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A correction for streamwise Reynolds stress data acquired with insufficient spatial
resolution is proposed for wall-bounded flows. The method is based on the attached
eddy hypothesis to account for spatial filtering effects at all wall-normal positions.
This analysis reveals that outside the near-wall region the spatial filtering effect scales
inversely with the distance from the wall, in contrast to the commonly assumed
scaling with the viscous length scale. The new formulation is shown to work very well
for data taken over a wide range of Reynolds numbers and wire lengths.
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1. Introduction
In recent years there has been a heightened interest in the behaviour of high

Reynolds number, wall-bounded turbulent flows, which are important to large-scale
applications, including atmospheric flows (Marusic et al. 2010). Accordingly, a number
of new facilities that provide detailed access to high Reynolds number flows have been
commissioned, including the Princeton/ONR Superpipe (Zagarola & Smits 1998) and
High Reynolds Number Test Facility (Jiménez, Hultmark & Smits 2010), the Stanford
pressurized wind tunnel (DeGraaff & Eaton 2000), the MTL wind tunnel at KTH
(Österlund et al. 2000), the National Diagnostic Facility at IIT (Nagib, Chauhan &
Monkewitz 2007) and the High Reynolds Number Boundary Layer Wind Tunnel
at the University of Melbourne (Nickels et al. 2007). In addition, the Surface Layer
Turbulence and Environmental Science Test (SLTEST) facility in Utah (Metzger &
Klewicki 2001) has provided high quality data in the atmospheric boundary layer,
which has been invaluable for studying the behaviour at Reynolds numbers one or
two orders of magnitude larger than what is possible in the laboratory. Other, more
general purpose facilities, have also been employed to study high Reynolds number
boundary layer flows, including the NASA Ames Full-Scale Aerodynamics Facility
(Saddoughi & Veeravalli 1994), DNW, the German–Dutch wind tunnel (Fernholz
et al. 1995) and the US Navy’s William B. Morgan Large Cavitation Channel (Etter
et al. 2005; Winkel et al. 2010).

† Email address for correspondence: asmits@princeton.edu
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Figure 1. Streamwise Reynolds stress profiles decomposed into small-scale (λx < δ, solid
symbols) and large-scale components (λx > δ, open symbols), where �, l+ = 22; �, l+ =79; and
�, l+ = 153. The lines show sum of small- and large-scale components for l+ =22 (solid line),
l+ = 79 (dashed line) and l+ = 153 (dotted line). Here, Reτ = 13 600. Taken from Hutchins et al.
(2009).

One of the main questions that has arisen from these studies is the scaling of
the streamwise Reynolds stress u2, particularly the behaviour of the near-wall peak
found at about z+ = 15. Here, z+ = zuτ/ν, uτ =

√
(τw/ρ), τw is the wall shear stress,

z is the wall-normal distance, and ρ and ν are the fluid density and kinematic
viscosity, respectively. Wall-scaling arguments based on the behaviour of the mean
velocity profile suggest that u2

+
= u2/u2

τ should be invariant with z+ in the near-wall
region, as supported by the pipe flow studies by Mochizuki & Nieuwstadt (1996)
and Hultmark, Bailey & Smits (2010). However, boundary layer investigations by,
for example, DeGraaff & Eaton (2000) and Metzger & Klewicki (2001) show a clear
increase in the peak value with increasing Reynolds number. Another issue that has
arisen is that of the appearance of a second peak in the u2

+
profile at high Reynolds

number. For example, Morrison et al. (2004) found that in a pipe, at sufficiently high
Reynolds numbers an outer peak was formed, located near the lower edge of the
log-region. This behaviour was also seen in the boundary layer measurements taken
in the DNW by Fernholz et al. (1995).

