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Wall turbulence closure based on classical similarity laws and the attached 
eddy hypothesis 

A. E. Perry, I. Maru§i6, and J. D. Ua) 
Department of Mechanical and Manufacturing Engineering, University of Melbourne, Parkville, 
Victoria 3052, Australia 

(Received 17 May 1993; accepted 8 October 1993) 

A new look at the closure problem of turbulent boundary layers is taken here using recently 
derived analytical expressions for the shear stress distributions. These expressions are based on 
the logarithmic law of the wall and law of the wake formulation of Coles [J. Fluid Mech. 1, 191 
(1956)] with the mean continuity and the mean momentum differential and integral equations. 
The concept of eqUilibrium layers of Clauser [Adv. Mech. 4, 1 (1956)] is extended and using 
similar ideas as Rotta [Prog. Aeronaut. Sci. 2, 1 (1962)] for self-similarity, a closure scheme is 
proposed for layers developing in arbitrary pressure gradients for the case where the streamwise 
derivative of the Coles wake factor is not too large. For a given flow case, this Coles wake 
condition can be tested with internal consistency checks. The mathematical framework is most 
suitable for incorporating Townsend's attached eddy hypothesis as recently developed by Perry, 
Li, and Marusi6 [Philos. Trans. R. Soc. London Ser. A 336, 67 (1991)] for closure. This gives 
an opportunity to incorporate coherent structure concepts into closure schemes. Possible ways 
of handling the difficult case where the streamwise derivative of the Coles wake factor is 
significant are discussed. 

I. INTRODUCTION 

In this work, a new look is taken at the closure prob
lem for turbulent boundary layers in the light of new and 
more complete analytical expressions recently derived for 
the shear stress profiles. 

One motivation for this work was to incorporate the 
attached eddy hypothesis of Townsend1 as further devel
oped by Perry, Henbest, and Chon!f into a closure scheme. 
Some initial steps towards this are given by Perry, Li, and 
Marusi6.3 This represented one of the first attempts to in
corporate coherent structure concepts into closure schemes 
for wall turbulence and avoids the use of local exchange 
coefficients. This has prompted the following questions for 
this work: 

( 1) What sort of mathematical framework would be 
needed to house such a scheme? Closure schemes 
such as the attached eddy hypothesis by Perry 
et al. 3 use convolution integrals and so differential 
field methods are clearly inappropriate. Hence an 
integral scheme is the obvious choice. 

(2) What high quality information and what reliable 
assumptions can we use to feed into this frame
work so as to minimize arbitrary assumptions for 
closure? 

(3) At what point in the framework does closure nat
urally enter and what are the most natural nondi
mensional parameters to use? 

For (2) above, the following have been chosen: 

(a) The logarithmic law ofthe wall and the law of the 
wake. 

a) Present address: Department of Mechanical Engineering, University of 
Sydney. N.S.W. 2006, Australia. 

(b) The mean momentum differential and integral 
equations. 

(c) The mean continuity equation. 
(d) The assumption that streamwise derivatives of the 

normal Reynolds stresses are negligible. 
(e) The assumption that close to precise two

dimensional mean flow is possible. 
(f) The belief that if theoretical conditions can be 

found from the mean momentum and continuity 
equations which are consistent with self-similarity 
in both the velocity defect and shear stress profiles, 
then when these conditions are applied, such self
similarity will indeed occur (e.g. see Rotta4

). 

Assumption (a) is consistent with the classical approach 
to wall turbulence using the similarity schemes of 
Millikan,5 Clauser,6,7 and Rotta.4 

Using assumptions (a) to (e) above, the shear stress 
relationships have been derived. Further,_with'tile aid of 
(f) above, evolution equations for the streamwise develop
ment of equilibrium layers have been derived. This is ex
tended to quasiequilibrium layer development where the 
Coles wake factor is permitted to vary slowly with stream
wise distance. The required relationships for closure and 
the most appropriate nondimensional parameters to use 
are derived. The form of these closure relationships would 
need to be obtained from a series of systematic "once and 
for all" experiments. Ii might also be possible to use the 
attached eddy hypothesis in conjunction with this. An ex
ample of this is illustrated later in the paper. 

For the case of Coles wake factor undergoing rapid 
streamwise increase, the quasiequilibrium assumptions 
breakdown. Problems with this are left to future work but 
possible directions are briefly discussed. 

Much of this work in deriving the shear stress profile 
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FIG. 1. Details of how various wake parameters are defined. 

expressions is based on the work of Coles,8 Li,9 Marusi6,10 
Perry and Li, II and Perry. 12,13 Parts ofthis paper are based 
on a more detailed G.A.L.C.I.T. report by Perry.13 As far 
as possible results have been kept in analytical form and 
here MATHEMATICA was found to be most useful. 

