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The scale energy budget utilizes a modified version of the classical Kolmogorov

equation of wall turbulence to develop an evolution equation for the second order

structure function [R. J. Hill, “Exact second-order structure-function relationships,”

J. Fluid Mech. 468, 317 (2002)]. This methodology allows for the simultaneous

characterization of the energy cascade and spatial fluxes in turbulent shear flows

across the entire physical domain as well as the range of scales. The present study

utilizes this methodology to characterize the effects of Reynolds number on the

balance of energy fluxes in turbulent channel flows. Direct numerical simulation

data in the range Res¼ 300–934 are compared to previously published results at

Res¼ 180 [N. Marati, C. M. Casciola, and R. Piva, “Energy cascade and spatial

fluxes in wall turbulence,” J. Fluid Mech. 521, 191 (2004)]. The present results

show no Reynolds number effects in the terms of the scale energy budget in either

the viscous sublayer or buffer regions of the channel. In the logarithmic layer, the

transfer of energy across scales clearly varies with Reynolds number, while the pro-

duction of turbulent kinetic energy is not dependent on Reynolds number. An enve-

lope of inverse energy cascade is quantified in the buffer region within which

energy is transferred from small to larger scales. This envelope is observed in the

range 6< yþ< 37, where all scales except the smallest scales display characteris-

tics of an inverse energy cascade. The cross-over scale lþc , which indicates the tran-

sition between production dominated and scale transfer dominated regimes,

increases with Reynolds number, implying a larger range of transfer dominated

scales, before the dominant mechanism switches to production. At higher Reynolds

numbers, two distinct regimes of lþc as a function of wall-normal location are

observed, which was not captured at Res¼ 180. The variations of lþc match the

trends of the shear scale, which is a representation of the mean shear in the flow.

Thus, this study demonstrates the utility and importance of the use of higher

Reynolds number data in order to accurately characterize and understand the

energy dynamics of various scales across the entire boundary layer. VC 2012
American Institute of Physics. [doi:10.1063/1.3673609]

I. INTRODUCTION

Wall-bounded turbulent flows such as boundary layers, pipe flows, and channel flows are

characterized by a mean velocity gradient, which produces a strong inhomogeneity in the energy

flux in the wall-normal direction. This leads to the traditional classification of the momentum

a)Electronic mail: neela.saikrishnan@gatech.edu.
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deficit region based on the mean velocity profile into four generic layers: the viscous sublayer, the

buffer layer, the logarithmic layer, and the outer flow. Recent studies have also discussed an alter-

nate four layer description of wall-bounded turbulent flows based on the mean momentum balance

equation for turbulent flows,3,4 where each layer is characterized by varying interplay of the pres-

sure gradient term, the gradient of the viscous stresses and the gradient of the Reynolds stresses.

In both of these definitions, the energy fluxes between the regions drive the local energetics in

each region (the “physical space” approach). Simultaneously, at a given wall-normal location, the

interaction between eddies of different sizes is typically characterized by the energy cascade, such

that the flow field is decomposed into a hierarchy of eddy scales. Turbulent kinetic energy (TKE)

is produced at the largest scales by the action of shear, transferred to smaller eddies, and dissipated

at the smallest scales by viscosity. This spectral or “scale space” approach enables an understand-

ing of the distribution and flux of energy across various length scales of eddies. A combination of

both approaches is necessary to understand how the energy associated with a specific scale of

motion is transferred both to other length scales and across regions of shear.

The classical Kolmogorov equation based on the second order structure function hdu2i or scale-

energy provides a good starting point for developing a methodology combining the “physical space”

and “scale space” approaches. A generalized form of this equation for inhomogeneous conditions

such as shear flows has been developed previously to simultaneously characterize TKE dynamics

across a range of scales and wall-normal locations.1 This equation was used by Marati et al. to ana-

lyze direct numerical simulation (DNS) data of a turbulent channel flow at Res¼ 180 (Res¼ dUs=�,

where d is the channel half-height and Us is the friction velocity).2 In that study, it was demonstrated

that the conventional definition of the channel in terms of viscous layer, buffer region, log-layer, and

outer region was applicable even in the context of the scale energy balance. The production of scale

energy was predominant in the buffer region, while the log layer has a constant flux of energy into

the bulk of the flow. In scale space, production of scale energy was dominant in the largest scales,

followed by a range of predominant transfer, down to the smallest scales where diffusion and dissi-

pation dominate. Additionally, this study suggested the presence of an inverse cascade of energy

from the small to the larger scales in the viscous sublayer.