One of the principal reasons why these scaling issues remain unresolved is that the
spatial resolution of hot wire probes is often insufficient to make accurate turbulence
measurements near the wall, where the smallest scales of turbulence are found.
Because the size of the smallest scales decreases with increasing Reynolds number,
the effects of spatial filtering become more important at high Reynolds number,
and they can potentially obscure the true Reynolds number behaviour. For example,
spatial resolution can mask the growth of the inner peak, and it can artificially create
the appearance of an outer peak in the profile because of spurious filtering of the
near-wall energy.

Such spatial resolution effects are illustrated in figure 1. Here, three different
sized hot-wires with l+ = luτ /ν = 22, 79 and 153 were used to measure the same
wall-normal profile of streamwise Reynolds stress, at a single Reynolds number
Reτ = δuτ/ν = 13 600, where δ is the boundary layer thickness and l is the wire length.
Strong attenuation is noted for the larger sensing elements, and it is clear how spatial
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filtering could artificially create the outer peak. Also shown in figure 1 is what happens
when the velocity signal is partitioned into large and small length scale contributions
by applying a sharp spectral filter with a cutoff length λx equal to the boundary layer
thickness. As expected, the attenuation observed for the larger values of l+ are mostly
confined to under-resolving the small-scale contributions to the broadband intensity.

Although the values of l+ used to obtain these results may seem large, they are
not atypical of high Reynolds number experiments. For example, in the Princeton
Superpipe at Reτ =105, l+ = 100 corresponds to a wire length of l = 65 µm, and the
smallest wires used in conventional hot-wire anemometry are typically larger than
about 250 µm. For this reason, considerable effort is currently being devoted to the
design and development of new sub-miniature hot-wires using micro- and nano-
fabrication techniques such as the Nano Scale Thermal Anemometry Probe (NSTAP)
developed at Princeton (Bailey et al. 2010).

Notwithstanding these micro-probe advances, there is a continuing need to better
understand and quantify the effects of spatial resolution, particularly in the near-wall
region. A widely used analysis of spatial resolution is that proposed by Wyngaard
(1968), and it is based, as many other methods are, on the assumption of small-
scale isotropy. In the near-wall region, however, the flow is strongly anisotropic. The
analysis by Cameron et al. (2010), based on a two-dimensional spectral representation,
demonstrates the significant role of anisotropy in the spatial filtering behaviour of
a hot wire, and also shows how the filtering can significantly affect the energy
spectrum at wavenumbers much smaller than that corresponding to the wire length.
Recently, Chin et al. (2009) proposed a correction method where a detailed account
of the missing energy is modelled using the spanwise-streamwise information in
two-dimensional spectra from a direct numerical simulation (DNS) of turbulent
channel flow. The approach appears to be promising, despite being rather complicated.
Monkewitz, Duncan & Nagib (2010) have suggested an empirical correction method
that also shows potential.

Here, we propose a new correction method for spatial filtering based on eddy
scaling. The method corrects for the effects of spatial resolution across the entire
boundary layer, and it appears to give accurate results over a very wide range of wire
lengths and flow Reynolds numbers. The success of the method appears to be due
mostly to the fact that, outside the near-wall viscous region, it uses the correct length
scale, which is the distance from the wall rather than the viscous length scale adopted
by most previous authors (see, for example, Ligrani & Bradshaw 1987; Monkewitz
et al. 2010).

2. Near-wall eddy scales
The results shown in figure 1 suggest that modelling the effects of spatial filtering

requires knowledge of the local small-scale eddies that contribute to the turbulence
intensities. Here we consider that connection more closely.

