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It has previously been demonstrated that the drag experienced by a Poiseuille flow
in a channel can be reduced by subjecting the flow to a dynamic regime of blowing
and suction at the walls of the channel (also known as ‘transpiration’). Furthermore,
it has been found to be possible to induce a ‘bulk flow’, or steady motion through
the channel, via transpiration alone. In this work, we derive explicit asymptotic
expressions for the induced bulk flow via a perturbation analysis. From this we gain
insight into the physical mechanisms at work within the flow. The boundary conditions
used are of travelling sine waves at either wall, which may differ in amplitude and
phase. Here it is demonstrated that the induced bulk flow results from the effect of
convection. We find that the most effective arrangement for inducing a bulk flow
is that in which the boundary conditions at either wall are equal in magnitude and
opposite in sign. We also show that, for the bulk flow induced to be non-negligible,
the wavelength of the boundary condition should be comparable to, or greater than, the
height of the channel. Moreover, we derive the optimal frequency of oscillation, for
maximising the induced bulk flow, under such boundary conditions. The asymptotic
behaviour of the bulk flow is detailed within the conclusion. It is found, under certain
caveats, that if the amplitude of the boundary condition is too great, the bulk flow
induced will become dependent only upon the speed at which the boundary condition
travels along the walls of the channel. We propose the conjecture that for all similar
flows, if the magnitude of the transpiration is sufficiently great, the bulk flow will
depend only upon the speed of the boundary condition.

Key words: drag reduction, Navier–Stokes equations

1. Introduction
A novel method of active drag reduction has previously been discovered to affect

both laminar and turbulent flows (Choi, Moin & Kim 1994). This method, now
known as ‘transpiration’, involves subjecting the flow to a non-zero and non-constant
wall-normal velocity at the flow’s surface. This boundary condition consists of both
blowing and suction at the surface, and imparts no net volume flux upon the flow. This
effect has so far been investigated via numerical and analytical methods, and to the
authors’ knowledge its existence has thus far not been verified experimentally.
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It had previously been suspected that transpiration should be incapable of producing
a sustainable sublaminar drag within a Poiseuille flow (Bewley 2001). (A Poiseuille
flow is a flow that is driven by an imposed pressure gradient, and by ‘sublaminar’
drag, we mean that the drag is less than would be experienced by a laminar Poiseuille
flow in the absence of transpiration.) Indeed, initial attempts to produce simulations
of flows with minimised drag resulted in only transient periods of sublaminar drag
(Cortelezzi et al. 1998; Aamo, Krstić & Bewley 2003).

However, more recently Min et al. (2006) demonstrated that it is possible, within a
laminar Poiseuille flow, for transpiration to produce a sublaminar drag that is persistent
and sustainable. The boundary conditions they employed were of a travelling sine
wave at the top wall of the channel, matched with a sine wave of equal magnitude
and opposite sign at the bottom wall, which moved counter to the overall direction of
the flow. (This arrangement has been referred to as ‘varicose mode’.) These boundary
conditions had been chosen as a result of analysing an expression for the drag acting
on the fluid that was developed by Fukagata, Iwamoto & Kasagni (2002), and which
related the drag to a weighted integral of the Reynolds stress.

Specifically, Min et al. (2006) demonstrated numerically that sustained sublaminar
drag could be produced within low-Reynolds-number laminar flows, and produced
simulations of turbulent flows in which transpiration resulted in significant sustained
drag reduction.

Min et al. (2006) conclude their paper with the observation that transpiration would
be physically difficult to implement. They suggest instead that ‘a moving surface with
wavy motion would produce a similar effect, since wavy walls with small amplitudes
can be approximated by surface blowing and suction.’ In other words, the effect of
transpiration may be approximated by that of peristalsis, provided that the maximum
amplitude of the deformation is small. By solving the Navier–Stokes equation through
both numerical simulations and a perturbation analysis, Hoepffner & Fukagata (2009)
compared such peristalsis-driven flows to those driven by transpiration. They report
that despite the apparent similarity between transpiration and peristalsis (they are both
driven by a non-zero wall-normal velocity at the walls), their effects are noticeably
different. Specifically, they report that the bulk flow induced by peristalsis generally
moves in the same direction as the variation in the boundary conditions, while the
flow induced by transpiration moves counter to the boundary condition (although the
results of their perturbation analysis suggest that it would be possible, under certain
conditions, for small-amplitude peristalsis to induce flow in the opposite direction to
the variation in the boundary condition). The nature of flows through tubes induced by
such rapid oscillations in the tube’s radius have been further studied by Whittaker et al.
(2010b), and extended to flows through elliptical tubes by Whittaker et al. (2010a).

By determining the Reynolds shear stress numerically, Mamori, Fukagata &
Hoepffner (2010) investigated the effect of transpiration upon Poiseuille flows in a
channel. They considered the combination of a travelling sine wave at one wall in
conjunction with an equal and opposite travelling sine wave at the other, which had
also previously been used by Min et al. (2006). They also considered a system in
which a travelling sine wave at one wall is combined with an identical sine wave
at the other (an arrangement known as ‘sinuous mode’). They found that the former
arrangement produces significantly greater drag reduction than the latter.

Lee, Min & Kim (2008) studied the stability of Poiseuille flows subjected to
transpiration. They found that if the boundary conditions consist of upstream-travelling
waves, there will be a destabilising effect upon the flow once the amplitude of
the boundary condition reaches 1.5 % of the centreline velocity. Conversely, if the
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boundary conditions consist of downstream-travelling waves, they will have the
opposite effect, potentially stabilising an otherwise unstable Poiseuille flow. They
found that this stabilising effect was achieved when the phase speed (the speed at
which the sine wave boundary condition travels along the wall) exceeded the centreline
velocity. They also report that although upstream-travelling wave boundary conditions
decrease the drag acting on the fluid, downstream-travelling waves have the opposite
effect, resulting in increased drag.

Moarref & Jovanović (2010) also studied the effect of both upstream- and
downstream-travelling waves upon Poiseuille flows in a channel. Using a perturbation
analysis for boundary conditions of small amplitude, they similarly showed that the
drag-reducing upstream-travelling waves potentially destabilise the flow, while the
drag-increasing downstream-travelling waves can render stability to otherwise unstable
flows. They also derived the rate at which transpiration imparts energy to the flow,
and thereby determined the energy efficiency of the resulting drag reduction. The
theoretical predictions resulting from their analysis have been verified by a series
of direct numerical simulations presented in a companion paper by Lieu, Moarref &
Jovanović (2010).

Bewley (2009) proved that the power cost of producing sublaminar drag via
transpiration in a Poiseuille flow through a channel for an incompressible Newtonian
fluid must necessarily be greater than the power saved due to that drag reduction.
This result can be seen as a natural extension of the principle of minimum dissipation
(Helmholtz 1868; Batchelor 1967), which states that the velocity field of a Stokes
flow will orient itself such that the total rate of dissipation within the flow will be
minimised. (While it is true that a laminar Poiseuille flow within a channel will not
necessarily be a Stokes flow, since the magnitude of the convective term in such
systems is rendered zero by their geometry, they nonetheless obey Stokes equation.
They therefore will orient themselves in the same manner as a Stokes flow, and hence
the principle of minimum dissipation should be expected to apply.)

Fukagata, Sugiyama & Kasagi (2009) derived the lower bound of the net driving
power for a flow through a duct with arbitrary cross-section. They showed that ‘the
lowest net power required to drive an incompressible constant mass-flux flow in a
periodic duct having arbitrary constant-shape cross-section, when controlled via a
distribution of zero-net mass-flux blowing/suction over the no-slip channel walls or via
any body forces, is exactly that of the Stokes flow.’

Marusic, Joseph & Mahesh (2007) derived the conditions under which transpiration
will produce sublaminar drag. Their formula relates the rate at which the transpiration
provides energy to the flow to the rate at which the flow’s energy dissipates. We shall
make use of their formula subsequently in § 4.

It is the ability of active forms of drag reduction, such as transpiration, to impart
energy upon the flow that enables them to produce sublaminar drag. Numerous passive
forms of drag reduction exist, which reduce the drag experienced by a turbulent flow
without imparting energy upon the flow. These include adding riblets to the flow’s wall
(Karniadakis & Choi 2003), as well the addition of particles such as elastic polymers
(Toms 1948; White & Mungal 2008) and surfactant micelles (Warholic, Schmidt &
Hanratty 1999) to the fluid, which can reduce the drag via the imposition of a body
force within the flow. Woodcock, Sader & Marusic (2010) proved that such passive
forms of drag reduction, which act through a body force, are invariably incapable of
producing sublaminar drag in the flow of an incompressible Newtonian fluid through a
channel or pipe.
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Transpiration can also be viewed as an example of a variety of flow phenomena
known as ‘acoustic streaming’ (Riley 2001). These consist of a fluid that is subjected
to a fluctuating force or boundary condition, which induces a change in the fluid’s
overall bulk flow. Despite its misleading name, these phenomena are not limited to
flows subjected to acoustic vibrations, and neither are they limited to compressible
fluids, but include all flows subjected to oscillating body forces and boundary
conditions.

The purpose of this present study is to derive explicit asymptotic formulae for the
behaviour of flows induced by transpiration. We consider an overall streamwise flow
that is induced by transpiration alone, as was reported by Hoepffner & Fukagata
(2009). The boundary conditions employed are those in which the wall-normal
velocities are travelling sine waves. The waves defining the velocities at either wall
are of equal wavelength and frequency, but may differ in magnitude and phase. This
is a generalisation of the boundary conditions employed in their investigations by
Min et al. (2006) and Hoepffner & Fukagata (2009). Using a perturbation analysis,
the asymptotic behaviour of such flows has been derived. The bulk flow induced by
transpiration is derived in § 3, along with the optimal arrangement, wavelength and
frequency of the boundary conditions for maximising the bulk flow. The asymptotic
behaviour of the bulk flow is detailed in the conclusion. The energy imparted to the
flow is derived in § 4.