The effects of Reynolds number on turbulent stresses and TKE have been a subject of inquiry

in a number of studies5–9 and have recently been studied over a range of Reynolds numbers,

Res¼ 186, 587, 934, and 2003.10 The primary quantities of interest in these studies were the TKE

production and dissipation. The magnitude of production increased with Reynolds number in the

buffer region, whereas the dissipation calculated using the assumption of isotropy increased with

Reynolds number in the viscous sublayer. The increase in dissipation could be due to the presence

of large scale “inactive motions.”11 In the logarithmic and outer regions, no significant Reynolds

number variations were observed in the production or dissipation. The ratio of the production to

the dissipation is a measure of the equilibrium nature of the logarithmic region, and characteristics

of an equilibrium layer start to appear for Res¼ 590 and above. The peak value of production,

seen in the buffer region, increased with Reynolds number.

Given the Reynolds number effects observed for single point statistics, the aim of the present

work is to extend the scale energy analysis conducted by Marati et al. at Res¼ 180 to higher Reyn-

olds numbers.2 Thus, the scale energy dynamics are examined using DNS data of turbulent chan-

nel flows at Res¼ 298, 587, and 934 in this study. Details of the DNS datasets and the processing

methodology are presented in Sec. II. The variations of scale energy and the scale energy budget

at specific locations in the boundary layer are presented and discussed in Sec. III, and some con-

clusions from this study are provided in Sec. IV.

II. METHODOLOGY

A. Description of DNS datasets

All results in this paper are based on four DNS datasets of turbulent channel flows in the

Reynolds number range Res¼ 180–934. The references to the sources of these data and relevant

parameters are indicated in Table I. All quantities are normalized using inner variables. The

streamwise, wall-normal, and spanwise directions are along the x, y, and z axes, respectively, and

the velocity components along these three directions are represented as U, V, and W. Capital

015101-2 Saikrishnan et al. Phys. Fluids 24, 015101 (2012)
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letters refer to mean quantities and lower-case ones to fluctuating quantities. The brackets repre-

sent ensemble averaging over homogeneous directions, usually over wall-parallel planes and time.

The first two datasets were characterized by small domains with high spatial resolution, while the

latter two datasets were characterized by much larger domains and a somewhat coarser resolution.

All the datasets were obtained using numerical codes that integrated the Navier-Stokes equations

in the form of evolution problems for the wall-normal vorticity and the Laplacian of the wall-

normal velocity.12 The spatial discretization used de-aliased Fourier expansions in wall-parallel

planes and Chebyshev polynomials in the wall-normal direction.

B. Two point scale energy budget

The second-order structure function hdu2i, where du2¼ duidui, dui¼ ui(xsþ rs)� ui(xs) is the

fluctuating velocity increment and hi represents ensemble averaging, can be interpreted as the

amount of energy associated with a given scale r ¼ ffiffiffiffiffiffiffi
rsrs
p

.15 This quantity is a function of the sep-

aration vector ri and the mid-point Xci ¼ 0:5 x0i þ xi

� �
.

For a planar channel or pipe flow, a simultaneous view of spatial fluxes and scale processes

can be achieved by a suitable generalization of the scale energy budget as,

rr � hdu2dui þ 2hdudvi dU

dYc

� ��
þ @hv

�du2i
@Yc

þ 2
@hdpdvi
q@Yc

� �
¼ 2� r2

r þ
@2

8@Y2
c

� �
hdu2i � 4��; (1)

where the asterisk defines a mid point average, e.g., �� ¼ ð�ðxiÞ þ �ðx0iÞÞ=2.1 Terms with r-deriva-

tives are related to the flux through scales while those with Yc-derivatives arise due to physical

inhomogeneity. Equation (1) holds when the two points considered lie at the same wall-normal

location, see also Marati et al. for a more detailed derivation.2

In order to evaluate an effective contribution at given values of r and Yc for all the terms in

Eq. (1), we introduce an r-average and the r-averaged form of Eq. (1) is given by

Trðr; YcÞ þPðr; YcÞ þ Tcðr; YcÞ þ Pðr; YcÞ ¼ Drðr; YcÞ þ Dcðr; YcÞ þ Eðr; YcÞ: (2)

Here, Tr is the inertial flux through the scales, P accounts for production, Tc is the inertial contribu-

tion to the buildup of the spatial flux of scale energy and is strictly associated with inhomogeneity,

and P is an inhomogeneous contribution related to the pressure-velocity correlation. On the right

hand side, E is the dissipation term, while Dr and Dc are the diffusive contributions to the flux through

the scales and the spatial flux, respectively. The terms of Eq. (2) can be combined and recast as

Trðr; YcÞ þPeðr; YcÞ ¼ Deðr; YcÞ þ Eðr; YcÞ ¼ Eeðr; YcÞ; (3)

where Pe is the effective production accounting for production, physical space transfer, and the

pressure-velocity correlation, De is the effective diffusion accounting for physical space diffusion

and scale space diffusion, while Ee is the effective dissipation consisting of the effective diffusion

and the dissipation. This can be interpreted that the sum of transfer through the scales (Tr) and

effective production (Pe) is balanced by the dissipative and diffusive contributions (Ee). More-

over, an inspection of the individual terms of Eq. (3) in the r� Yc-plane can be very useful, since

this provides a direct method of determining the relative dominance of terms at every wall-normal

location and scale.