We begin with the observation by Hutchins et al. (2009), who used a series of wires
with 11< l+ < 153 over a range of Reynolds number to determine that the missing
energy at y+ = 15 can be described by a relationship that is linear in l+. That is,

�u2
+

= B1l
+ + C1

(
l+

Reτ

)
, (2.1)

where B1 = 0.0352 and C1 = 23.0833. However, we would expect that when l+ is very
small the results should be independent of wire length since the smallest eddies are
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Figure 2. Kolmogorov length scale with wall scaling across turbulent boundary layers. Data
as in Hutchins et al. (2009). Here, η = (ν3/ε)1/4, where the isotropic assumption is used to
estimate the dissipation rate: ε = 15ν

∫ ∞
0 k2

xφuu dkx . Symbols indicated Reτ values: � 2800,
� 3900, � 7300, � 13 600, � 19 000.

fully resolved. Hence the behaviour for small l+ might be very different from that of
large l+. Chin et al. (2009) used filtered DNS data to find a correlation that captures
this variation more accurately, and proposed instead a third-order function in l+,
with no dependence on Reτ . That is,

�u2
+

= A2l
+3

+ B2l
+2

+ C2l
+ + D2, (2.2)

with A2 = − 1.94 × 10−5, B2 = 1.83 × 10−3, C2 = 1.76 × 10−2 and D2 = − 9.68 × 10−2.
Note that this polynomial relationship is not well behaved at large values of l+ so
that it can only be used up to l+ ≈ 30.

Hutchins et al. (2009) and Chin et al. (2009) assume that l+ is the appropriate
scaling for spatial filtering effects, which is in accordance with much of the previous
work, including the influential study by Ligrani & Bradshaw (1987). This viscous
scaling is consistent with the findings of Kline et al. (1967) and many others that the
near-wall streaks scale with wall units over a large Reynolds number range, with a
spacing of nominally 100ν/uτ . Furthermore, there is strong evidence to suggest that
the near-wall streaks are a manifestation, or at least are associated with, the legs of
near-wall attached eddies as described by Perry & Chong (1982) and Adrian (2007),
where the size of the smallest attached eddies is O(100ν/uτ ).

Nonetheless, the smallest motions in any turbulent flow scale with the Kolmogorov
length scale η, and consequently the effects of spatial resolution should also depend
on l/η and not simply l+. For example, recent studies by Stanislas, Perret & Foucaut
(2008) and others have shown that in boundary layers the core diameter of the smallest
filamentary vortex structures (and likely the segments of the energy-containing eddies)
are O(12η). However, we see from figure 2 that in the near-wall region (say, z+ < 50)
η+ is almost constant, so that η and ν/uτ are not independent. Note also that, across
the entire inner-region including the log region, η+ is virtually invariant with the
Reynolds number. Similar results were also found by Carlier & Stanislas (2005) and
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Figure 3. (Colour online) (a) Scale drawing of a hot-wire sensing an artificially arrayed
sample of idealized attached eddies. It may be seen that the wire will resolve fewer eddies
as the wall is approached. Top (b) and front (c) views are also shown. The flow is in the
x-direction and distances are in arbitrary units.

Yakhot, Bailey & Smits (2010) across a large range of Reynolds number in pipe
flows.

What about the outer region where η+ varies with wall distance? Given that far
from the wall the eddy core sizes continue to scale with η (Stanislas et al. 2008), this
implies that the Kolmogorov length should remain a relevant scale for the unresolved
energy so long as η < l. When such eddies inevitably ‘die’, their filaments are effectively
broken up leading to motions scaling exclusively with η. Therefore, there will be some
measure of unresolved energy even at large wall-distances which should scale as l/η.

Since the greatest filtering effects occur close to the wall where ηuτ/ν is
approximately constant, it therefore should not matter whether we choose l+ or
l/η for scaling the effect of wire length. In order to be consistent with the traditional
approach (that is, as used by Hutchins et al. 2009) we will express our scaling in
terms of l+, even though l/η may be more physically appropriate. In addition, l+ is
a more practical parameter because for unresolved measurements the behaviour of η

is not known accurately.
If we now consider the region outside the viscous wall region, then according

to Townsend’s (1976) attached eddy hypothesis, the energy-containing scales of
turbulence scale with distance from the wall. Figure 3 illustrates this concept
using idealized hairpin shaped eddies as originally proposed by Perry & Chong
(1982). In their model, wall-bounded turbulence may be described by hierarchies of
attached eddies, the smallest being of O(100ν/uτ ) and thereafter following a geometric
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progression in size, with the largest being approximately the height of the boundary
layer. Therefore, these eddies can be taken as the major contributors to the small-scale
energy, which we are interested in modelling for purposes of estimating the effects of
spatial filtering.

