thickness of the boundary layer. In order to
simplify the subsequent equations, we will introduce some new symbols. Since each
eddy is characterised by its height, it is sensible to scale all lengths by h. Hence, we
scale the location vector, x, and the displacement via

X≡ (X, Y, Z)= x
h
, R= r

h
. (5.11)
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When deriving the velocity moments, Campbell’s theorem reduces the derivation to
an integral over the velocity field corresponding to a single eddy. Hence, if the vector
Q(X) represents the velocity field corresponding to a single eddy, then we can express
all moments of the velocity in terms of Q(X).

Since each eddy is spatially bounded, the velocity field corresponding to each eddy
will inevitably be negligible at a sufficient distance from the location of the eddy,
and this distance is proportional to the height of the eddy. Using this, Woodcock &
Marusic (2015) showed that the log-law for the flow profile follows from Campbell’s
theorem.

When applied to the derivation of the structure function, Campbell’s theorem
reduces the derivation to an integral over a pair of eddies identical in magnitude
but of opposite sign, a distance of r apart. We therefore introduce a new function,
1Ik (X, R), which we call the eddy difference contribution. It relates the flow field
corresponding to a single eddy via

1Ik(X, R)=
∫∫ ∞

−∞
[Qx (X+ iR)−Qx (X)]k dXdY. (5.12)

This we can relate to 〈1un
+〉 through a mathematical intermediary, which we call a

cumulant. These cumulants, denoted by Λk(x, r), are defined by

Λk(z, r)= β
∫ hmax

hmin

1Ik (Z, R) h2P(h)dh, (5.13)

where β denotes the density of the eddies on the wall and P(h) is the probability
density function for the height of an eddy. Woodcock & Marusic (2015) have shown
that this is given by

P(h)= 2
(
h−2

min − h−2
max

)−1 1
h3
. (5.14)

The structure functions can be shown to relate to the cumulants via

〈1u2
+〉 = Λ2, (5.15a)

〈1u3
+〉 = Λ3, (5.15b)

〈1u4
+〉 = Λ4 + 3Λ2

2, (5.15c)

〈1u5
+〉 = Λ5 + 10Λ2Λ3, (5.15d)

〈1u6
+〉 = Λ6 + 15Λ2Λ4 + 10Λ2

3 + 15Λ3
2, (5.15e)

〈1u7
+〉 = Λ7 + 21Λ2Λ5 + 35Λ3Λ4 + 105Λ2

2Λ3, (5.15f )

〈1u8
+〉 = Λ8 + 28Λ2Λ6 + 56Λ3Λ5 + 35Λ2

4 + 210Λ2
2Λ4

+ 280Λ2Λ
2
3 + 105Λ4

2, (5.15g)
〈1u9

+〉 = Λ9 + 36Λ2Λ7 + 84Λ3Λ6 + 126Λ4Λ5 + 378Λ2
2Λ5 + 1260Λ2Λ3Λ4

+ 280Λ3
3 + 1260Λ3

2Λ3, (5.15h)
〈1u10

+ 〉 = Λ10 + 45Λ2Λ8 + 120Λ3Λ7 + 210Λ4Λ6 + 630Λ2
2Λ6 + 126Λ2

5

+ 2520Λ2Λ3Λ5 + 1575Λ2Λ
2
4 + 2100Λ2

3Λ4 + 3150Λ3
2Λ4

+ 6300Λ2
2Λ

2
3 + 945Λ5

2. (5.15i)
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The derivation of the structure functions is analogous to that presented by Woodcock
& Marusic (2015) for the moments of the velocity. The details of this derivation can
be found in appendix A. These derivations apply where

z� r� δ. (5.16)

(It should be noted that we have specifically made use of the fact that we equate
hmax with the height of the boundary layer, δ in the above equation.) In this limit, the
even-ordered cumulants will obey

Λk(z, r)=Ak log
r
z
+Bk, (5.17)

where Ak and Bk are constants. The constant Ak is given by

Ak = 4β
h−2

min − h−2
max

∫∫ ∞

−∞
Qk

x(X, Y, 0)dXdY. (5.18)

(We could give a similar expression for Bk. However, since the attached-eddy model
contains different boundary conditions from real turbulent flows, any Bk derived in
this way would not be physically significant.)