TABLE I. Parameters of the DNS datasets. Details of the datasets are available in Re180;2 Re300;13 Re590;8 Re934.14

The wall-normal spacings Dyþ indicated are at the center of the channel.

Dataset Res Lx=d Lz=d Nx�Ny�Nz Dxþ Dyþmax Dzþ

Re180 178 4 2 256� 129� 128 2.8 4.4 2.8

Re300 298 2p p 512� 193� 256 3.7 4.9 3.7

Re590 587 2p p 384� 257� 384 9.6 7.2 4.8

Re934 934 8p 3p 2048� 385� 1536 11.5 7.6 5.7

015101-3 Reynolds number effects on scale energy balance Phys. Fluids 24, 015101 (2012)
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III. RESULTS AND DISCUSSION

A. Single point statistics of DNS datasets

The mean velocity and turbulence intensity profiles for all these datasets are available in the

references listed in Table I. The variation of the mean velocity and turbulence intensity profiles

with Reynolds number are identical to the trends observed in Hoyas et al.10 For all datasets, the

peak of the streamwise turbulent intensity uþrms is located at yþ¼ 16. The profile of vþrms has the

smallest magnitude among the three velocity components, and this quantity increases with yþ until

yþ� 50, beyond which it decreases very slowly. Similarly, the profile of wþrms increases with yþ

until yþ� 50, and decreases very gradually for larger yþ. The magnitudes of uþrms match in the

range yþ< 16 for all Reynolds numbers, beyond which the magnitude is larger for the higher

Reynolds numbers. The magnitudes of vþrms and wþrms increase with Reynolds number for all yþ,

with an increasing difference as yþ increases.

The trends of the single point turbulence kinetic energy balance also match the findings in

Hoyas et al.10 The peak of production occurs in the buffer region at yþ¼ 12–16. A significant

amount of this energy is dissipated locally, while the excess feeds turbulent convection and diffu-

sion. The equilibrium nature of the logarithmic region is observed in spite of the moderate Reyn-

olds numbers used here. This trend continues through the outer logarithmic layer, where the

magnitudes of all the terms reduce to near zero. The production and dissipation increase with

increasing Reynolds number, whereas the convective and diffusive terms remain relatively con-

stant. The peak value of production increases with Reynolds number in this range and asymptotes

towards the limit for infinite Reynolds numbers equal to 0.25.16 These observations regarding the

production and dissipation are consistent with similar results presented by Abe et al., Fisher et al.,
Moser et al., and Hoyas et al.8–10,17

B. Variation of scale energy with Reynolds number

Figure 1(a) shows the variation of the scale energy as a function of the wall-normal location

yþ and the streamwise scale rþx , while Figure 1(b) shows the scale energy as a function of yþ and

spanwise scale rþz for Re590 and Re934. For the corresponding plots from Re180, see Marati

et al.2 These figures focus on the variation of scale energy in the small length scales, up to 250 vis-

cous units.

In order to analyze the behavior of hdu2i for finite values of the scales and distance from the

wall, the plane ðrþx=z; y
þÞ is divided into two areas by a straight line representing jyþ. In the logarith-

mic region of the boundary layer, the shear scale Ls ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
h�i=S3

p
, where S¼ dU=dy. Recently, the

scaling of mixed structure functions in turbulent boundary layers based on experimental data from

FIG. 1. (a) Isolines of hdu2ðrþx ; 0; 0jyþÞi in the ðrþx ; yþÞ plane. (b) Isolines of hdu2ð0; 0; rþz jyþÞi in the ðrþz ; yþÞ plane. Solid

isolines are from Re590 and dashed isolines are from Re934. Numbers on the isolines indicate the value of that specific iso-

line. The heavy solid line is jyþ.