The concept of eddy hierarchies is illustrated in figure 3 by schematically lining up
eddies of each scale. The distribution of hierarchies is such that there are many more
small eddies than large eddies, and Townsend (1976) proposed that the probability
density function of eddy sizes should be inversely proportional to the eddy size in
order to give a region of constant Reynolds shear stress. In figure 3, a typical hot-
wire probe is shown, having a sensor width approximately the same size as the fourth
largest hierarchy of eddies illustrated in this drawing. At the wall-normal distance of
the probe shown in the figure, the sensor would capture most of the contributions
from the eddies of this size and above. However, as the sensor moves down, it is
clear that it will begin to filter contributions from the smaller eddies at an increasing
rate. It can be shown that the attenuation in energy is a function of l/z if an inverse
probability density function of eddy sizes is chosen. If we assume a cutoff factor γ

exists such that eddies smaller than γ l are not resolved at all and eddies larger than
γ l are fully resolved, then

(u2
+
)unresolved = C1 log

(
γ l

z

)
. (2.3)

Hence the attached eddy hypothesis suggests that the attenuation due to finite fixed
sensor size should be a function of l/z, simply because eddy size increases rapidly
with wall-distance.

It should be noted that the attached eddy argument leading to the logarithmic
dependence is a result that only holds true in the asymptotic limit of very high
Reynolds number. For finite Reynolds number, Marusic & Kunkel (2003) have
shown that the logarithmic scaling of the turbulence intensity is limited to a small
region of the flow and viscous and eddy cutoff corrections are required to reproduce
these statistics. This highlights that there are other important contributions to spatial
filtering that should be accounted for in addition to these idealized attached eddies,
but accounting for such contributions is a difficult task and is beyond the scope of
this paper. However, the attached eddy model suggests a scaling with l/z, which will
become important as we shall see.

3. Formulation for the unresolved energy
By using the attached eddy scaling argument, we can extend the conclusions made

by Hutchins et al. (2009) and Chin et al. (2009) regarding the filtered energy �u2 at
the location of the inner peak to all wall-normal positions.

The analysis of Wyngaard (1968) and others for isotropic turbulence indicate that
the spatial filtering affects the measured spectra F according to:

F (κ1l) =

∫ ∞

−∞

∫ ∞

−∞
Φ11(κ)H (κ2, l) dκ2 dκ3, (3.1)

where κ1, κ2 and κ3 are, respectively, the wavenumbers in the direction of the flow,
in the direction along the wire and in the direction mutually perpendicular to the
wire and the flow. Also, Φ11 is the streamwise normal component of the true spectral
density tensor and H is a filter function representing the attenuation of energy as a
function of wire length and wire-direction wavenumber.
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Therefore, it seems more appropriate to approach the problem of spatial filtering
using a multiplicative factor between the true and measured values, rather than
examining the difference between them, which is the approach used in Hutchins et al.
(2009) and Chin et al. (2009). Starting with this observation, we can propose that the
attenuation of the streamwise Reynolds stress due to spatial filtering takes the form

u2
+

m = g1(l
+, z+)u2

+

T , (3.2)

or

�u2
+

u2
+

m

=
1

g1(l+, z+)
− 1 = g2(l

+, z+), (3.3)

where u2
T and u2

m are the true and measured streamwise Reynolds stress respectively,
and �u2 = u2

T − u2
m.

For a measurement at a single Reynolds number and a fixed wire length, l+ will be
constant so that we can propose a form for g2 as follows:

�u2
+

u2
+

m

= M(l+)f (z+). (3.4)

Because M is a constant for all z+ locations, it only needs to be found at one location.