We can express the range of eddy sizes present as a Reynolds number. This
Reynolds number can be conventionally defined by

Reτ = 100
hmax

hmin
, (5.19)

which is based on the assumption that hmax = δ and hmin = 100 following Kline et al.
(1967). By an analogous derivation to that given by Woodcock & Marusic (2015), it
can be shown that (5.18) can be re-expressed as

Ak = 16
9

1
kxky

(
1− 106Re−3

τ

)2

(
1− 104Re−2

τ

)3

∫∫ ∞

−∞
Qk

x(X, Y, 0)dXdY, (5.20)

where kx is a constant defined such that the expected distance to the next closest eddy
in the positive x direction will always be kxh if the height of the next closest eddy
were known to be h. (More specifically, kxh represents the distance in a strip of height
h′ to the nearest eddy of height between h and h + dh divided by h′ and dh.) The
constant ky is its spanwise equivalent.

In the large-Reτ limit, this asymptotes to

Ak→ 16
9

1
kxky

(
1+ 3× 104Re−2

τ

) ∫∫ ∞

−∞
Qk

x(X, Y, 0)dXdY as Reτ→∞. (5.21)

As we can easily see in (5.15), Λ2 is equivalent to the second-order structure
function. We can therefore return (2.9), the logarithmic law for 〈1u2

+〉, by stating
that A2 ≡D1 and B2 ≡ E1.

It can also be observed that by considering (5.13) the higher even-ordered structure
functions will be dominated by their final term (which is the component containing the
highest power of Λ2) in the limit as β→∞. Given the relationship between Λ2 and
the second-order structure function, we can easily see that (5.17) returns a logarithmic
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law for the second-order structure function given in (2.9). Furthermore, for large β
(β →∞), it can be seen that the even-numbered higher-ordered structure functions
will obey

〈1u2p
+ 〉1/p =Dp log

r
z
+ Ep, (5.22)

where Dp and Ep are constants which are equivalent to A2p and B2p respectively.
Importantly, this concurs with experimental results, as will be discussed in more detail
in § 6. We also note that carrying out the above derivations for the other velocity
components shows a similar logarithmic relation for the spanwise velocity, but not
for the wall-normal velocity.

The odd-ordered cumulants have also been derived in appendix A. Their behaviour
is given in (A 25). They are likely to be of much lower magnitude than their
even-ordered counterparts wherever (5.16) applies, so their contributions to the
even-ordered structure functions should be negligible. Their contributions to the
odd-ordered structure functions are more significant, but since these are of less
interest, we do not reproduce them here.

Therefore, we can see that the attached-eddy hypothesis produces predictions for
the structure functions in the logarithmic region that are in qualitative agreement with
experimental evidence. In order to extend this to a quantitative prediction for the
structure functions, it would be necessary to produce a specific function for Q(x), the
velocity field corresponding to a single eddy. This is, however, beyond the scope of
this present work.

6. Evaluation of the universal coefficients

This section revisits the experimental results for the scaling of the streamwise
structure function with particular focus on the inertial subrange (η� r� z) and the
ln(r/z) range (z< r� δ). For the inertial subrange the two coefficients ξ2p and Mp are
investigated following the power-law scaling given by (2.8). To do so we compute
〈1u2p

+ 〉1/p(r/z)ξ2p/p and present the results on log–linear plots, as shown in figure 8.
From (2.8) a plateau should appear in the inertial subrange. The results in figure 8
do indeed show a plateau, but only convincingly for the very high Reynolds number
atmospheric boundary layer data. The wind tunnel data at lower Reynolds number
are seen to have a limited inertial subrange as is expected.

The results in figure 8 show that the power-law scaling extends to higher-order
moments, at least up to 2p = 10. The computed coefficients for Mp from the three
datasets are shown in figure 9(a) and are listed in table 3. The scaling exponent
ξ2p/p has been widely investigated in prior work (She & Leveque 1994; Sreenivasan
& Antonia 1997, to name a few). Conventionally, the scaling exponent is presented
as ξ2p, and is shown in figure 9(b); for completeness figure 9(c) shows the scaling
exponent ξ2p/p. The results show a strong deviation from the Kolmogorov estimate
(K41), similar to that observed in several prior numerical and experimental studies, as
summarised, for example, by She & Leveque (1994). Nevertheless, the three datasets
considered here show good collapse for ξ2p and are also in close proximity to prior
results from the She–Leveque model (She & Leveque 1994). Overall the results in
figures 8 and 9 support the hypothesis that the constants ξ2p and Mp in (2.8) are
universal at high Reynolds numbers. This is based on results from three independent
datasets, involving different experimental techniques, facilities and flow conditions
(noting that the atmospheric boundary layer is a rough boundary layer).
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FIGURE 8. (Colour online) Plots of 〈1u2p
+ 〉1/p(r/z)ξ2p/p versus r/z on a linear–log scale