015101-4 Saikrishnan et al. Phys. Fluids 24, 015101 (2012)
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x-wires was discussed in Jacob et al.18 The authors demonstrated that the anisotropic behavior of the

fluctuations throughout the boundary layer could be understood in terms of a superposition of two

distinct regimes. Further, the scale at which the transition between these regimes occurs is controlled

by the magnitude of the mean shear, which manifests itself in the shear scale. Below the shear scale,

an isotropy-recovering behavior occurs, which is characterized by dimensional predictions based on

Lumley’s argument.19 Above the shear scale, the anisotropy introduced by the flow modifies the iso-

tropic scaling laws predicted by Lumley. Further, it was observed that the isotropic behavior is

much more prominent farther away from the wall. In the area characterized by the theoretical iso-

tropy recovery, using the Kolmogorov scaling yields hdu2i / �2=3r2=3. In the logarithmic layer, if

the equilibrium layer concept is used, the following expression is obtained hdu2i ’ j2=3u2
sðr=yÞ2=3

,

and hence in the region to the left of the shear scale, the isolines of the scale energy should be

straight lines fanning out of the origin. Such an expectation is reasonably confirmed in the plots in

Figure 1, where the data for Re934 show a more marked trend toward this linear behavior of the iso-

lines than for Re590 and the corresponding isolines for Re180 shown in Marati et al.2 Regarding the

areas outside the isotropy recovery region, the effect of Reynolds number becomes more apparent,

i.e., the curves for the different Reynolds numbers diverge, with a larger value of hdu2i for the larger

Reynolds number at the same wall-normal location and scale.

The maximum of the scale energy occurs along the line yþ¼ 16 for both Reynolds numbers,

which is consistent with the peak of production from single point TKE statistics. The contours of

the largest value of scale energy are not closed at the highest rþx shown ðrþx ¼ 250Þ, and therefore,

the maximum value of scale energy must occur at a larger scale. An analysis of variation of scale

energy up to rþx � 1200 was conducted for the higher Reynolds numbers, and still no peak of the

scale energy in the longitudinal direction was observed. This result appears consistent with the

long streamwise correlations found in turbulent boundary layers.20 Previous studies20–23 have

documented the presence of an inner peak in spectrograms corresponding to yþ � 15, kþx � 1000,

where kx and kþx are the streamwise wavenumber and wavelength, respectively, and kþx ¼ 2p=kx.

The inner peak is believed to relate to the near-wall cycle and associated near-wall streaks

reported in Kline et al.24 The fact that we do not observe such a peak appears to highlight one dif-

ference between the current analysis conducted using the physical displacement rþx and spectral

analysis that determines a streamwise wavelength kþx .

In comparison, the correlations in the spanwise direction are shorter. Comparing the scale

energy values at the larger scales, we observe that the gradient of scale energy with yþ is much

larger in Figure 1(b) than the corresponding ones from Figure 1(a), indicated by the closely spaced

contour levels in the range yþ< 50. The peak of the scale energy occurs at yþ¼ 16 and rþz ¼ 70

for Re590. The scale energy increases with yþ in the range 10< yþ< 16, while it decreases with

yþ for yþ> 16. The scale energy is relatively independent of rþz until yþ� 50, and beyond this,

the scale energy increases with increasing rþz .

At the smallest scales (rþx < 30 in Figure 1(a), rþz < 30 in Figure 1(b)), the scale energy which

matches for both Reynolds numbers does not vary with yþ. The data from the two Reynolds num-

bers starts deviating at larger scales. At locations further from the wall, the scale at which hdu2i
from the two Reynolds numbers diverges reduces. For example, in Figure 1(b), the scale energies of

the two Reynolds numbers diverge at rþz ¼ 65 at yþ¼ 50, and at rþz ¼ 25 at yþ¼ 100. At larger

scales, the scale energy appears independent of Reynolds number only in the viscous sublayer and

buffer regions. The difference in scale energy between the two Reynolds numbers increases with

increasing scale. Similarly, with increasing yþ, the difference between scale energy between the two

Reynolds numbers increases. For example, consider 4 points on Figure 1(b) representing combina-

tions of scales and wall-normal locations: ðrþz ; yþÞ ¼ ð50; 50Þ; ð50; 150Þ; ð150; 50Þ and (150,150).

The differences in scale energy between the two Reynolds numbers at these points are 0, 0.25, 0.70,

and 0.79, respectively. Thus, Reynolds number effects are observed with increasing scale as well as

increasing wall-normal location.

C. Variation of terms of energy budget with Reynolds number

Figures 2–4 show the trends in the terms of the scale energy balance at various locations in the

channel. The four locations represented in these figures are yþ¼ 10 (lower buffer region), yþ¼ 100,

015101-5 Reynolds number effects on scale energy balance Phys. Fluids 24, 015101 (2012)
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yþ¼ 250, and y=d¼ 0.8 (outer region). In all these figures, the effective production (Pe) and scale

transfer (Tr) terms are indicated with a negative sign for ease of presentation. The filled symbols

show the sum of Pe and Tr, which is expected to balance the effective dissipation Ee.