We can find a first approximation to M by using the result for �u2
+

at the near-wall
peak obtained by Hutchins et al. (2009, (2.1)) and letting f (z+) = 1 at z+ = 15 such
that

M =
B1(l

+) + C1(l
+/Reτ )

u2
+

m|z+=15

. (3.5)

However, it was noted by Chin et al. (2009) that the form given by Hutchins et al.
(2009) has a non-physical behaviour for l+ � 10 and over-corrects the peak for
l+ � 100, since nonlinearities become important for larger wire lengths. Using the
correlation suggested by Chin et al. (2009) for l+ < 23 (which is based on DNS data)
along with experimental data from Hutchins et al. (2009) and Ng et al. (2011), we
find that

�u2
+|z+=15 = A tanh(αl+) tanh(βl+ − E), (3.6)

where A= 6.13, α =5.6 × 10−2, β =8.6 × 10−3 and E = −1.26 × 10−2 (these are fitting
parameters with no particular physical meaning). Equation (3.6) applies over a broader
range of l+ than either (2.1) or (2.2). Note that in (3.6) we have neglected the l+/Reτ

term under the assumption that l/δ will be negligibly small for most cases where
a correction is applied. Also, because the true values of �u2

+
are unknown for the

experimental data, they were estimated using the data for l+ = 22 and adjusted using
the correlation by Chin et al. (2009) according to:

�u2
+

= u2
+

m|l+=22 − u2
+

m + �u2
+

Chin(l
+ = 22). (3.7)

Figure 4 illustrates the accuracy of this new correlation over the range 0 < l+ < 150.
Equation (3.6) can now be used in (3.4) to find M at z+ = 15:

M =
�u2

+

u2
+

m

∣∣∣∣
z+=15

=
A tanh(αl+) tanh(βl+ − E)

(u2
+

m)z+=15

, (3.8)
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Figure 4. The missing energy, at z+ = 15, as a function of wire length in wall units. Solid
line is (3.6); • is the correlation given in Chin et al. (2009), and � experimental data from
Hutchins et al. (2009) and Ng et al. (2011). The dashed line and the dotted line are the linear
correlations given by Hutchins et al. (2009) at Reτ = 13 600 and Reτ = 7300, respectively.
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Figure 5. M(l+) from the experimental data with the linear fit given by (3.9), to be used if

no direct measurements of u2 are available at z+ =15.

and so the function M is now known if a direct measurement of u2
m is available at

z+ = 15.
When the data from figure 4 are used to calculate M , as is done in figure 5, the

resulting function appears to be almost perfectly linear, which is entirely in accord
with the attached eddy argument that suggested that the attenuation should scale
with l/z. Note that in many cases, especially at high Reynolds number, (u2

m)z+ = 15

can be difficult to obtain. In that case, one can instead use the regression fit

M = 0.0091l+ − 0.069, (3.9)
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Figure 6. The behaviour of f (z+), dotted line the low z+ asymptote and dashed line the
high z+. Solid line is the functional form as given in (3.11).

which is shown in figure 5 together with the experimental data. A note of caution is
warranted here, in that (3.9) should only be used when no measurement of the peak
is available. Also, (3.9) implies that a sensor length of l+ � 8 will fully resolve the
flow, whereas in practice it seems that we need l+ � 4.

We can now seek the form of f (z+). Based on the attached eddy hypothesis, we
propose that the function f (z+) will have three defining characteristics. Firstly, in
the viscous region, the Kolmogorov scale is the relevant scale, and since η+ is nearly
constant for z+ < 15, we expect the attenuation to be also constant in this region,
given by f = k1, where k1 is a constant close to unity. Secondly, f must be unity at
z+ =15. Thirdly, in § 2 it was argued that an l/z dependence is likely, therefore f is
expected to vary as k2/z for z+ > 15, where k2 is a constant.