We also examine, in § 5, the behaviour of such flows in which the magnitude
of the transpiration is considerably greater than the speed at which the boundary
condition moves down the channel. We prove that the bulk flow induced by such
boundary conditions depends only upon the speed at which the boundary condition
moves down the channel. Our analysis here applies to two-dimensional systems
whose boundary conditions are the same as those employed in the aforementioned
perturbation analysis, and can only be readily extended to a limited set of functionally
similar two-dimensional boundary conditions. These represent only a small subset of
all possible periodic functions that could define the transpiration boundary conditions.
The extension of this proof to generalized boundary conditions, as well as to three-
dimensional flows, is posed as a conjecture.

2. Equations of channel flow
We consider the steady-state flow of an incompressible Newtonian fluid through

a channel of infinite length and width and finite height. The flow is driven by the
boundary conditions at the base and top of the channel that are non-zero in only the
wall-normal or z direction, and vary spatially only in the streamwise or x direction.

We assume that the flow remains two-dimensional and laminar. The spanwise or y
direction is therefore not included in our derivation. We consider only boundary
conditions in which the wall-normal velocity can be represented as a single sine wave
travelling backwards in the x direction.

The Navier–Stokes and continuity equations are given by

ρ

(
∂

∂ t̂
û+ û · ∇̂û

)
=−∇̂p̂+ µ∇̂2û, (2.1)

∇̂ · û= 0, (2.2)

where ρ and µ represent the density and the dynamic viscosity of the fluid,
respectively. These equations will subsequently be non-dimensionalized via the
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properties of the boundary conditions. Throughout this work, quantities expressed
in terms of dimensional units, such as the velocity û(x̂, t̂) and pressure p̂(x̂, t̂) above,
are differentiated from their non-dimensionalized counterparts, u(x, t) and p(x, t), by
the presence of a circumflex. The position vector is denoted by x̂, and is defined such
that x̂= (x̂, ẑ).

The height of the infinitely long channel is h, and hence the domain of the flow is
given by

−∞< x̂<∞, 0 6 ẑ 6 h. (2.3)

2.1. Boundary conditions
The no-slip boundary condition applies to the streamwise flow. For the wall-normal
velocity, we consider a family of possible boundary conditions, which consist of a
single-mode travelling sine wave at either wall. The sine wave at the top wall has
an amplitude of A, while its counterpart at the bottom wall has an amplitude of γA.
Hence γ is simply a dimensionless ratio of the two amplitudes. The sine waves travel
backwards along the wall in the streamwise direction, and are of equal wavelength, λ,
and temporal frequency, ω (henceforth referred to simply as the ‘frequency’). They
may however differ in phase by some quantity φ. The wall-normal velocities at the
boundaries are therefore given by

ŵ=


A sin

(
x̂

λ
+ ωt̂

)
, at ẑ= h,

γA sin
(

x̂

λ
+ ωt̂ − φ

)
, at ẑ= 0.

(2.4)

The parameters γ and φ may take the following values:

0 6 γ 6 1, 0 6 φ < 2π. (2.5)

We analyse and compare the resulting flows from four different arrangements
of boundary conditions. The first case, which we shall call the ‘mixed’ boundary
condition, involves transpiration only on the top wall of the channel, while the no-slip
boundary condition applies to w at the bottom wall. The second involves identical
boundary conditions at the top and bottom walls, and is referred to here as the
in-phase boundary condition. The third involves a travelling sine wave at the top
wall and an equivalent cosine wave at the bottom wall, and is referred to here as
the out-of-phase boundary condition. The fourth involves boundary conditions that are
equal in magnitude but opposite in sign at either wall, and is referred to here as the
antiphase boundary condition. (It was under this arrangement that Min et al. (2006)
demonstrated sustainable sublaminar drag.) Diagrams of an instantaneous realization of
each of these cases can be seen in figure 1, and the values of γ and φ corresponding
to each case are given in table 1.

2.2. The scaled equations
The system contains two natural length scales: h, the height of the channel, and λ,
the wavelength of the sinusoidal waves defining the boundary conditions. The
other parameters that have been used to non-dimensionalize the quantities of the
Navier–Stokes equation are the maximum amplitude (velocity), A, of the boundary
condition, the frequency, ω, of the boundary condition, and the density, ρ, and
dynamic viscosity, µ, of the fluid.
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FIGURE 1. Instantaneous realizations of various cases of the family of boundary conditions
defined by (2.13): (a) ‘mixed’ boundary conditions; (b) in-phase boundary conditions; (c) out-
of-phase boundary conditions; and (d) antiphase boundary conditions.

Boundary conditions γ φ

Mixed 0 —
In-phase 1 0
Out-of-phase 1 π/2
Antiphase 1 π

TABLE 1. Values of γ (the ratio of boundary condition amplitudes) and φ (the phase
difference) for the four varieties of boundary conditions.

Using these quantities, the variables in the Navier–Stokes equation are scaled
according to

x̂= hx, û= Au, p̂= µA

h
p, t̂ = 1

ω
t. (2.6)

Scaling the Navier–Stokes equation (2.1) and continuity equation (2.2) in this way
leads to

β

(
∂

∂t
u+ αu ·∇u

)
=−∇p+∇2u, (2.7)

∇ ·u= 0. (2.8)

There are two dimensionless numbers in the scaled Navier–Stokes equation, denoted α
and β. This is due to the presence of two separate time scales, h/A and 1/ω,
within the system. The former constitutes the convective time scale, while the
latter constitutes the diffusive time scale. The parameter β is referred to as the
Stokes number, and relates to the rate of diffusion of vorticity within the flow. The
parameter α is effectively a measure of the relative importance of convection within
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FIGURE 2. Diagram of the channel domain, in scaled coordinates. We consider an infinite
channel in which L→∞. Because of the inherent symmetry of the flow, we may neglect the
spanwise (or y) dimension.

the system. The values of these parameters are given by

α = A

hω
, β = ρh2ω

µ
. (2.9)

If we define a Reynolds number based upon the amplitude of the boundary condition
by

Re= ρhA

µ
, (2.10)

then we may also express α as a ratio of dimensionless numbers:

α = Re

β
. (2.11)

The scaled domain of the flow, equivalent to (2.3), is given by

−∞< x<∞, 0 6 z 6 1. (2.12)

A diagram of the domain of the flow, in scaled variables, is shown in figure 2.
In scaled variables, the boundary conditions defined in (2.4) become

w=
{

sin(ηx+ t), at z= 1,
γ sin(ηx+ t − φ), at z= 0.

(2.13)

A new dimensionless parameter, η, appears in these dimensionless boundary
conditions. It represents the ratio of the height of the channel to the wavelength of
the sinusoidal waves defining the boundary conditions, and is formally defined as

η = h

λ
. (2.14)

Since the no-slip boundary condition applies to the flow in the streamwise direction,
we have

u= 0 at z= 0, 1. (2.15)
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2.3. Averaging
For all quantities, wall-parallel averages are denoted by an overbar and are defined as

F(z, t)
def= lim

L→∞
1
L

∫ L/2

−L/2
F(x, t) dx. (2.16)

A non-zero wall-parallel average of the streamwise velocity, u(z, t), is referred to
here as a ‘translational’ flow. This concept is introduced here as a mathematical
convenience. Use will be made of it in § 4 and in appendix A. Fluctuations of
quantities (by which we mean here any deviation in the value of a quantity from its
wall-parallel average) are denoted by a prime and are defined as

F′(x, t)
def= F(x, t)− F(z, t). (2.17)

An average over the entire channel is denoted by angled brackets and is defined as

〈F(t)〉 def=
∫ 1

0
F(z, t) dz. (2.18)

In dimensional variables, the wall-parallel averages of quantities are mathematically
defined in an identical manner to their equivalents in scaled variables. The average
over the entire channel, however, is defined differently, owing to its dependence
upon h, the height of the channel. In terms of dimensional variables, (2.18) is
equivalent to

〈F̂(t̂)〉 def= 1
h

∫ h

0
F̂(ẑ, t̂) dẑ. (2.19)

For the non-dimensionalised velocity, 〈u〉 can denote either the average streamwise
velocity within the channel, or the volume flux through the channel (henceforth
referred to as the ‘bulk flow’). However, for the dimensionalised velocity, 〈û〉 denotes
exclusively the average velocity, and must be multiplied by h to obtain the bulk flow.

2.4. Streamfunction
Because the flow is two-dimensional, we can express the velocity in terms of a
streamfunction Ψ (x, t). In this formulation, the streamwise, u, and wall-normal, w,
components of the velocity vector are given by

u= ∂Ψ
∂z
, w=−∂Ψ

∂x
. (2.20)

By taking the curl of the Navier–Stokes equation, and substituting the streamfunction
for the fluid’s velocity, we obtain the evolution equation for Ψ (x, t) as

β
∂

∂t
∇2Ψ + αβ

(
∂Ψ

∂z

∂

∂x
− ∂Ψ
∂x

∂

∂z

)
∇2Ψ =∇4Ψ. (2.21)

3. Perturbation analysis for boundary conditions of small amplitude
Within this section, we describe the methodology we have used to determine the

properties of the flow. We analyse flows driven by transpiration through a perturbation
analysis for small values of the perturbation parameter α. An outline of the derivation
and the results are presented within this section. The full derivation is found in
appendix A.
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FIGURE 3. Plot of instantaneous streamlines of u0(x, t), the leading-order approximation of
the flow for β = 20 and η = 2, using an antiphase boundary condition (γ = 1, φ = π).