For all Reynolds numbers and wall-normal locations, �Pe and Ee increase with increasing rþ

before reaching a constant value, while �Tr increases initially with rþ and decreases at larger

scales. Looking at the individual terms in Figures 2(b) and 3(b), the production term �P increases

in magnitude similar to �Pe. The spatial flux of scale energy �Tc is relatively small in the viscous

sublayer, buffer region and logarithmic region, implying that �P is the major contributor to �Pe.

In the outer layer, the magnitudes of all terms are very small, and �Tc becomes comparable to

�P. �Tc remains almost constant for all rþ. The scale space diffusion Dr is maximum at the

smallest scale and reduces to almost zero at larger scales. The physical space diffusion Dc has a

small non-zero value only at yþ¼ 10, while remaining zero at other locations. In general, Ee

becomes equal to E at large scales. It must be kept in mind that all the terms shown here are

FIG. 2. (a) Scale energy balance at yþ¼ 10 (viscous sublayer=buffer region). (b) Individual contributions of terms from

(a). �Pe is the effective production; �Tr is the transfer in scale space; Ee is the effective dissipation; filled symbols repre-

sent (PeþTr). Dashed lines and filled circles are from Re934; solid lines and filled squares are from Re590; dashed-dot-

ted-dotted lines and filled diamonds are from Re300; dashed-dotted lines and filled triangles are from Re180. �P is the

turbulent production; �Tc is the transfer in physical space; E is the turbulent dissipation; Dr and Dc are the diffusion in

r-space and physical space, respectively.

FIG. 3. (a) Scale energy balance at yþ¼ 100 (inner logarithmic region). (b) Individual contributions of terms from (a). Def-

initions of the various terms are the same as in Figure 2. The vertical dashed line in (a) represents the cross-over scale at

Res¼ 934.
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averaged in r-space. The total imbalance between the terms, indicated by the difference between

the curve for Ee and the filled symbols, is very small for all Reynolds numbers. The difference

between these two terms is the contribution of the pressure term, which was not evaluated in the

current study.

The qualitative trends observed for the various terms at yþ¼ 10 in Figure 2(a) do not change

with Reynolds number. However, the actual magnitudes of certain terms are different for the two

lower Reynolds numbers, Re180 and Re300, while all the terms from Re590 and Re934 match

almost exactly over the entire range of scales. �Pe is significantly lower at Re180 than for the

other three Reynolds numbers, which lie very close to one another. This suggests that the range of

scales at Res¼ 180 is insufficient to capture the dynamics observed in higher Reynolds number

flows. �Tr matches exactly for all the datasets, which suggests that the influence of Ee is also

higher at the three higher Reynolds numbers.

In comparison, the scale energy balance at yþ¼ 100 shown in Figure 3(a) shows that �Pe

increases with Reynolds number from Re180 to Re590, while curves from Re590 and Re934

match each other extremely closely over the range of scales shown in this plot. A possible expla-

nation for this might be that this location is nominally in the logarithmic layer for Re590 and

Re934, whereas it is in the outer layer for Re180 and Re300. Further, a smaller range of eddy

scales exists for Re180 and Re300, and there is no distinct separation between the inner and outer

layers. By contrast, �Tr increases steadily from Re180 to Re934, indicating a larger energy trans-

fer with increasing Reynolds number. At rþ up to 1200 for Re590 and Re934 (results not shown

here), it was observed that Re934 had a larger magnitude of both �Pe and �Tr than Re590. This

might be because the effect of Reynolds number on �P becomes more prominent with increasing

scales and therefore is noticeable only at the larger scales.

Figures 2(b) and 3(b) show the individual contributions of the terms of the scale energy budget

as described in Eq. (2). At yþ¼ 10, �Tc is negative for all scales at all Reynolds numbers, while it is

always positive at yþ¼ 100. Thus, the role of �Tc in �Pe is reversed between the buffer region and

the logarithmic region. While scale energy is locally removed from the viscous sublayer, it is locally

added to the logarithmic region. However, smaller �Tc implies that this addition of scale energy is

very small. The magnitudes of the terms in the inset of both figures are different between Re180 and

the three larger Reynolds numbers. At yþ¼ 10, Dc is largest and Dr is smallest for Re180. The com-

bined effect of these two terms provides a nearly constant value of net diffusion for the three higher

Reynolds numbers, suggesting that the effect of increased �P at larger Reynolds numbers is

directly balanced only by an increased amount of E in the buffer region. At yþ¼ 100, the negligible

role of �Tc and Dc suggests that this region contains dynamics similar to homogeneous shear

FIG. 4. (a) Scale energy balance at yþ¼ 250 (outer logarithmic region). (b) Scale energy balance at y=d¼ 0.8 (outer

region). Definitions of the various terms are the same as in Figure 2. Dashed lines and filled circles are from Re934; solid

lines and filled squares are from Re590.
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flow.25 However, in the boundary layer, this region is traversed by a nearly constant flux of turbulent

kinetic energy away from the wall, unlike in a homogeneous shear flow.