at p = 1–5. The symbols represent different datasets: u, HRNBLWT – high-mag PIV;
♦, HRNBLWT – hot-wire; A, SLTEST – hot-wire. Wall-normal locations: ♦, z+ ≈ 800;
A, z+ ≈ 1.6 × 104; u, z+ ≈ 800. The horizontal dashed line indicates the computed
multiplicative constant Mp in the inertial subrange η� r� z based on the SLTEST dataset
(A symbols). The vertical dashed line corresponds to the transitional length scale Ls.

For the inertial range within the bounds z< r� δ we expect to observe a ln(r/z)
law in the form given in (5.22) for the higher-order structure functions. Figures
10(a) and 10(b) show comparisons of Dp and Ep respectively. Also included are
the estimates computed using (5.8) with numerical values obtained from Meneveau
& Marusic (2013) for Ap. Good agreement is observed between all high Reynolds
number datasets considered both visually and quantitatively, as summarised in table 4.
We note that the observed variations in the computed coefficients from the higher Re
datasets are well within the experimental uncertainty of the datasets used. A larger
discrepancy is observed between the experimental data and the estimates obtained
from (5.8), which can be attributed to the assumptions described in § 5.1.

In figure 8 we also consider the demarcation of the ln(r/z) range and the inertial
subrange using the transitional length scale (Ls) in structure functions, which is
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FIGURE 9. (Colour online) (a) Multiplicative coefficient (Mp) and (b) scaling exponent
ξ2p/p of the base r/z for p = 1–5 in the inertial sublayer range ((z+)−3/4 � r/z � 1).
(c) Results in (a) reproduced but now scaled with p. The symbols are defined in table 1.
The dashed line in (b) and (c) represents the K41 law, and the solid and dotted lines
correspond to numeric values provided in She & Leveque (1994) (see (2.6)) and Meneveau
& Sreenivasan (1987) (see (2.7)) respectively.
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FIGURE 10. (Colour online) (a) The multiplicative coefficient (Dp) of r/z at p= 1–5 and
(b) the additive coefficient (Ep) in the scaling range z< r<δ. The symbols are defined in
table 1. The dashed line in (a) represents the expected behaviour for Gaussian statistics,
where Dp=Gp as defined in (5.8), and the solid black line corresponds to numeric values
provided in Meneveau & Marusic (2013).

defined as
Ls =

√
ε/(∂〈U〉/∂z)3 (6.1)

following Toschi et al. (1999). Since our analysis is confined to the logarithmic region
of wall-bounded turbulence, we can use (2.3) to simplify (6.1) to

Ls = κz. (6.2)
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SLTEST – hot-wire HRNBLWT – high-mag PIV HRNBLWT – hot-wire
p ξ2p Mp ξ2p Mp ξ2p Mp

1 0.68 3.12 0.68 3.12 0.67 3.11
2 1.24 6.17 1.31 6.06 1.24 6.00
3 1.72 9.84 1.85 9.34 1.75 9.38
4 2.11 14.00 2.29 12.70 2.19 13.16
5 2.46 18.55 2.67 15.94 2.58 17.31

TABLE 3. Comparison of the coefficients ξ2p and Mp in the region z< r<δ from different
datasets. For the HRNBLWT – hot-wire datasets results are presented only at Reτ ≈19 000.

SLTEST – hot-wire HRNBLWT – PIV HRNBLWT – hot-wire Equation (5.8)
p Dp Ep Dp Ep Dp Ep Gp (=Dp)

1 2.16 2.95 2.28 2.62 2.44 2.61 2.50
2 3.50 6.08 3.72 5.33 3.76 5.69 4.09
3 4.66 9.95 4.90 8.81 4.81 9.55 5.42
4 5.70 14.38 5.82 13.10 5.75 13.95 6.55
5 6.67 19.11 6.54 18.11 6.70 18.71 7.60

TABLE 4. Comparison of the coefficients Dp and Ep in the region z< r<δ from different
datasets. Here, Gp is computed using numeric values provided in Meneveau & Marusic
(2013) and the estimate Dp ≈ Gp (where at r ≈ δ we have 〈1u2p

+ 〉 from (5.3)). For the
HRNBLWT – hot-wire datasets results are presented only at Reτ ≈ 19 000.