The method involves expanding the velocity, streamfunction and pressure in terms
of α, as follows:

u= u0 + αu1 + α2u2 + α3u3 + · · · , (3.1a)

Ψ = Ψ0 + αΨ1 + α2Ψ2 + α3Ψ3 + · · · , (3.1b)

p= p0 + αp1 + α2p2 + α3p3 + · · · . (3.1c)

Further details of the perturbation methodology are given in appendix A.1.

3.1. Leading-order flow
The leading-order term u0(x, t) represents a Stokes flow subject to transpiration
boundary conditions. Its derivation can be found in appendix A.2. The leading-order
streamfunction, also found in (A 14), is given by

Ψ0 =
(

c1 eηz + c2 e−ηz + c3 e
√
η2+βiz + c4 e−

√
η2+βiz

)
ei(ηx+t)

+
(

c∗1 eηz + c∗2 e−ηz + c∗3 e
√
η2−βiz + c∗4 e−

√
η2−βiz

)
e−i(ηx+t), (3.2)

where the various constants c1, c∗1, etc. depend upon β, η, γ and φ, and are given in
(A 12) of appendix A. Despite containing several complex terms, the above function
for Ψ0 is in fact real for all applicable values of the parameters β, η, γ and φ. A
vector plot of an instantaneous realization of the leading-order flow, from an antiphase
boundary condition, can be seen in figure 3. Regardless of the values of β and η, all
such leading-order vector plots have the same general appearance.

3.2. First-order correction to the flow
The first-order correction to the bulk flow, 〈u1〉, is derived in appendix A.3. The closed
forms for u1 and 〈u1〉 can be found in (A 24) and (A 25) respectively. Owing to their
complexity, these are left to appendix A. Plots of 〈u1〉/β can be seen in figures 4, 5
and 6. Here we have plotted 〈u1〉/β, rather than 〈u1〉, since we are most interested in
determining the bulk flow induced for a particular amplitude of the boundary condition
(that is, for a particular Re). From the definition of the convection parameter α, given
in (2.11), we can see that an expansion of the velocity in α must be divided by β to
become the equivalent expansion in Re.
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FIGURE 4. Log–log plots of 〈u1〉/β against the Stokes number, β = ρh2ω/µ, for several
values of the ratio of the channel height to the boundary condition wavelength, η = h/λ:
(a) ‘mixed’ boundary conditions; (b) in-phase boundary conditions; (c) out-of-phase boundary
conditions; and (d) antiphase boundary conditions.

If we were to plot 〈u1〉, we would find that it increases monotonically with the
Stokes number, β, potentially giving the misleading impression that increasing β

invariably increases the induced bulk flow. This is, however, an illusion caused by the
fact that increasing β while holding α constant implies commensurately increasing Re.

We are able to approximate the bulk flow induced via transpiration as

〈u〉 = α〈u1〉 + O(α3). (3.3)

Note that the error term in the above equation is of order α3. It can easily be verified
that the next-order term in the velocity expansion, u2(x, t), contains only swirling,
rather than translational, flow, by substituting (A 5) and (A 17) into (A 1c). (In their
analysis of flows driven solely by transpiration, Min et al. (2006) employed values
of α ranging from α = 0.0025 to α = 0.075.)

Equation (3.3) appears to imply that the bulk flow increases linearly with the
amplitude of the boundary condition, A. However, it is important to note that, because
the velocity has been scaled via A, as defined in (2.6), the dimensional velocity will in
fact be proportional to A2.

The derivation of the remaining components of the first-order correction to the flow
field is given in appendix A.4.

3.3. Boundary conditions of long wavelength

In all results except the in-phase case, it can be clearly seen that 〈u1〉 is maximized
by minimizing η (the ratio of the channel height to the wavelength of the boundary
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condition). The asymptotic behaviour of 〈u1〉 in the small-η limit is given by

〈u1〉 ∼ γ
2 − 2γ cosφ + 1

η
f1(β), (3.4)

where

f1(β)≡
{
β(10− iβ) sinh

(√−iβ
2

)
cosh

(√
iβ
2

)
+ cosh

(√−iβ
2

)
β

[
(β − 10i) sinh

(√
iβ
2

)
+ 10i

√
iβ cosh

(√
iβ
2

)]}
× sinh

(√−iβ
2

)
sinh

(√
iβ
2

){
2
[
−√iβ sinh

(√
iβ
)
+ 2 cosh

(√
iβ
)
− 2
]

×
[
−2
√−iβ + iβ sinh

(√−iβ
)
+ 2
√−iβ cosh

(√−iβ
)]}−1

. (3.5)

The above equation clearly demonstrates that the antiphase boundary condition induces
the greatest bulk flow for η < 1. This concurs with the findings of Mamori et al.
(2010), who reported that the antiphase boundary condition produced significantly
greater drag reduction than the in-phase case, for an upstream-travelling wave acting
upon a laminar Poiseuille flow.

By inspection of figures 5 and 6, it can be verified that (3.4) is a good
approximation, in the ‘mixed’, out-of-phase and antiphase cases, for values of η
less than unity (in other words, all systems in which the wavelength of the boundary
condition is greater than the height of the channel). In fact, it is a good approximation,
at such values of η, for all boundary conditions, except for those that are similar to
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FIGURE 6. Contour plots of 〈u1〉/β against β (= ρh2ω/µ) and η (= h/λ): (a) ‘mixed’
boundary conditions; (b) in-phase boundary conditions; (c) out-of-phase boundary conditions;
and (d) antiphase boundary conditions.

the in-phase case (i.e. those in which 2γ cosφ − γ 2 ≈ 1). If we further consider the
limiting cases in which the Stokes number, β, approaches zero or infinity, we find that

〈u1〉 ∼


1+ γ 2 − 2γ cosφ

5040
β2

η
, η→ 0, β→ 0,

1+ γ 2 − 2γ cosφ

2
√

2

√
β

η
, η→ 0, β→∞.

(3.6)

From (3.4) it can be determined that the optimal value of β (i.e. that which
maximises 〈u1〉/β) is given by

βmax ≈ 107. (3.7)

This of course implies that there exists an optimal frequency, beyond which any
further increase to the frequency will result in a reduced bulk flow. This concurs with
previous findings by Min et al. (2006), Hoepffner & Fukagata (2009), Mamori et al.
(2010) and Moarref & Jovanović (2010).

It might be expected that the ‘mixed’ boundary condition should always induce the
least bulk flow, since it involves transpiration acting at only one wall. However, while
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it does invariably induce less bulk flow than the out-of-phase and antiphase cases, it
can be clearly seen that, for η < 1, it is by far the in-phase case that is the least
effective in inducing a bulk flow. The reason for this is that to reduce η is equivalent
to reducing the height of the channel (it follows from the definition of η that this
is also equivalent to increasing the wavelength of the boundary conditions). Because
the velocity gradients at either wall are defined to be equal in the in-phase case, a
short channel contains very little space for velocity gradients to develop, within the
fluid. Where the velocity gradients are small, the effect of convection will also be
small.

3.4. Boundary conditions of short wavelength
The flow is qualitatively different at large η, where the height of the channel is
significantly greater than the wavelength of the boundary condition. If we consider the
limiting case in which η→∞, it is clear, by inspection of (A 12), that in this limit,
all of c1, c∗1, . . . , are zero for all varieties of boundary conditions. From this, we may
infer that, for all boundary conditions,

lim
η→∞
〈u〉 = 0. (3.8)

This is an intuitive result, since the greater the relative height of the channel to the
wavelength of the boundary condition, the more likely it is that at any point within
the flow, the effects of the adjacent peaks and troughs of the boundary condition will
combine, resulting in a flow containing only small velocity gradients.

Similarly, as η increases, the dependence of 〈u1〉 upon the phase difference, φ,
generally decreases. By inspection, it is clear that, for values of η greater than around
10, the bulk flow is effectively independent of φ. This is due to the fact that, as
the height of the channel increases, the effect of the boundary condition at one wall
upon the flow near to the opposite wall decreases. As a result, the effect of the phase
difference becomes negligible in the large-η limit. The asymptotic behaviour of the
bulk flow in this large-η limit is given by

〈u1〉 ∼


3(1+ γ 2)

64
β2

η3
, η→∞, β

η2
→ 0

1+ γ 2

4
√

2

√
β, η→∞, β

η2
→∞.

(3.9)

3.5. Dependence on the frequency of oscillation
The Stokes number, β, defined in (2.9), is proportional to the frequency of oscillation
of the boundary condition. Hence, by considering the effect of β upon 〈u1〉/β, we can
see the effect of the frequency upon the bulk flow.

Plots of the first-order correction to the flow, 〈u1〉/β, for η = 2, can be seen in
figure 7. There it can be clearly seen that, for β < 1, the first-order correction to
the flow tends to consist largely of swirling, rather than translational, motion, while
for β > 1, the first-order flow is primarily translational. In fact, even for very large
values of β, the swirling motions within the first-order correction are negligible in
comparison to the streamwise translational motion. This is despite the fact that, as can
be seen in figure 4, the translational motion is itself minute at such values of β.

In fact, a notable result is found in the limit as β→∞, with Re held constant. This
corresponds to a system in which the boundary condition is travelling very rapidly
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FIGURE 7. Plots of instantaneous streamlines of u1(x, t)/β, the first-order correction of the
flow for η = 2 and several values of β, using an antiphase boundary condition (γ = 1, φ = π).

along the wall of the channel. In this limit, the streamfunction asymptotes to

Ψ ∼ csch η
η
[sinh(ηz) cos(ηx+ t)+ γ sinh(η(1− z)) cos(ηx+ t − φ)]

as β→∞. (3.10)

Note that the above equation contains the total streamfunction, Ψ (x, t), rather than
merely its leading-order term, Ψ0(x, t). This conclusive result follows from the fact
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that, in this limit, the constants c3, c∗3, c4 and c∗4 are zero. In fact, they approach zero
sufficiently rapidly that the right-hand side of (A 23) is zero. By inspection of (A 25),
it is clear that this implies that

lim
β→∞
〈u〉 = 0, Re= constant. (3.11)

They also approach zero sufficiently rapidly that

Ψ1(x, t)= 0. (3.12)

It is clear from (A 1c) and the perturbation methodology that in this limit

Ψn(x, t)= 0 for all n> 0. (3.13)

In other words, as β dominates Re, the effect of convection becomes negligible, and
the entire flow will be of the same streamwise scale of motion as the boundary
condition. (In this sense, the flow at large β resembles the flow at small Re.)