Further from the wall (yþ¼ 250) shown in Figure 4(a) for Re590 and Re934, the magnitudes

of the terms are smaller than those at yþ¼ 100 because the overall scale energy dynamics become

weaker with increasing yþ. For Re590, yþ¼ 250 equals y=d¼ 0.43, where the logarithmic law of

the wall and inner scaling no longer apply, but the curves are presented here for completeness. At

this location, curves of �Pe from Re590 and Re934 match each other very closely, with �P
again being the dominant contributor. As at yþ¼ 100, �Tr at yþ¼ 250 increases with increasing

Reynolds number over the full range of rþ plotted, suggesting a larger magnitude of energy being

transferred between the scales at larger Reynolds numbers.

In general, the scale energy terms decrease with increasing yþ, mainly due to smaller popula-

tions of eddies and reduced interactions between them. As yþ increases, the contribution of the

mean shear becomes smaller and smaller. A conventional method of comparing quantities in the

outer layer is by comparing the same wall-normal location normalized with the channel half-

width, as opposed to normalizing with inner variables Us and �. Figure 4(b) shows results from

the scale energy budget at y=d¼ 0.8 at the three higher Reynolds numbers. In this region, the mag-

nitude of each term decreases with increasing Reynolds number. For example, �Pe and �Tr for

Re300 are almost twice as large as the same terms from Re590, which in turn are larger than the

corresponding terms from Re934. This is expected since the dynamics in the outer region are

weaker at larger Reynolds numbers where interactions from the opposing half of the channel play

a weaker role.

D. Dynamics of transfer terms: the inverse energy cascade

To understand the dynamics of the transfer terms in the viscous sublayer and the buffer

region, contour plots of these terms are presented in Figure 5. For completeness, these plots are

shown up to yþ¼ 100, which extends into the inner part of the logarithmic region. In the range of

yþ shown, the values of Tr and Tc from Re590 and Re934 match each other almost identically, so

only results from Re590 are presented for discussion. By definition, Tr(r
þ,yþ) is the transfer of tur-

bulent kinetic energy at a given yþ and rþ. This quantity is averaged over r-space, which implies

that the value of Tr at scale rþ includes the combined effect of all scales smaller than or equal to

rþ. When Tr is negative, it implies that energy is transferred into the domain of scale rþ from

scales larger than rþ. This is the conventional cascade of energy in turbulence. When Tr is posi-

tive, a net inverse cascade occurs in which energy is transferred from the small to large scales.

FIG. 5. (a) Contour plot of Tr(r
þ,yþ) (b) Contour plot of Tc(r

þ,yþ). In both plots, the zero contour line is shown by the

dashed-dotted line. Positive contours are shown with solid lines and negative contours are shown with dashed lines. The

data shown in these plots are from Re590.
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Figures 5(a) and 5(b) show contours of Tr and Tc as a function of rþ and yþ. In these figures,

Tr and Tc are presented without the negative sign, which makes the convention different from the

earlier scale energy plot in Figure 2. The zero crossing curve of Tr shown as the dashed-dotted

line represents the location and scale where the switch between forward and reverse cascade

occurs. In the viscous sublayer (yþ< 6), Tr is always negative, implying that at all scales, a con-

ventional energy cascade exists. In the region 6< yþ< 37, the smallest scales still follow the

direction of the conventional cascade, transferring energy to smaller and smaller eddies until it is

dissipated by viscosity. At the larger scales, however, a net transfer of energy occurs from small to

large scales. At yþ¼ 10, this threshold of the change in transfer direction is rþ¼ 17. At yþ¼ 30,

the threshold is at rþ¼ 72. Beyond the buffer region at yþ> 37, the normal cascade recovers for

all scales.

In LES, backscatter refers to the energy being transferred from the modeled subgrid scales, to

the larger computed grid scales. It is now widely accepted that it is necessary to incorporate back-

scatter into LES models to capture the flow physics accurately. The inverse cascade of energy

observed in the current study is a clear manifestation of energy transfer from small to large scales.