In summary,

f (z+) =

⎧⎨
⎩

k1 z+ � 15,

1 z+ = 15,

k2/z
+ z+ � 15.

(3.10)

In order to avoid discontinuities and to present a single functional form for f (z+)
that obeys these limits, (3.10) can be represented using a modified rounded ramp
function (Lagerlof 1974). That is

f (z+) =
15 + ln(2)

z+ + ln
[
e(15−z+) + 1

] (3.11)

which is compared to (3.10) in figure 6.
Everything is now in place to correct the streamwise Reynolds stress measured

using a finite length sensor to the value it would have if it had been acquired with an
infinitesimally small sensor (l+ = 0). That is,

u2
+

T =
[
M(l+)f (z+) + 1

]
u2

+

m. (3.12)

The correction proposed here should apply equally well to boundary layers, pipe
flows and channel flows.
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Figure 7. Streamwise Reynolds stress profiles measured in a turbulent boundary layer with
various wire lengths at Reτ = 7300, where � l+ = 11, � l+ = 23 and � l+ = 79: (a) uncorrected
data, (b) streamwise Reynolds stress profiles corrected using the proposed correction, using
the measured value of u2

+

m at z+ = 15. Data from Hutchins et al. (2009).
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Figure 8. Streamwise Reynolds stress profiles measured in a turbulent boundary layer with
various wire lengths at Reτ = 13 600, where � l+ = 22, � l+ =79 and � l+ = 153: (a) uncorrected
data, (b) streamwise Reynolds stress profiles corrected using the proposed correction, using
the measured value of u2

+

m at z+ = 15. Data from Hutchins et al. (2009).

4. Validation of the proposed correction
Here we test the correction method using streamwise Reynolds stress data acquired

in boundary layers and fully developed pipe flows. The experiments were performed
at matched Reynolds number, but with varying sized probes so that the spatial
resolution effects could be evaluated. Figures 7 and 8 show the results for boundary
layer flows at Reτ = 7300 and 13 600, respectively. The proposed correction collapses
the data extraordinarily well, even with values of l+ is as high as 153.

Figure 9 shows the results for pipe flow at Reτ = 3000 (here Reτ =Ruτ/ν, where R

is the pipe radius). The correction works as well here as it did for the boundary layer
data.

In order to validate the correction method when no measurements at z+ = 15 are
available, (3.9) was used to evaluate M for the boundary layer data at Reτ = 7300.
The corrected profiles are shown in figure 10, and the results are virtually identical to
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Figure 9. Streamwise Reynolds stress profiles measured in a fully developed turbulent pipe
flow with various wire lengths at Reτ = 3000, where � l+ = 22, � l+ = 35 and � l+ =62:
(a) uncorrected data, (b) streamwise Reynolds stress profiles corrected using the proposed
correction, using the measured value of u2

+

m at z+ = 15. Data from Ng et al. (2011).
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Figure 10. Streamwise Reynolds stress profiles measured in a fully developed turbulent
boundary layer at Reτ = 7300 with various wire lengths, where � l+ = 22, � l+ = 79 and
� l+ = 153, corrected using M evaluated with (3.9). Data from Hutchins et al. (2009).

those shown in figure 7 where the measured value at z+ = 15 was used, giving further
confidence to the correction scheme proposed here.

5. Conclusions
The unresolved contribution to the streamwise Reynolds stress due to finite sensor

size has been investigated for wall-bounded flows. The attached eddy hypothesis was
used to predict that the attenuation would scale with l/z for z+ > 15. This scaling
differs from most other correction methods which use the viscous length scale instead.
A functional form for the ‘missing’ streamwise Reynolds stress was then proposed
that can be used to correct data acquired using inadequate probe size. The new
formulation was found to work very well for boundary layer data as well as pipe flow
data at three different Reynolds numbers.
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