The most notable aspect of (3.10) is that it does not satisfy the no-slip boundary
condition (2.15). It may appear a paradoxical result that the solution to the
Navier–Stokes and continuity equations, subject to transpiration, asymptotes towards
a velocity field that does not satisfy its own boundary conditions. This result can
be explained, however, by analogy with the motion of a fluid of low viscosity
adjacent to an oscillating body (Stokes 1851). In such flows, a thin vorticity-containing
boundary layer is known to form, the thickness of which decreases as the frequency of
oscillation increases.

Similarly, in the case of transpiration, an irrotational region forms within the centre
of the channel at high β. The reason for this is that, as β increases, the vorticity
generated by the adjacent peaks and troughs of the boundary condition begins to
cancel away from the wall. This results in vorticity being confined to thin regions
near to the walls. As β increases further, these vorticity-containing boundary layers
decrease in width, approaching an infinitesimal width in the limit as β→∞. (Indeed,
by inspection, it is clear that the flow represented by (3.10) is in fact entirely
irrotational.) It is for this reason that the limiting behaviour of the flow as β →∞
does not satisfy its own boundary conditions.

In the case of high-Re flows, however, no such irrotational region forms. This is
because the transpiration boundary condition causes vorticity to be convected away
from the wall towards the centre of the channel. The system is therefore not reliant
upon diffusion to spread vorticity from the near-wall region to the centre of the
channel at high Re. We discuss the case of flows at high Re further in § 5.

3.6. Generalized boundary conditions
It may appear that the family of boundary conditions that have been defined by (2.13)
constitute a significant restriction upon the analysis presented in this work. However,
as we demonstrate in this section, these results can be readily extended to any channel
flow for which the functions defining w at the walls can be expressed as convergent
Fourier series in ηx+ t.

In order to explain how these results can be extended, it is necessary to formally
define what we call streamwise scales of motion. Since the flow field is periodic in
the x direction, and with respect to time, the entire flow field can be expressed as a
Fourier series in ηx + t. Each component of that Fourier series will be referred to as a
streamwise scale of motion (these could alternatively be called Fourier modes in ηx+t).
For example, (A 5) indicates that Ψ0(x, t) contains just one streamwise scale of motion,
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which is equal to that of the boundary condition, while (A 16) indicates that Ψ1(x, t)
contains two scales of motion. One of these scales has half the wavelength of the
boundary condition, and the other is translational, by which we mean that it is not
periodic in ηx+ t.

Fundamental to the method of extending these results is the observation that it
is only the convection of each scale of motion at leading order by itself that can
produce a translational flow at first order. Only at second order or higher may two
different streamwise scales of motion produce a translational flow. The method of
extending these results to more general boundary conditions consists of expanding
the boundary conditions in a Fourier series in order to re-express them as a sum of
functions, each of which satisfies (2.13), with appropriate substitutions for β, η, γ
and φ.

Hence, if we define a new function U (β, η, γ, φ) to be the first-order bulk flow for
a specific set of the flow parameters, so that

U (β ′, η′, γ ′, φ′) def=〈u1〉, β = β ′, η = η′, γ = γ ′, φ = φ′, (3.14)

it follows that, if the boundary condition can be expressed as

w=



∞∑
n=0

An sin n(ηx+ t), at z= 1,

∞∑
n=0

Anγn sin n(ηx+ t − φn), at z= 0,

(3.15)

where the An are constants, then the bulk flow at first order can be expressed as

〈u1〉 =
∞∑

n=0

An

n
U (nβ, nη, γn, φn). (3.16)

For flows at low η, it should significantly reduce the complexity of the resulting
function to define U in terms of the low-η asymptote given in (3.4).

Note that there is a factor of 1/n in the above equation, which results from
(3.3), and the dependence of α upon β. In scaling the Navier–Stokes equation, the
characteristic velocity (equivalent to A in this study) should be chosen to be the
highest of the amplitudes of the scales of motion that are present within the boundary
conditions. In that way, it can be guaranteed that, for all n, we will have 0 6 An 6 1.
The uncertainty involved in this extended derivation will be either O(α2) or O(α3),
depending on the scales of motion present within the boundary conditions.

The summation in (3.16) should converge, assuming that the Fourier series that
defines the boundary conditions converges. This is because 〈u1〉 approaches zero for
high values of β and η. However, particularly at low values of β and η, the summation
in (3.16) may contain a large number of non-negligible terms, and may therefore
converge only very slowly.

While only a subset of all possible periodic boundary conditions can be expressed in
the form of (3.15), this nonetheless suggests a practical method by which the bulk flow
induced by any periodic wall-normal boundary conditions may be determined. This
method involves first solving for a system whose boundary conditions take the form of
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the combination of a sine wave and a cosine wave at both walls; for example,

w=
{

sin(ηx+ t)+ γ cos(ηx+ t), at z= 1,
δ sin(ηx+ t)+ ε cos(ηx+ t), at z= 0,

(3.17)

where γ , δ and ε are constants between −1 and 1. Then, 〈u1〉 could be determined for
such a system via an analogous derivation to that by which 〈u1〉 has been determined
in this work. It would be found that the leading-order streamfunction, Ψ0(x, t), would
still take the form of (3.2), with the exception that the constants c1, c∗1, c2, etc.
would take different values from those they have here, and would depend upon the
parameters γ , δ and ε. Having rederived the values of c1, c∗1, etc. in this way, the
remainder of the derivation would proceed as before, and 〈u1〉 would again be given
by (A 25).

Because any periodic function may be expanded as a Fourier series, it follows that,
if we were to define a new function U (β, η, γ, δ, ε) in an equivalent manner to (3.14),
and expand the boundary conditions in an analogous way to (3.15), the bulk flow
could then be represented by the equivalent of (3.16).

4. Energy considerations
Marusic et al. (2007) considered the effect of transpiration in conjunction with an

externally applied pressure gradient across the channel. They derived the conditions
required for transpiration to produce sublaminar drag, in the presence of such an
applied pressure gradient. Their formula relates the rate at which the transpiration
imparts energy upon the flow to the rate at which energy is dissipated within the flow.
They derived the rule that the drag will be sublaminar if and only if

W > 〈|∇u′|2〉 + Re〈(u′w′ − 〈u′w′〉)2〉, (4.1)

where W represents the rate at which energy is being imparted upon the flow via
transpiration. It is given by

W = 1
2 Re (w

′)3+w′p′
∣∣∣

z=0
− 1

2 Re (w
′)3+w′p′

∣∣∣
z=1
. (4.2)

The (1/2) (w′)3 term represents the overall rate at which energy is input (or removed)
as kinetic energy, while the w′p′ term represents the overall rate at which energy
is transferred by flowing against (or with) a local pressure gradient. This notably
excludes any energy that is imparted due to an overall cross-flow within the channel.
The first term on the right-hand side of (4.1) represents the dissipation due to
fluctuations within the flow (i.e. not counting dissipation due to the wall-parallel
averaged flow). The u′w′ term represents the Reynolds shear stress (which is the stress
acting upon the wall-parallel averaged flow due to the presence of the fluctuations).

There are factors of Re in (4.1) and (4.2) above that are absent from the equivalent
equations in the work by Marusic et al. (2007). These result from the fact that a
different scaling has been employed in this work. The scaling used in this section is
the same as that in § 3.

It must be stressed, however, that (4.1) applies strictly to those flows in which
the applied pressure gradient across the channel is non-zero. The systems we have
considered in this work all have no such applied pressure gradients. The equivalent
equation for a flow in the absence of an applied pressure gradient or an overall
cross-flow can be found by removing all of the terms relating to time derivatives,
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FIGURE 8. Log–log plots of W0, the leading-order component of the rate at which energy is
being supplied to the flow, against β and η: (a) plots for β = 100; (b) plots for η = 1.

pressure gradients or a cross-flow from equations (2.10) and (3.5) of Marusic et al.
(2007), and combining the results. This leads to

W = 〈|∇u′ |2〉 + Re〈(u′w′ − 〈u′w′〉)2〉. (4.3)

The above equation applies to all such flows, regardless of whether or not the
transpiration has induced a bulk flow. The reason for this discrepancy between
pressure-driven and non-pressure-driven flows is that, if a pressure gradient is applied
in the streamwise direction of the flow, then the bulk flow will be removing energy
from the system owing to the pressure difference between the inlet and outlet of
the channel. This removal of energy must be accounted for within the flow’s overall
energy balance, and therefore flows that are subject to an applied pressure gradient are
fundamentally different from flows in which the inlet and outlet are at equal pressure.

It should be noted also that, for all of the flows investigated herein, the overall
kinetic transfer, (1/2) (w′)3, at either wall will be zero. The driving energy of the flow
therefore derives solely from the w′p′ term.

4.1. Energy input
We can now determine the rate at which transpiration imparts energy upon the flow by
substituting (A 15), for the leading order of the pressure, into (4.2). This results in

W = β

2i

[
γ (c1 − c2) eiφ + γ (c∗2 − c∗1) e−iφ + (c∗1 eη − c∗2 e−η)+ c2 e−η − c1 eη

]
︸ ︷︷ ︸

W0

+O(α2).

(4.4)

The first term on the right-hand side is the leading-order contribution to W , and will
henceforth be denoted by W0. That there is no first-order correction to W is clear from
the streamwise scales of motion that are present at first order. Plots of W0 against β
and η can be found in figure 8.