A number of studies have been conducted to understand and quantify the backscatter in turbulent

channel flows by using filtered DNS data to mimic the effect of LES.26–28 In particular, a study of

a turbulent channel flow at Res¼ 210 pointed out that the subgrid scale transfer is a function of

both the scale and the wall-normal location.29 A contour plot of sub-grid scale transfer as a func-

tion of scale and distance from the channel wall was presented in that work. It was concluded that

very close to the wall, the sub-grid scale transfer is positive, indicating a conventional transfer.

Slightly further away from the wall, backscatter was observed for all scales. Beyond the region of

backscatter, the conventional transfer was once again set up. These observations appear consistent

with the results from the current study, although the present studies are extended to significantly

higher Reynolds numbers including a more distinct logarithmic region.

Tc is plotted as a function of yþ and rþ in Figure 5(b). A positive value of Tc indicates a local

removal of energy from that spatial location, while a negative value of Tc indicates a local supply

of energy. Hence, this term reaches a maximum where the peak of scale energy occurs, which is

within the buffer layer where the largest production of energy takes place. Similar to the trends

observed in Figure 5(a), Tc is predominantly negative in the viscous sublayer. It can be observed

that Tc is positive for yþ> 8, which is smaller than the peak production location of yþ¼ 16. At the

lower edge of the logarithmic layer, Tc becomes negative once more, but with a very small magni-

tude, which does not play a significant part in the scale energy dynamics in the logarithmic layer.

These observations conform to accepted notions of physical space energy transfer in wall-

bounded turbulent flows.

E. Cross-over scale between production and scale transfer terms

The cross-over scale lþc is the scale where the curves for �Pe and �Tr intersect, as shown by

the vertical dashed line in Figure 3(a). Thus, at scales smaller than lþc , the scale energy transfer is

more significant, whereas at larger scales, the effective production becomes dominant. In Marati

et al., it was argued on the basis of dimensional arguments and classical equilibrium theory that lþc
is related to the shear scale Ls ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
h�i=S3

p
, where S¼ dU=dy.2 In Figure 6(a), the filled triangles

show the values of lþc at Re180, which follow a linear trend for 20< yþ< 120. The slope of this

line was calculated as 0.37, approximately equal to the Karman constant j. Thus, the value of the

slope calculated at this small Reynolds number seemed physically reasonable. In fact, when the lþc
values from the higher Reynolds numbers are added to this plot, it is observed that they follow a

very different trend and are consistently larger than those observed for Re180. Close to the wall

(yþ< 50), the values of cross-over scale from the three higher Reynolds number are very close to

each other. For example, at yþ¼ 50, the difference in cross-over scale between Re300 and Re934

is 3.5 wall units. However, beyond yþ¼ 50, lþc increases with increasing Reynolds number. A

comparison of the trends of the curves in Figures 3(a) and 4(a) yields an explanation for this.

Although the curves of �Pe do not change significantly with increasing Reynolds number, the

transfer curves do. Higher Tr with Reynolds number results in larger values of lþc at higher Reyn-

olds numbers, hence the larger slopes at higher Reynolds numbers. Physically, this means that
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beyond the buffer region, the range of transfer dominated scales increases with increasing Reyn-

olds number. In order to better understand the trends observed, lines of best fit are also plotted in

Figure 6(a). The presence of two distinct ranges and a change in slope in the range 60< yþ< 80 is

seen in all three higher Reynolds number cases. Close to the wall (yþ< 60), the slopes of the best

fit lines are 0.58 for Re300, 0.69 for Re590, and 0.78 for Re934. Further away from the wall

(60< yþ< 200), the slopes of the lines decrease to 0.20 for Re300, 0.39 for Re590, and 0.49 for

Re934. The difference is slope between the different Reynolds number increases with yþ, thus

showing a fan-type behavior. At large yþ, each curve tends to asymptote to a constant value

approaching the outer layer. The distinct presence of two ranges with linear variation of the cross

over scale may have significant consequences. In fact, the linear increase of lþc with yþ that holds

in the buffer-region, once better understood on physical grounds, in principle, could be exploited

in large eddy simulations to understand the effect of the filter width, which close to the wall is typ-

ically in the production range above lþc .

Figure 6 shows the shear scale Lþs in the channel simulations for Reynolds numbers in the

range Res¼ 300–2000.30 In the figure, we added data at Res¼ 2000 to show the trend of the shear

scale towards a well defined asymptotic behavior. The shear scale follows one linear trend close to

the wall and a second one further away from the wall with a smaller slope, then goes to infinity at

yþ¼Res. Upon increasing the Reynolds number, the shear scale recovers the asymptotic predic-

tion in the logarithmic layer of jyþ, shown by the straight line. The symbols represent lþc from the

four Reynolds numbers we address in the scale energy analysis. Here, the lþc values have been

rescaled by the same constant of order one chosen to match the shear scale for the largest available

Reynolds number Re934. At Re934, the rescaled lþc matches the shear scale very well for the

entire range of yþ shown. The plots in Figure 6 thus reinforce the relationship between Lþs and lþc .