Similar to prior observations by Saikrishnan et al. (2012), albeit at a significantly
lower Reynolds number, figure 8 shows that the computed Ls following (6.2) clearly
demarcates two distinct scaling regions. At scales below Ls a power-law scaling
regime is observed, whereas at scales larger than Ls a less rapidly increasing trend is
observed (namely proportional to ln(r/z), as seen in figures 6 and 7).

6.1. Modelling of coefficients in the ln(r/z) range
So far we have examined the inertial subrange and ln(r/z) range of the streamwise
structure function independently. However, the results shown in figures 4 and 6
suggest that the scaling fits employed in each region intersect at approximately
r/z≈ 1. This suggests the possibility of using this information to reduce the number
of unknown constants. (Such matching approaches have been attempted previously,
including in the more recent study by Davidson & Krogstad (2009).) Therefore,
using this purely empirical observation we equate the two fits and model/estimate
the coefficients for the ln(r/z) range based on the scaling fits in the inertial subrange
alone. To perform this, the two scaling fits given by (2.8) and (5.22) are equated to
obtain

MpX
ξ2p = E′p +D′p ln X , (6.3)

where E′p and D′p are modelled equivalents of Ep and Dp, and X corresponds to the
magnitude of r/z at the estimated point of intersection between the two scaling fits.
By further matching gradients at X we obtain

Mpξ2pX
ξ2p−1 = D′p

X
, (6.4)
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FIGURE 11. (Colour online) Variation of X computed from the SLTEST dataset of
Kunkel & Marusic (2006) at Reτ = 3.1× 106 and z+≈ 1.6× 104. The solid line represents
a linear fit which is used to obtain the results shown in figure 12.
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FIGURE 12. (Colour online) The same as figure 10, but with the inclusion of the
modelled coefficients (C symbols) for the SLTEST dataset of Kunkel & Marusic (2006),
as summarised in table 5.

which can be rearranged to give

D′p =Mpξ2pX
ξ2p . (6.5)

Substituting (6.5) into (6.3) we can now estimate E′p using

E′p =Mp ln X ξ2p −Mpξ2pX
ξ2p ln X →MpX

ξ2p(1− ξ2p ln X ). (6.6)

Visual inspection of the results presented for 〈1u2p
+ 〉1/p in figures 4 and 6 shows that

X ≈ 1; however, upon closer inspection a linear decrease in X is observed across all
datasets, as shown in figure 11, with increasing p. Therefore, following estimates of
X from the experimental datasets, results for E′p and D′p are summarised in table 5
and are compared with prior experimental results in figure 12. The results show that
the magnitude and trend of the modelled coefficients closely match those computed
directly from the experimental datasets.

7. Summary and conclusions
Through the use of a uniquely large range of experimental datasets that span several

decades of Reynolds numbers, this study investigates the scaling of higher-order
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SLTEST – hot-wire HRNBLWT – hot-wire
p X D Dm E Em D Dm E Em

1 1.00 2.16 2.12 2.95 3.23 2.44 2.04 2.61 3.11
2 0.84 3.50 3.54 6.08 6.33 3.76 3.41 5.69 5.98
3 0.71 4.66 4.76 9.95 9.94 4.81 4.59 9.55 9.25
4 0.61 5.70 5.75 14.38 13.90 5.75 5.56 13.95 12.79
5 0.53 6.67 6.52 19.11 18.02 6.70 6.28 18.71 16.46

TABLE 5. Comparison of the coefficients Dp and Ep in the region z< r<δ from different
datasets. For the HRNBLWT – hot-wire datasets results are presented only at Reτ ≈19 000.

streamwise structure functions. We present a description of formulations that
characterise the scaling laws for the streamwise structure functions with particular
focus on the logarithmic region in wall-normal space, which is characterised by a
range of locations away from the wall, and within the Kolmogorov inertial subrange
and ln(r/z) range in streamwise separation space.

The employment of datasets with Reynolds numbers extending to Reτ = O(106)
enables us to observe both scaling laws simultaneously unlike most prior work.
Furthermore, our analysis shows comparable results for a wide range of experimental
datasets extending from laboratory experiments to the atmospheric boundary layer,
thus showing a certain degree of universality for the computed coefficients of the
scaling laws.