For values of η less than 1 (i.e. for systems in which the wavelength of the
boundary condition is greater than the height of the channel), W0 increases as η

decreases in all but the in-phase case. This is to be expected, since the induced bulk
flow also increases as η decreases, at such values of η. The asymptotic behaviour
of W0, in the small-η limit, is given by

W0 ∼ γ
2 − 2γ cosφ + 1

η2
f2(β), (4.5)
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where

f2(β)≡ β2

[
sinh

(√−iβ
2

)
cosh

(√
iβ
2

)
+ i sinh

(√
iβ
2

)
cosh

(√−iβ
2

)]
×
{

2
[√

iβ cosh
(√

iβ
2

)
− 2 sinh

(√
iβ
2

)]
×
[

2 (−1)1/4
√
β sinh

(
1
2
(−1)3/4

√
β

)
+ β cosh

(√−iβ
2

)]}−1

. (4.6)

If we compare the above to (3.4), for the asymptotic behaviour of 〈u1〉 in the low-η
limit, we find that, although the bulk flow is maximized by minimizing η, the energy
cost of producing that flow increases at an even greater rate. We therefore have a
diminishing return, in terms of induced bulk flow, for the energy input, as we increase
the wavelength of the boundary condition. Moarref & Jovanović (2010), in their
studies of Poiseuille flows subjected to transpiration, also found that transpiration
became less energy-efficient at longer wavelength, despite the fact that the drag
reduction induced by transpiration increases with the wavelength. They also similarly
found that the energy cost increases with the frequency of the boundary condition
(or equivalently with β), despite the fact that the induced bulk flow is negligible at
large β.

Also noteworthy is the fact that, at high η and at high β, W0 is large. This is despite
the fact that, at such values of η and β, the bulk flow induced is negligible. This has
also been found to be true for Poiseuille flows subjected to transpiration, in the work
by Moarref & Jovanović (2010).

5. Boundary conditions of large amplitude
In this section, we consider flows in which the maximum amplitude of the wall-

normal velocity at the boundaries is very high in comparison to the speed at which
the boundary condition moves along the wall of the channel. Specifically, we consider
the mathematical limit as λω/A→ 0, under the assumption that the flow remains
two-dimensional. These amount to flows in which the effect of the time derivative
is negligible in comparison to that of convection. Although transpiration at large
amplitude has been found to be very energy-inefficient, and therefore of little practical
use (Moarref & Jovanović 2010), it is considered here from a theoretical perspective
for completeness.

We show that, in the limit as λω/A→ 0, the bulk flow induced will become
independent of A, depending instead only upon λω (the speed of the boundary
condition).

In this section, the Navier–Stokes equation is written

Reλω
∂

∂t
u+ ReA u ·∇u=−ReA∇p+∇2u. (5.1)

The continuity equation (2.8) applies as before. A different scaling has been employed
here from that used in the preceding sections. The reason for the change of scaling
is because we will subsequently make use of a change of the inertial reference frame
from which the flow is observed, and it is therefore preferable that the scaling should
be independent of the reference frame.

Here we have used as our length scale the wavelength of the boundary condition, λ,
rather than the height of the channel, h. In this section, the variables within the
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Navier–Stokes equation are scaled according to

x̂= λx, û= Au, p̂= ρA2p, t̂ = 1
ω

t. (5.2)

Equation (5.1) contains two different Reynolds numbers, ReA and Reλω. Here ReA is
based upon the amplitude of the boundary condition, while Reλω is based upon the
speed at which the boundary condition moves along the channel. They have been
defined as

ReA = ρλA

µ
, Reλω = ρλ

2ω

µ
. (5.3)

Notice that ReA is analogous to the Reynolds number Re that has been used in the
preceding sections, while Reλω is analogous to β/η.

We consider again the same set of possible boundary conditions as before, those
defined by (2.13) and (2.15). When scaled according to (5.2), these boundary
conditions become

u= 0, z= 0, η, (5.4)

w=
{

sin(x+ t), at z= η,
γ sin(x+ t − φ), at z= 0.

(5.5)

Here we introduce a new inertial reference frame defined such that the observer is
travelling along the channel at the same speed and in the same direction as the
boundary condition. If X denotes the streamwise position in this new reference frame,
then it is given by

X = x+ t. (5.6)

A new position vector X is introduced for use in this new reference frame. It is
defined by

X def=(X, z). (5.7)

The velocity in this new frame will be denoted by U(X, t). It has streamwise
component U, and wall-normal component W. The boundary conditions in this new
frame are given by

U = Reλω
ReA

, z= 0, η, (5.8)

W =
{

sin X, at z= η,
γ sin(X − φ), at z= 0.

(5.9)

We shall denote the pressure within this new frame by P. It is clear that the
relationship between the bulk flows in the two frames will be simply

〈U〉 − 〈u〉 = Reλω
ReA
≡ λω

A
. (5.10)

We convert the Navier–Stokes equation to this new frame by substituting (5.6) into
(5.1). This results in

Reλω
∂

∂X
U + ReA U · ∇̃U =−ReA ∇̃P+ ∇̃2U, (5.11)
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where ∇̃ is the gradient vector in the new frame, and is defined by

∇̃
def=
(
∂

∂X
,
∂

∂z

)
. (5.12)

It is therefore clear that, if ReA is sufficiently greater than Reλω, the effect of
convection will outweigh the effect of the time derivative in the Navier–Stokes
equation. Moreover, we can see in (5.11) that the time derivative will be negligible if

ReA� Reλω. (5.13a)

The above equation is in fact a comparison of velocity scales, specifying that the
maximum amplitude of the boundary condition should be much greater than the
speed at which it travels along the wall of the channel. Indeed, in expressing the
above dimensionless numbers in terms of the quantities through which they have been
defined in (5.3), the above inequality becomes

A� λω. (5.13b)

We therefore expand u(x, t) and U(X, t) as follows:

u= u0 + λωA u1 +
(
λω

A

)2

u2 + · · · , (5.14a)

U = U0 + λωA U1 +
(
λω

A

)2

U2 + · · · . (5.14b)

We expand the pressure in the same manner. By substituting the above into the
Navier–Stokes equation (5.1), and equating coefficients of orders of λω/A, we obtain

U0 · ∇̃U0 =−∇̃P0 + 1
ReA
∇̃2U0. (5.15)

The viscous term survives, regardless of the magnitude of ReA, owing to the necessity
of having a region of low streamwise velocity adjacent to either wall, in order to
satisfy the no-slip boundary condition. The boundary conditions acting upon U0(X, t)
are

U0 = 0, z= 0, η, (5.16)

W0 =
{

sin X, at z= η,
γ sin(X − φ), at z= 0.

(5.17)

Clearly, therefore, the system in the limit as λω/A→ 0 is mathematically equivalent
to a flow in which the boundary condition is stationary. If we consider a system in
which the boundary condition is stationary, then, as a result of the symmetry of such a
system, there could be no bulk flow, since there would be no preferential direction in
which it could flow. This implies simply that

〈U0〉 = 0. (5.18)

The magnitude of the bulk flow, in the new frame, will therefore be of the same
order as the second term in the expansion of U(X, t) given in (5.14b). We therefore
conclude that

〈U〉6 O

(
λω

A

)
as
λω

A
→ 0. (5.19)
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From the relationship between the bulk flows in the two frames, given in (5.10), we
can therefore see that

〈u〉6 O

(
λω

A

)
as
λω

A
→ 0. (5.20)

The factor of A in the denominator above results from the velocity scaling, as defined
in (5.2). In terms of the dimensional velocity, û, this result becomes

〈û〉6 O (λω) as
λω

A
→ 0. (5.21)

This proof is reliant upon there being a single unique solution to the Navier–Stokes
equation, since otherwise there would be no need for the flow to have a preferential
direction, and hence the symmetry argument used here would not hold. While
there exists no accepted proof that the full three-dimensional Navier–Stokes equation
exhibits a unique solution, the uniqueness of solutions for two-dimensional flows, for
initial boundary value problems on bounded domains, has previously been shown
by Ladyzhenskaya (1958, 1963). (That Ladyzhenskaya’s proof applies to problems
defined on bounded domains does not prevent it from being applicable here, since,
although the channel is of infinite length, it is periodic in the streamwise direction.
By exploiting the periodicity of the system, therefore, the domain can be split into an
infinite number of identical sub-domains, each of finite streamwise length.)

The importance of this proof, from a practical perspective, is that it shows that
to increase A will not necessarily result in an increased bulk flow. We do not know
whether there is in fact a non-zero bulk flow in this limit, or its direction. We have
proved this for the family of boundary conditions that are defined by (2.13). However,
since the proof relies upon the inherent symmetry of a sine wave, it cannot be easily
extended to a more generalized set of boundary conditions. By inspection, there are
two types of boundary conditions to which this proof can readily be extended. The
first case is those in which the function defining the boundary condition at the bottom
wall, w−(x, z, t), is related to its counterpart at the top wall, w+(x, z, t), via

w+(x, z, t)=−w−(−x+ φ, z, t). (5.22)

Notice that the parameter φ has been included above to indicate that the two functions
may be out of phase to some degree. The second case is those in which w = 0 at
one wall and the boundary condition at the other wall is symmetric in the streamwise
direction. In both cases, the boundary conditions must be independent of the spanwise
location, in order that the flow should remain two-dimensional.

One possible explanation for the diminishing increase in the bulk flow
with ReA/Reλω follows from the effect of convection upon the scales of motion present
within the flow. As has been shown in § 3, if the convection parameter α is small,
only the larger scales of motion will be non-negligible. However, as α increases, so
too will the relative magnitude of the smaller scales of motion. These smaller scales
of motion subsist by drawing energy and momentum from the scales above them.
The quantity ReA/Reλω defines the relative importance of convection within the flow,
and hence is analogous to α, within the present scaling. It follows, therefore, that at
high ReA/Reλω, the momentum that is imparted to the flow via transpiration at the
walls will be readily convected down to the smaller scales of motion.