Clearly, the dimensional estimate of the crossover scale as provided by the shear scale cannot take

into account the presence of an order one dimensionless constant. Once the constant is extracted

from the higher Reynolds number data, the two quantities collapse. Rescaling all the data with this

value, the definite trend is that the two quantities, Lþs and the rescaled lþc , approach each other

with increasing Reynolds number. We stress once more that below lþc , the Kolmogorov cascade

should be asymptotically recovered. In conclusion, the cross-over scale is an ideal parameter to

understand the dominant terms in the scale energy balance, and simultaneously provide a bound-

ary between the isotropic and anisotropic scales in the flow.18

IV. SUMMARY AND CONCLUSIONS

The traditional method of classification of the momentum deficit region into the viscous sub-

layer, buffer region, logarithmic region, and outer region lacks information about the range of

FIG. 6. (a) Variation of cross-over scale lþc with yþ for all DNS datasets. (b) Variation of shear scale Lþs and lþc with yþ for

Reynolds numbers in the range Res¼ 300–2000. The straight line is the asymptotic prediction in the logarithmic layer jyþ.

The symbols represent lþc from the four Reynolds numbers rescaled by the same constant of order one chosen to match the

shear scale for the largest available Reynolds number Re934.
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scales and contributions of individual scales to the energy balance. Similarly, the spectral view of

turbulence lacks spatial information about the physical distribution of eddies. The methodology

presented here combines these complementary approaches to provide a unified technique of ana-

lyzing wall-bounded turbulent flows. It was previously utilized with Direct Numerical Simulation

(DNS) data of a channel flow at a friction Reynolds number of Res¼ 180 where significant low

Reynolds number effects emerged.2 This paper extends the analysis to higher Reynolds numbers

in the range Res¼ 300–934 to document the effects of increasing Reynolds number.

Comparing the results of the scale energy analysis for Re300, Re590, and Re934, the viscous

sublayer and buffer regions were found to have reached a Reynolds independent state as shown by

the matching of the different terms of the budget across the entire range of available scales. Fur-

ther away from the wall in the logarithmic region, the transfer of energy across scales increased

with Reynolds number, while the production of energy remains constant with increasing Reynolds

number. In order to balance the increased transfer of energy, the dissipation of turbulent kinetic

energy increased with Reynolds number. As previously observed at Res¼ 180, the present data

confirm the existence of a range of scales in the buffer layer where energy flows from the smaller

to the larger scales, indicating a reverse energy cascade associated with the near-wall turbulent ki-

netic energy production cycle. The spatial flux departs from this region, indicating a net transfer

of energy both towards the wall and the bulk of the flow. In the present study, this envelope has

been characterized for Re590 and Re934, and this envelope is observed in the range 6< yþ< 37,

where all scales except the smallest scales display characteristics of an inverse energy cascade.

Though a proper logarithmic region may not be fully formed at the present Reynolds numbers, a

region crossed by a substantially constant energy flux towards the outer region is nevertheless

clearly observed at the higher Reynolds number. Here the energy transfer among scales goes sys-

tematically from large to small, recovering the classical Richardson view of the turbulent cascade.

In this region, the strength of the cascade and the production of scale energy increases with Reyn-

olds number.

One of the interesting aspects of the present approach is its capability to assess the distribution

of energy production and energy transfer in a spectrum of scales as a function of the distance from

the wall. Specifically, two ranges are identified, dominated by energy production and energy trans-

fer, respectively. The cross-over scale between these two ranges is found to increase linearly with

distance from the wall up to the lower logarithmic region, with its slope relatively independent of

the Reynolds number. The slope of this curve is distinctly larger than that found previously using

the Re180 data. Further away from the wall, the cross-over scale still grows linearly; however, the

slope increases with increasing Reynolds number. The difference in cross-over scale with Reyn-

olds number is amplified at higher yþ, such that these lines exhibit a fan-type behavior. The transi-

tion between the two types of linear behaviors occurred at around yþ¼ 60 for the three higher

Reynolds number datasets. Also, a direct relation between lþc and the dimensional estimate of the

shear scale is confirmed by the present data, such that the shear scale could be used to predict the

crossover scale. These results involving production and transfer dominated scales may find appli-

cation in the context of large eddy simulations, where a clear understanding of the dominant dy-

namics within the filtered range of scales may be helpful for improved numerical modeling of the

wall region.
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