Following prior mathematical descriptions by Davidson and coworkers for the
ln(r/z) range of the second-order structure function, here we show that these
descriptions are consistent with the attached-eddy model, which is formulated for
the logarithmic region. Moreover, the attached-eddy model is used to derive the
expected relations for all higher-order moments, leading to the prediction that all
even moments will follow a logarithmic dependence with r/z of the form

〈1u2p
+ 〉1/p =Dp ln

r
z
+ Ep, (7.1)

and this is strongly supported by the experimental results for 2p= 2–10.
In the inertial subrange, the experimental data also show strong support for a

power-law scaling, where the scaling exponent ξ2p is shown to match well with prior
data (Anselmet et al. 1984; Sreenivasan & Antonia 1997). Further, estimates for
the multiplicative constant Mp are presented up to the 10th moment for structure
functions, with good agreement observed across all datasets. The transition length
scale Ls, studied extensively for shear flows in prior work, is shown to demarcate
regions of the structure function with differing scaling behaviour, where a transition
from a power law at scales smaller than Ls to a log-law behaviour at larger scales is
observed.

The employment of both spatial and temporal datasets enabled us to compute
structure functions with and without invoking Taylor’s frozen turbulence hypothesis.
Our findings show consistent results, highlighting that Taylor’s frozen turbulence
hypothesis can be used to compute structure functions from temporal data at least
up to r = O(δ). An empirically based approach to model the scaling coefficients
within the ln(r/z) range based on the inertial subrange constants is also presented.
Estimates from this model are shown to match well with results computed directly
from experimental datasets.
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The analysis presented in this paper highlights the universality of the structure
function as a tool to understand the scaling behaviour within the logarithmic region
of turbulent boundary layers. The consistency in scaling regimes observed in the
structure functions from this study complements the findings of Meneveau & Marusic
(2013) on the higher moments of the streamwise velocity fluctuations, and provides
further statistical information to test the accuracy of both experimental datasets and
simulations beyond tests that are usually considered using lower-order statistics.
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Appendix A. Derivation of the functional forms of the structure functions via
the attached-eddy model

In this appendix, we present the derivation of the functional forms of the structure
functions that are referenced in § 5.2, where we noted that Campbell’s theorem reduces
the derivation of the structure function to an integral over two identical eddies that are
opposite in sign and separated by a distance R. Which pairs of eddies will make a non-
negligible contribution to the flow will depend upon two separate and contradictory
concerns. If the eddies are too small (i.e. if Z is too large), their contributions to
the velocity field may not extend to z. If, however, the eddies are too large (or R
is too small), the velocity fields corresponding to the two eddies will overlap, causing
a reduction in the magnitude of Qx(X + iR) − Qx(X), and thereby any even-ordered
structure functions.

The derivation of the structure function is largely analogous to the derivation of
the moments of the velocity presented by Woodcock & Marusic (2015). Hence, the
derivation of 〈1un

+〉 can be found by making the following substitutions within that
work:

〈un〉 7−→ 〈1un
+〉, (A 1a)

Qx(X) 7−→Qx(X+ iR)−Qx(X), (A 1b)
In,0,0(Z) 7−→1In(Z, R), (A 1c)
λn,0,0(z) 7−→Λn(z, r). (A 1d)

Woodcock & Marusic (2015) derived the functional forms of the velocity moments
based upon which eddies will have a non-negligible effect upon the structure function
for a particular distance from the wall, z. The derivation of the functional forms of the
structure functions presented here is similarly dependent on which eddies’ effects are
non-negligible for a particular z and separation, r. Derivation of the structure function
in this way is very similar to derivation of the moments of the velocity, with a few
extra complexities.

The streamwise velocity corresponding to two such eddies can be seen in figure 13
for eddies of various heights. There it can be seen that if the ratio R is sufficiently
large, the velocity fields corresponding to the two eddies are effectively independent.
Conversely, if R is sufficiently small, the velocity fields corresponding to the two
eddies will overlap, and begin to cancel each other out.
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FIGURE 13. Graphical representation of the velocity difference function, 1Qx(X, R) =
Qx(X + iR) − Qx(X), for different eddy heights. (This graph is merely a heuristic guide,
and is not intended to represent the exact shape of 1Qx.)