As has been demonstrated in this work, the effect of convection can also be to
produce motions of higher scale from motions of lower scale. However, the results
presented herein also demonstrate that the larger the scale of motion of the boundary
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condition (in other words, the lower the vale of η), the greater will be its general
tendency to transfer its momentum to a bulk flow. It is likely to be generally true that
the smaller the scale of motion, the lesser the tendency for convection to transfer its
momentum to a bulk flow. Hence, the increasing prevalence of the smaller scales of
motion at high ReA/Reλω could potentially explain this result.

Notably, in (5.21), there is no dependence of the dimensional average streamwise
velocity, 〈û〉, upon the density or viscosity of the fluid. This can be explained by the
fact that at high ReA, the effect of viscosity, upon the larger scales of motion present
within U0(X, t) becomes negligible. This is clear by inspection of (5.15). As a result,
at high ReA, energy is primarily drawn from the larger scales of motion by convection,
rather than dissipation.

It is important to stress the limitations of the above proof. The proof relies upon the
assumption that the flow remains two-dimensional. However, the stability of Poiseuille
flows subjected to transpiration has been studied by Lee et al. (2008), who showed
that an upstream-travelling wave boundary condition will reduce the stability of the
flow. The same was reported by Moarref & Jovanović (2010), and in simulations by
Lieu et al. (2010). From this, we can safely infer that, at sufficiently high ReA, the
flow becomes unstable, and will turn turbulent. Once the flow becomes turbulent, this
proof no longer holds, since turbulent flows are three-dimensional. It is also possible
that the flow could begin to exhibit three-dimensional laminar behaviour at some
sub-turbulent value of ReA.

Regardless of the shape of the function defining the wall-normal boundary condition,
if the magnitude of that boundary condition is much greater than the speed at which
it moves down the wall of the channel, then the system will effectively be governed
by (5.15) and the effectively stationary boundary conditions given in (5.16) and (5.17).
It seems likely, therefore, that such flows will, as the amplitude further increases, also
begin to exhibit zero or negligible increases to their bulk flows. Equally, it may also be
that non-symmetric (and also spanwise-dependent) boundary conditions will similarly
find that their bulk flows will not increase with the magnitudes of their boundary
conditions, beyond a certain point. We therefore pose the following conjecture.

For a flow that is driven by a zero net mass-flux blowing and suction over
the no-slip channel walls (also known as transpiration), regardless of the shape
of the function that defines the boundary condition, if the magnitude of that
transpiration is sufficiently great, and sufficiently greater than the speed at
which the boundary condition moves along the wall of the channel, the bulk flow
will become dependent only upon the speed at which the boundary condition
moves along the wall of the channel.

If it could be shown that the Navier–Stokes equation exhibited a unique solution
in three dimensions, then this proof could be extended to three-dimensional flows
driven by transpiration (provided that their boundary conditions were appropriately
symmetric in the streamwise direction). Conversely, if the above conjecture could be
shown to be incorrect for some such symmetric boundary conditions acting upon a
three-dimensional flow, then it must follow that the Navier–Stokes equation does not
in fact exhibit a unique solution in three dimensions. This we can infer from the
previously stated fact that (5.15), subject to symmetric boundary conditions such as
(5.16) and (5.17), could only induce a bulk flow if the Navier–Stokes equation were
able to exhibit more than one solution.
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6. Discussion
6.1. Scales of motion

The perturbation expansion presented within § 3 demonstrates the effect of convection
upon the scales of motion present within the flow. In a Stokes flow, in which the effect
of convection is absent or negligible, any separate streamwise scales of motion present
will simply superimpose upon one another, without altering each other or giving rise to
new scales of motion. (The exact meaning, in this work, of the term ‘scale of motion’
has been defined at the beginning of § 3.6.)

In inertial flows, however, convection acts to transfer energy and momentum from
one scale of motion to another. In this example, the wavelength of the boundary
condition forms a natural streamwise scale for the motion of the fluid within the
channel. Naturally then, since the leading-order term in the perturbation expansion is
an unsteady Stokes flow, the motion at leading order is of the scale of the boundary
condition. At first order, however, two new streamwise scales arise due to the effect of
convection: a series of eddies with a length scale half that of the boundary condition,
and a translational flow, independent of the streamwise location.

If we were to extend our perturbation analysis (in the manner of Moarref &
Jovanović 2010) to determine the second-order components of the flow, we would
find that there exists at second order a scale of motion one-third the length of that
of the boundary condition. As we pursue the analysis further, we would find that at
the nth order, the expansion introduces a scale of motion 1/(n+ 1) times the length of
the scale of the boundary condition. Hence we can see that energy and momentum are
drawn by each lesser scale of motion from the scales above it.

However, the translational flow is of a higher streamwise scale of motion than that
of the boundary condition. The question of whether transpiration will be capable of
inducing a non-zero bulk flow therefore becomes a question of whether the motion of
the fluid may, under the influence of convection, provide energy and momentum to the
translational flow from the lower scales of streamwise motion.

The analysis presented herein demonstrates that an inertial flow driven by
transpiration will indeed experience such a transference of energy and momentum
upwards in scale, to feed the translational motion of the fluid. Not only that, but an
analysis of the higher-order terms within the perturbation expansion reveals that all
scales of motion are drawing some of their energy from lower scales. This general
tendency of energy to transfer downwards in scale is to be expected, since any upward
transfer of energy requires that the scales of motion within the flow should combine in
a coherent manner.

6.2. The induced bulk flow
The exact nature of the induced streamwise flow varies considerably with the geometry
of the channel and the boundary conditions. However, certain general statements can
be made about it: for example, the induced flow is invariably in what we have
consequently referred to here as the streamwise direction, the direction counter to the
motion of the boundary condition. This rule has been reported previously by Hoepffner
& Fukagata (2009).

It might be expected that the in-phase boundary condition would produce a greater
bulk flow than the ‘mixed’ boundary condition, since the in-phase boundary condition
contains, in effect, twice the active flow control. However, as has been discussed in
appendix A.3, this is only true for η > 10, or equivalently when the height of the
channel is significantly greater than the wavelength of the boundary condition.
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More revealing perhaps is the fact that, for η < 1 (where the wavelength of
the boundary condition is longer than the height of the channel), the ‘mixed’
boundary condition induces a significantly higher bulk flow than the in-phase boundary
condition. This can be attributed to the fact that the in-phase boundary condition
sets an equal velocity at corresponding points on both walls, and thus reduces the
velocity gradients within the flow, thereby decreasing the effect of convection. This
will naturally be most noticeable at small η, where the ‘mixed’, out-of-phase or
antiphase boundary conditions produce significant pressure and velocity gradients at
the two walls, which are completely absent when an in-phase boundary condition is
applied. This concurs with the findings of Mamori et al. (2010), who reported that
the antiphase boundary condition produced significantly greater drag reduction for a
Poiseuille channel flow than the in-phase boundary condition.

The justification for considering the out-of-phase mode separately from the
antiphase mode is that the translational motion at first order results from the
interaction of components of the leading-order flow that are out of phase by π/2.
When ‘mixed’, in-phase or antiphase boundary conditions are employed, any leading-
order flow that is out of phase with the boundary conditions by π/2 (that is, any
flow whose streamfunction can be expressed as a multiple of sin(ηx + t), where the
boundary conditions are multiples of cos(ηx + t)) will result from the presence of the
time derivative term within the Navier–Stokes equation. Thus the advantage of the
out-of-phase boundary conditions is that since the flows at the two boundaries are out
of phase by π/2, the presence of these two phases of the flow will not be dependent
upon the time derivative. It follows that the out-of-phase mode could reasonably be
expected to produce the greatest overall flow for sufficiently small values of the Stokes
number, β.

However, the results show that the out-of-phase mode only generally induces a
greater bulk flow than the antiphase flow for β < 1 and 1 < η < 10, and, even in
these cases, this difference is not significant. Moreover, at these values of β, the
bulk flow induced by the transpiration is so small as to render these cases of little
interest. For η < 1, the antiphase boundary condition produces the greatest bulk flow.
We conclude, therefore, that the greater velocity gradients produced within the flow
via the antiphase boundary conditions outweigh the reduced dependence upon the time
derivative that is created by the out-of-phase boundary condition.

The antiphase mode produces the greatest bulk flow because it produces the greatest
velocity gradients within the channel, and therefore should be the most affected by
convection. This analysis suggests that an antiphase boundary condition should be
considered as a flow-control regime for producing drag reduction, with a small η and a
value for β of around 100.

The energy input required to support the system has been derived in § 4. Notably,
for all except the in-phase case, the energy cost is proportional to η−2 for η < 1.
This contrasts with the induced bulk flow, which has been shown to be proportional
to η−1 in this limit. This tells us that, although it is possible to increase the induced
bulk flow by increasing the wavelength of the boundary condition, by doing so an
even greater increase in the power cost of the system will be incurred. A boundary
condition of long wavelength will therefore not be the most energy-efficient method
of driving a flow via transpiration. This is in agreement with the analysis of drag
reduction with Poiseuille flows by Moarref & Jovanović (2010), who similarly found
that, for boundary conditions of sufficiently long wavelength, the energy cost increased,
with increasing wavelength, faster than the resulting drag reduction.
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This analysis, as well as that of Hoepffner & Fukagata (2009) and Moarref &
Jovanović (2010), demonstrates that, at small A (the amplitude of the boundary
condition), the induced bulk flow will increase parabolically with A. (Here we
are referring to the dimensional velocity û, rather than the non-dimensionalised
velocity u.) The asymptotic behaviour of the bulk flow at small A/hω is detailed
in § 7.

At higher values of A, however, the bulk flow will not increase parabolically
with A. In § 4, it has been shown that, if the amplitude of the boundary condition
is sufficiently greater than the speed at which it travels along the channel wall, then
the effect upon the bulk flow of increasing A will diminish.

Furthermore, it been shown in § 3 that, for boundary conditions of small amplitude,
there exists an optimal frequency for the boundary condition, at which the bulk
flow will be maximized. Beyond this frequency, any increase will have the effect of
reducing the bulk flow. In fact, the bulk flow will be reduced to zero in the limit as the
frequency approaches infinity. This has been explained via an analogy with the motion
of fluid adjacent to a shuffling body.

6.3. Generalizing the boundary conditions
So far, we have only considered a very narrow range of the possible boundary
conditions that could be used to induce a bulk flow via transpiration. Specifically,
we have considered those boundary conditions that can be expressed as single-mode
travelling waves, in which boundary conditions are of equal wavelength and frequency.
However, in § 3.6 we have demonstrated a method by which this perturbation analysis
could be readily extended to investigate all periodic boundary conditions. This method
relies upon the fact that, if a boundary condition may be expressed as a sum of two
or more travelling sinusoidal waves, then the first-order approximation of the overall
translational flow will be the sum of the first-order translational flows that each of
those component travelling waves would induce separately as a boundary condition.

7. Conclusions
We have analysed the behaviour of fluids that are subjected to a non-zero wall-

normal velocity at the surfaces of the channel. This arrangement, known also as
‘transpiration’, allows no net volume flux to be imparted upon the flow through the
channel walls, and does not require the boundary conditions to remain constant over
time.

We have shown, though a perturbation analysis, that the effect of convection is
capable of inducing a bulk flow in a fluid that is driven by transpiration. The set
of boundary conditions considered were those in which the wall-normal velocities at
either wall of the channel can be expressed as travelling sine waves. The waves at
either wall may differ in their magnitude, and may be out of phase, but they are
of equal wavelength and frequency. The induced bulk flow is found to move in the
direction counter to the motion of the boundary condition, which concurs with the
results of reported numerical simulations, and perturbation analyses, of systems driven
by transpiration.

The asymptotic behaviour of 〈û〉, the average streamwise velocity (in dimensional
units) within the channel, is detailed here. Again, A denotes the maximum amplitude
of the boundary condition, λ its wavelength and ω its temporal frequency of
oscillation, h denotes the height of the channel, and ν is the kinematic viscosity
of the fluid (ν ≡ µ/ρ). The ratio of the amplitude of the boundary conditions at either
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wall is denoted by γ , and the degree to which they are out of phase by φ. Note that,
in order to obtain the bulk flow from 〈û〉, it must be multiplied by h.

The magnitude of the average streamwise velocity in the limit as A/hω→ 0 is given
in (3.6) and (3.9). In dimensional units, the average velocity is given by

〈û〉 ∼
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(7.1)

In this small-A/hω limit, it has been found that the maximum flow is obtained by
minimizing h/λ, while maintaining an optimal frequency ωmax, which is given by

ωmax ≈ 100
ν

h2
. (7.2)

Using the optimal frequency, as well as a wavelength that is longer than the height of
the channel, we find that the average flow will be approximately

〈û〉 ≈ λ
h
(1+ γ 2 − 2γ cosφ), λ > h, ω = ωmax. (7.3)

Decidedly different behaviour is found when the amplitude of the boundary
condition, A, is much greater than the speed at which it moves along the wall of
the channel, λω. In the limit as λω/A→ 0, assuming that the flow remains two-
dimensional, the average velocity becomes

〈û〉6 O(λω). (7.4)

This implies that 〈û〉 will not remain proportional to A2 for all values of A. Moreover,
as A is increased, ∂〈û〉/∂A will at some point diminish, approaching zero in the limit
as λω/A→ 0. It remains to be determined whether there in fact exists a bulk flow in
this limit, and the direction of the flow.

This has been proved only for two-dimensional flows resulting from a limited set of
the possible transpiration boundary conditions. These include the boundary conditions
for which the perturbation analysis was performed. The extension of this result to
three-dimensional flows and generalized boundary conditions has been posed as a
conjecture.
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Appendix A. Details of the perturbation analysis
In this section we detail the derivation mentioned in § 3. This derivation is based

upon the assumption that α is small, and involves expanding the velocity and pressure
in α, in the manner shown in (3.1).
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A.1. Perturbation methodology

Substituting (3.1) into (2.21), and equating orders of α, we obtain

∇4Ψ0 − β ∂
∂t
∇2Ψ0 = 0, (A 1a)

∇4Ψ1 − β ∂
∂t
∇2Ψ1 = β

(
∂Ψ0

∂z

∂

∂x
− ∂Ψ0

∂x

∂

∂z

)
∇2Ψ0, (A 1b)

∇4Ψ2 − β ∂
∂t
∇2Ψ2 = β

(
∂Ψ0

∂z

∂

∂x
− ∂Ψ0

∂x

∂

∂z

)
∇2Ψ1

+β
(
∂Ψ1

∂z

∂

∂x
− ∂Ψ1

∂x

∂

∂z

)
∇2Ψ0, (A 1c)

· · ·
We can see from (A 1a) that the leading-order term, Ψ0, represents an unsteady Stokes
flow. For all except the leading-order term, our boundary conditions are that

∂Ψn

∂x
= ∂Ψn

∂z
= 0 at z= 0, 1 for n> 0, (A 2)

while the boundary conditions given within (2.13) and (2.15) apply to the leading-
order term, Ψ0. This implies that the leading-order boundary conditions are

∂Ψ0

∂z
= 0, at z= 0, 1, (A 3)

∂Ψ0

∂x
=
{

sin(ηx+ t), at z= 1,
γ sin(ηx+ t − φ), at z= 0.

(A 4)

A.2. Leading-order terms

In order to find a closed-form solution for Ψ0, we introduce the following assumed
form, which is based upon the boundary condition at the top wall:

Ψ0 = ξ0,1(z) ei(ηx+t) + ξ0,−1(z) e−i(ηx+t), (A 5)

where ξ0,1(z) and ξ0,−1(z) are functions to be determined. By substituting the above
into (A 1a), then equating coefficients of ei(ηx+t) and e−i(ηx+t), we obtain the following
differential equations:

d4ξ0,1

dz4
− (2η2 + βi)

d2ξ0,1

dz2
+ η2(η2 + βi)ξ0,1 = 0, (A 6)

d4ξ0,−1

dz4
− (2η2 − βi)

d2ξ0,−1

dz2
+ η2(η2 − βi)ξ0,−1 = 0. (A 7)

From the boundary conditions acting upon Ψ0(x, t), we can infer the boundary
conditions for ξ0,1(z) and ξ0,−1(z). From (A 4),we obtain

ξ0,±1 =


1

2η
, at z= 1,

γ

2η
e∓iφ, at z= 0,

(A 8)
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while from (A 3), we obtain

dξ0,1

dz
= dξ0,−1

dz
= 0 at z= 0, 1. (A 9)

From the above equations and boundary conditions, we can derive closed-form
solutions,

ξ0,1 = c1 eηz + c2 e−ηz + c3 eHz + c4 e−Hz, (A 10)

ξ0,−1 = c∗1 eηz + c∗2 e−ηz + c∗3 eH∗z + c∗4 e−H∗z, (A 11)

where

H ≡
√
η2 + βi, H∗ ≡

√
η2 − βi, (A 12)

and the various constant coefficients c1, c∗1, . . . are dependent upon the choice of
boundary conditions. They are given by

c1 = [8η(sinh H (2η2 + iβ) sinh η + 2Hη − 2Hη cosh H cosh η)]−1

× {e−H−η−iφ[γ (η(η − H)+ iβ)+ e2Hγ (−η(H + η)− iβ)+ (η(η − H)+ iβ)
× e2H+η+iφ − eη+iφ(η(H + η)+ iβ)+ 2Hγ η eH+η + 2Hη eH+iφ]} , (A 13a)

c2 = [8η(sinh H (2η2 + iβ) sinh η + 2Hη − 2Hη cosh H cosh η)]−1

× {e−H−iφ[−2γ eH+η(Hη cosh H − sinh H (η2 + iβ))+ eiφ(η(η − H)+ iβ)
+ e2H+iφ(−η(H + η)− iβ)+ 2eHHγ η + 2Hη eH+η+iφ]} , (A 13b)

c3 = [8(2Hη(cosh H cosh η − 1)− sinh H (2η2 + iβ) sinh η)]−1

× {e−H−η−iφ[−2Hγ eH+η + γ (H − η)+ γ e2η(H + η)
− 2H eη+iφ + (H − η) eH+2η+iφ + (H + η) eH+iφ]} , (A 13c)

c4 = [8(sinh H (2η2 + iβ) sinh η + 2Hη − 2Hη cosh H cosh(η))]−1

× {e−η−iφ[γ (2H eη + eH+2η(η − H)− eH(H + η))
+ eiφ(2H eH+η − e2η(H + η)− H + η)]} , (A 13d)

c∗1 = [8η(−2H∗η(cosh H∗ cosh η − 1)+ sinh H∗ (2η2 − iβ) sinh η)]−1

×{e−H∗−η[(e2H∗ − 1)(η2 − iβ)(eη − γ eiφ)

+H∗η(γ (−eiφ)(−2eH∗+η + e2H∗ + 1)− e2H∗+η + 2eH∗ − eη)]}, (A 13e)

c∗2 = [8η(−2H∗η(cosh H∗ cosh η − 1)+ sinh H∗ (2η2 − iβ) sinh η)]−1

×{e−H∗[(e2H∗ − 1)(η2 − iβ)(−1+ γ eη+iφ)