Rather than attempt to account for both of these issues simultaneously, we instead
deal with them independently. To do so, we first consider the case in which r
is sufficiently large that none of the eddies overlap. In this special case the eddy
difference contribution defined in (5.12) reduces to

1Ik(X, R)=




∫∫ ∞

−∞
2Qk

x(X)dXdY, for k even,

0, for k odd,
for r� hmax. (A 2)

The value of Λ2n is derived from the above 1I2n via (5.13). It has previously been
shown by Woodcock & Marusic (2015) that so long as z � hmax a logarithmic
dependence upon z will be exhibited. In fact, this can be re-expressed in terms of
the function λk, which is defined in equation (19) of that article. It is given by

λk(z)= β
∫ hmax

hmin

∫∫ ∞

−∞
Qk

x(X)dXdYh2P(h)dh. (A 3)

We can account for the effect on 1I2n of any overlap between Qx(X+ iR) and Qx(X)
by including an additional term, ζk(X, R), to account for any overlapping that occurs
at low R. The eddy difference contribution becomes

1Ik(X, R)=




∫∫ ∞

−∞
2Qk

x(X)dXdY − ζk, for k even,

−ζk, for k odd.
(A 4)

By substituting (A 4) into (5.13), we retrieve

Λk(z, r)=





2λk(z)− β
∫ hmax

hmin

ζk(X, R)h2P(h)dh, for k even,

−β
∫ hmax

hmin

ζk(X, R)h2P(h)dh, for k odd.
(A 5)

The value of ζk(X, R) can easily be derived by expanding the brackets in (5.12). For
example, we can see that the second-order term is

ζ2(X, R)=
∫∫ ∞

−∞
2Qx(X)Qx(X+ iR)dXdY. (A 6)
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FIGURE 14. Diagram showing Qx(X) and Qx(X + iR). Here, it can be seen that if Qx
becomes negligible at a distance of r′ from the centre of the eddy, then the product
Qx(X)Qx(X+ iR) can only be assumed to be universally zero if r< 2r′.

Higher-order terms will of course contain more components, but what is important is
that they will all contain a power of Qx(X) multiplied by a power of Qx(X+ iR). Their
exact forms are trivial to determine, but are not necessary for the following derivation.

What is important, however, is that a cursory glance at (5.12) reveals that at R= 0,

β

∫ hmax

hmin

ζk (X, 0) h2P(h)dh=
{

2λk(z), for k even,
0, for k odd.

(A 7)

The importance of this will be revealed subsequently. The reason for introducing
ζk(X,R) is that it becomes small when either Z or R is large. We therefore need only
exclude eddies that are too small for a given r and z. It is clear that the r dependence
of ζk is functionally similar to its z dependence in that there will exist a value of
r beyond which ζk will be negligible, and that this value will be proportional to h.
(It is not particularly important what we define to be ‘negligible’, so long as we are
consistent with this definition.) It must be noted, however, that if Qx(X) becomes
negligible at r = r′, then Qx(X)Qx(X + iR) will only become negligible at r = 2r′.
This is illustrated in figure 14.

The Biot–Savart law indicates that the velocity field corresponding to a spatially
limited vorticity field will diminish as the distance from the vorticity field increases.
While the rate at which the velocity field diminishes with distance may depend upon
the direction, without knowing the nature of Q(X), this is impossible to specify. We
do know, however, from the Biot–Savart law that at sufficient distance from the
eddy, l,

Qx

(
l
h

)
=O

((
l
h

)−2
)
. (A 8)

Importantly, the magnitude of Qx(l/h) begins to diminish at the same rate regardless
of the direction of the displacement. This will allow us to account for r and z
simultaneously.

In this case, the equivalent of l would be

l=
√

z2 + r2

4
. (A 9)

In this way, we can redefine z and r in a form of polar coordinates. Our angular
coordinate, θ , is defined such that

r= 2l cos θ, z= l sin θ. (A 10)
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We can similarly scale this distance with the height of the eddy, so that

L= l
h
= 1

h

√
z2 + r2

4
. (A 11)

From (A 8), we can see that for sufficiently high l, if we define ζ̂k(L, θ)≡ ζk(X, R),
then

ζ̂k (L, θ)= f (θ)
L2k

, (A 12)

where f (θ) represents the fact that the velocity field may diminish faster with z than
with r. It should be noted that if r� z, then θ , and hence f (θ), will change negligibly
with r.