+H∗η(γ (−eiφ)(e2H∗+η − 2eH∗ + eη)+ 2eH∗+η − e2H∗ − 1)]}, (A 13f )

c∗3 = [8(−2H∗η(cosh H∗ cosh η − 1)+ sinh H∗ (2η2 − iβ) sinh η)]−1

×{e−H∗−η[(e2η − 1)η(eH∗ − γ eiφ)− H∗γ eiφ(−2eH∗+η + e2η + 1)
−H∗(eH∗+2η + eH∗ − 2eη)]}, (A 13g)

c∗4 = [8(2H∗η(cosh H∗ cosh η − 1)+ i sinh H∗ (β + 2iη2) sinh η)]−1

×{e−η[(1− e2η)η(−1+ γ eH∗+iφ)+ H∗(γ eiφ(eH∗+2η + eH∗ − 2eη)
− 2eH∗+η + e2η + 1)]}. (A 13h)
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We can now express Ψ0(x, t) in closed form. To do so, we substitute (A 10) and (A 11)
for ξ0,1 and ξ0,−1 into (A 5). Doing so, we arrive at

Ψ0 = (c1 eηz + c2 e−ηz + c3 eHz + c4 e−Hz) ei(ηx+t)

+ (c∗1 eηz + c∗2 e−ηz + c∗3 eH∗z + c∗4 e−H∗z) e−i(ηx+t). (A 14)

From this result, we can easily determine the pressure to leading order. To do so, we
substitute u0 (or ∂Ψ0/∂z) into the Stokes equation. Then, by assuming that the pressure
exhibits the same streamwise scales of motion as the velocity field, we find that

p0(x, t)= β (c2 e−ηz − c1 eηz
)

ei(ηx+t) + β (c∗2 e−ηz − c∗1 eηz
)

e−i(ηx+t). (A 15)

A.3. First-order bulk flow
In order to determine the first-order correction to the streamfunction, Ψ1, we first
substitute (3.2) into (A 1b). This produces an equation of the form

∇4Ψ1 − β ∂
∂t
∇2Ψ1 = Z1,0(z)+ Z1,2(z) e2i(ηx+t) + Z1,−2(z) e−2i(ηx+t), (A 16)

where Z1,0, Z1,2 and Z1,−2 are known functions, which depend upon ξ0,1 and ξ0,−1.
From this we can infer that Ψ1 takes the form

Ψ1 = ξ1,0(z)+ ξ1,2(z) e2i(ηx+t) + ξ1,−2(z) e−2i(ηx+t), (A 17)

where ξ1,0, ξ1,2 and ξ1,−2 are functions to be determined. The functions ξ1,2(z)
and ξ1,−2(z) can be determined by substituting the above into (A 16) and equating
coefficients of the exponentials. This results in the following:

d4ξ1,±2

dz4
− 2(4η2 ± βi)

d2ξ1,±2

dz2
+ 8η2(2η2 ± βi)ξ1,±2 = Z1,±2, (A 18)

with the boundary conditions

ξ1,±2(0)= ξ1,±2(1)= dξ1,±2

dz
(0)= dξ1,±2

dz
(1)= 0. (A 19)

It is not possible to determine the translational flow term, ξ1,0(z), via an analogous
method, since it would lead to a fourth-order differential equation with only two
boundary conditions. Instead, we consider the Navier–Stokes equation expanded in Re.
The first-order components of the expansion in the streamwise direction are given by

β
∂

∂t
u1 + β u0 ·∇u0 =− ∂

∂x
p1 +∇2u1. (A 20)

From (A 17) we can infer that the streamwise velocity must take the form

u1 = U1,0(z)+ U1,2(z) e2i(ηx+t) + U1,−2(z) e−2i(ηx+t), (A 21)

where U1,0, U1,2 and U1,−2 are functions to be determined. By substituting the above
into (A 20), and then averaging the result over the streamwise direction, we obtain

d2

dz2
u1 = d2

dz2
U1,0 = β u0 ·∇u0 ≡ β

(
∂Ψ0

∂z

∂

∂x
− ∂Ψ0

∂x

∂

∂z

)
∂Ψ0

∂z
. (A 22)

By substituting (3.2) into the above, we obtain

d2

dz2
u1 =−β2η[c3c∗1 e(η+H)z + c4c∗1 e(η−H)z + c3c∗2 e(−η+H)z + c4c∗2 e−(η+H)z
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+ c1c∗3 e(η+H∗)z + c1c∗4 e(η−H∗)z + c2c∗3 e(−η+H∗)z + c2c∗4 e−(η+H∗)z

+ 2c3c∗3 e(H+H∗)z + 2c3c∗4 e(H−H∗)z + 2c4c∗3 e(−H+H∗)z

+ 2c4c∗4 e−(H+H∗)z]. (A 23)

By solving the above equation, subject to the no-slip boundary condition, we can
determine u1. Its value is given by

u1 = β2η

{
c3c∗1

(η + H)2
[
1− e(η+H)z + z

(
e(η+H) − 1

)]+ c4c∗1
(η − H)2

[
1− e(η−H)z

+ z
(
e(η−H) − 1

)]+ c3c∗2
(η − H)2

[
1− e(−η+H)z + z

(
e(−η+H) − 1

)]
+ c4c∗2
(η + H)2

[
1− e−(η+H)z + z

(
e−(η+H) − 1

)]+ c1c∗3
(η + H∗)2

[1− e(η+H∗)z

+ z(e(η+H∗) − 1)] + c1c∗4
(η − H∗)2

[1− e(η−H∗)z + z(e(η−H∗) − 1)]

+ c2c∗3
(η − H∗)2

[1− e(−η+H∗)z + z(e(−η+H∗) − 1)] + c2c∗4
(η + H∗)2

[1− e−(η+H∗)z

+ z(e−(η+H∗) − 1)] + 2c3c∗3
(H + H∗)2

[1− e(H+H∗)z + z(e(H+H∗) − 1)]

+ 2c3c∗4
(H − H∗)2

[1− e(H−H∗)z + z(e(H−H∗) − 1)] + 2c4c∗3
(H − H∗)2

[1− e(−H+H∗)z

+ z(e(−H+H∗) − 1)] + 2c4c∗4
(H + H∗)2

[1− e−(H+H∗)z + z(e−(H+H∗) − 1)]
}
. (A 24)

In order to determine the corresponding first-order approximation of the overall
average 〈u1〉, we integrate u1 with respect to z from 0 to 1. This results in

〈u1〉 = β
2η

2

{
c3c∗1

(η + H)3
[
2+ η + H + eη+H(η + H − 2)

]+ c4c∗1
(η − H)3

[2+ η − H

+ eη−H(η − H − 2)
]− c3c∗2

(η − H)3
[
2− η + H + e−η+H(−η + H − 2)

]
− c4c∗2
(η + H)3

[
2− η − H − e−(η+H)(η + H + 2)

]+ c1c∗3
(η + H∗)3

[2+ η + H∗

+ eη+H∗(η + H∗ − 2)] + c1c∗4
(η − H∗)3

[2+ η − H∗ + eη−H∗(η − H∗ − 2)]

− c2c∗3
(η − H∗)3

[2− η + H∗ + e−η+H∗(−η + H∗ − 2)] − c2c∗4
(η + H∗)3

[2− η − H∗

− e−(η+H∗)(η + H∗ + 2)] + 2c3c∗3
(H + H∗)3

[2+ H + H∗ + eH+H∗(H + H∗ − 2)]

+ 2c3c∗4
(H − H∗)3

[2+ H − H∗ + eH−H∗(H − H∗ − 2)] − 2c4c∗3
(H − H∗)3

[2− H + H∗

+ e−H+H∗(−H + H∗ − 2)]
− 2c4c∗4
(H + H∗)3

[2− H − H∗ − e−(H+H∗)(H + H∗ + 2)]
}
. (A 25)
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A.4. First-order velocity field
In order that we should be able to produce an approximation of the entire velocity
field to first order, we now seek to determine ξ1,2 and ξ1,−2. We begin with the
derivation of ξ1,2. By substituting (3.2) into (A 1b), and equating coefficients of e2i(ηx+t)

in the result to that in (A 16), we find that

Z1,2 = β2η[c1c3(H − η) e(η+H)z − c1c4(η + H) e(η−H)z + c2c3(η + H) e(H−η)z

+ c2c4(η − H) e−(η+H)z]. (A 26)

We can now determine ξ1,2 by substituting the above into (A 18) and solving for the
boundary conditions given within (A 19). This results in

ξ1,2 = k1 e(η+H)z + k2 e(η−H)z + k3 e(H−η)z + k4 e−(η+H)z

+ k5 e2ηz + k6 e−2ηz + k7 e
√

4η2+2βiz + k8 e−
√

4η2+2βiz, (A 27)

where the constants k1, k2, . . . , depend only upon the values of β, η, γ and φ. Because
the explicit forms of several of these constants are very cumbersome, and moreover
physically unrevealing, we do not reproduce them here. We now similarly seek to
derive ξ1,−1. We again substitute (3.2) into (A 1b), this time equating the resulting
coefficient of e−2i(ηx+t) to that in (A 16). This gives

Z1,−2 = β2η[c∗1c∗3(η − H∗) e(η+H∗)z − c∗1c∗4(η + H∗) e(η−H∗)z

+ c∗2c∗3(η + H∗) e(H
∗−η)z + c∗2c∗4(η − H∗) e−(η+H∗)z]. (A 28)

We can now determine ξ1,−2 via an analogous method to that used above to
determine ξ1,2. This yields

ξ1,−2 = k∗1 e(η+H∗)z + k∗2 e(η−H∗)z + k∗3 e(H
∗−η)z + k∗4 e−(η+H∗)z

+ k∗5 e2ηz + k∗6 e−2ηz + k∗7 e
√

4η2−2βiz + k∗8 e−
√

4η2−2βiz, (A 29)

where similarly the constants k∗1, k∗2, . . . , depend on the values of β, η, γ and φ, and
are too cumbersome to be worth reproducing here.
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