Hence, in the r� z case, we can simply say that

ζ̂k (L)∝ 1
L2k
. (A 13)

A.1. Even-ordered cumulants
We are now able to follow a very similar derivation to that presented by Woodcock &
Marusic (2015) in order to derive the even-ordered cumulants, Λ2n. First, we rewrite
(A 5) as

Λ2n(z, r)= 2λ2n(z)− β
∫ hmax

hmin

ζ̂2n (L) h2P(h)dh, for r� z. (A 14)

If we assume that there exists a number η such that if l/h>η, ζk will be negligible,
we therefore say that

ζ̂k (L)≈ 0, l>ηh. (A 15)

Because ζ̂k is assumed to be non-zero only if l/η < h 6 hmax, we need not integrate
from hmin to hmax in (5.13). Therefore, (5.13) can be written as

Λ2n(z, r)=





2λ2n(z)− β
∫ hmax

l/η
ζ̂2n (L) h2P(h)dh, for l>ηhmin,

2λ2n(z)− β
∫ hmax

hmin

ζ̂2n (L) h2P(h)dh, for l 6 ηhmin.

(A 16)

If we take the l>ηhmin case in the above equation, and substitute (5.14) for P(h), it
can be rewritten as

Λ2n(z, r)= 2λ2n(z)− 2β(h−2
min − h−2

max)
−1
∫ η

l/hmax

ζ̂2n (L)
L

dL. (A 17)

In order to derive the functional form of the structure function from the above
equation we first recognise that a major contribution to the integral above will
emanate from near L= 0. This, coupled with the fact that ζ̂2n (L) will at some point
begin to diminish as L increases, indicates that it is reasonable to expand ζ̂2n in a
Taylor series around L= 0. This gives

ζ̂k(L)= ζ̂k(0)+ Lζ̂ ′k(0)+
L2

2! ζ̂
′
k(0)+ · · · . (A 18)
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If l� hmax, it is the first term in this expansion that will dominate within the integral.
We can therefore say that

Λ2n(z, r)' 2λ2n(z)− 2β(h−2
min − h−2

max)
−1ζ̂2n(0) ln

(
l

hmax

)
, for l� hmax. (A 19)

We may further simplify this result by recognising that ζ̂k may be related to the eddy
contribution function Ik,0,0, which was defined by Woodcock & Marusic (2015) and is
given in equation (18) of that work. From (A 7) of the present paper, we can see that

ζ̂k(0)= ζk(0, 0)= 2Ik,0,0(0). (A 20)

By taking into account equation (38) of Woodcock & Marusic (2015), we can see that

Λk(z, r)=Ak ln

√
r2

4z2
+ 1+Ck, for k even, (A 21a)

where Ak and Ck are constants, and Ak is given by

Ak = 4
β

h−2
min − h−2

max

Ik,0,0(0). (A 21b)

Because the boundary conditions applied within the attached-eddy model are starkly
different from the no-slip boundary conditions that apply to real turbulent flows, we
cannot derive a realistic approximation for Ck via this method. Therefore, although we
could derive an equivalent expression to the above for Ck, we elect not to do so.

Of course, since we have already made the important assumption that r� z, the
above expression for Λk(z, r) can be easily simplified to

Λk(z, r)=Ak ln
r
z
+Bk, (A 22)

where Bk is a constant. It should be noted that Ck in (A 21a) has been replaced by
Bk in the above equation. This is because the value of the additive constant has been
altered. This expression concurs with that given by Davidson et al. (2006b).

A.2. Odd-ordered cumulants
The derivation of the odd-ordered cumulants progresses via an entirely analogous path
to their even-ordered counterparts, with the important exception that (A 5) and (A 7)
take very different forms.

The important implication of (A 7) is that

ζ̂k(0)= ζk(0, 0)= 0. (A 23)

By proceeding in the same manner as in the even-ordered case, we find that if l�hmax,

Λk(z, r)= 4
β

h−2
min − h−2

max

ζ̂ ′k(0)
l

hmax
+Bk, for k odd. (A 24)

Using (A 5), this becomes

Λk(z, r)= 4
β

h−2
min − h−2

max

z2 + r2

4

hmax

[
1
z
∂1Ik(0)
∂z

+ 4
r
∂1Ik(0)
∂r

]
+Bk, for k odd. (A 25)
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A comparison with the scaling behaviour derived here for the odd-order structure
functions shows results that compare favourably with those measured experimentally.
An in-depth presentation and analysis of odd-order moments is relegated to a future
communication since this paper is focused on even-order moments.
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