II. SHEAR STRESS PROFILES IN TURBULENT 
BOUNDARY LAYERS 

We start with the Colesl4 logarithmic law of the wall, 
law of the wake formulation. This can be written as 

U 1 [Zu'r] IT -=-In - +A+- W ['YI IT] U-r K V K e'" 
(1) 

where U is the mean velocity in the streamwise direction 
(i.e., the x direction), z is the distance normal to the wall, 
U-r is the friction velocity given by U-r= (701 p) 1/2 where 
70 is the wall shear stress and p is the fluid density, v is the 
fluid kinematic viscosity, K is the von Karman constant 
(later assumed to be 0.41), A is the universal smooth wall 
constant (later assumed to be 5.1), II is the Coles wake 
factor which generally varies with streamwise distance and 
We is the Coles wake function. Traditionally We is a uni
versal function of 77T alone where 77T=Z/SeT where SeT is 
the traditional Coles thickness which is located at the point 
of maximum deviation from the semilogarithmic law (see 
Fig. 1). However we will use the Lewkowiczls formula
tion, Eq. (2), which ensures that au/az=o at 77= 1 where 
77=Z/Se and Se is also shown in Fig. 1, i.e. 

We [77, IT]=2772(3-277)-~ 772(1-77)(1-277). (2) 

An alternative formulation, which also satisfies the above 
condition, was used by Perry and Li16,1l and Marusi610 and 
is of the form 

Wc [77, II]=l-cos[Y1T?J] 

where 

and 
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(3) 

This trigonometric formulation is unsuitable for low values 
of II since for II less than about 0.2, the solution for Y 
follows an unrealistic branch. Also the polynomial formula 
was found to be slightly more convenient for computing 
shear stress profiles and mean profile parameters. 

In this work the velocity defect formulation will be 
used throughout. That is 

UI-U 
----u-=f[ 77,II] 

-r 

I II II 
=--ln77+- We[I,II]-- We[77, II] (4) 
KKK 

where UI is the local free-stream velocity. 
The mean continuity equation is 

au aw 
-+---=0 ax az (5) 

where W is the mean velocity component normal to the 
wall. Note that two-dimensional mean flow is being as
sumed. 

The mean momentum equation is 

au au 1 dp 1 a7 
u-+w-=---+--ax az pdx paz (6) 

where p is the free-stream static pressure and 7 is the local 
shear stress. It should be noted that streamwise gradients 
of turbulence normal stresses are being neglected. Later the 
relationship 

7 au 
-= -u'w' + v--::
p az (7) 

will be used. Here vau/az is the viscous contribution and 
- u'w' is the Reynolds (kinematic) shear stress where u' 
and w' are the fluctuating components of velocity in the x 
and z directions respectively and the overbar denotes a 
time average. For the region of flow where zu,,/v > 50, the 
viscous contribution is negligible. Perry,12 who considered 
equilibrium layers found that the inclusion of the buffer 
zone and viscous sublayer in the formulation had negligible 
effect on the overall momentum balance and shear stress 
distribution for practical ranges of Reynolds number and it 
is assumed here that it is quite safe for the purpose of 
momentum balances and shear stress profiles to take the 
logarithmic law profile all the way to the wall. 

Substituting (4) and (5) into (6) and making use of 
relations derived from the logarithmic law of the wall and 
momentum integral equation we obtain, after much alge
bra 

Here 

(9) 

where C'.r is the local skin friction coefficient, given by 
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FIG. 2. Components of Eq. (8) for a typical adverse pressure gradient 
case. 

(10) 

Functions 11 and 12 and 13 are complicated and their 
detailed forms have been deduced by Perry13 and some 
details are given in the Appendix. Equation (8) is the sim
plest and most convenient form so far derived and it can be 
seen that there are three components of stress given and 
these are shown diagrammatically in Fig. 2 for a typical 
adverse pressure gradient boundary layer. The first term 
gives a shear stress distribution which resembles a zero 
pressure gradient layer. The third term adds a curve with a 
positive maximum but the second term is negative. A pos
itive fJtflllldx causes a reduction in the stress distribution. 
In the case of favorable pressure gradients to be considered 
later with numerical examples, the signs of the second and 
third terms are opposite to that of adverse pressure gradi
ents. 

In an equilibrium layer, the second term in (8) is zero 
and for adverse pressure gradients, the nondimensional 
shear stress reaches the highest possible maximum value. 
This is an interesting property of equilibrium boundary 
layers. 

Figure 3 shows some experimental data of Marusi610 

for a nonequilibrium layer compared with Eq. (8). Here, 
fJedITldx, (fJ/U1)dU1/dx, and S were obtained from ex
periment and fed into (8) and the agreement can be seen to 
be satisfactory. Figure 4 shows results which the authors 
interpolated from the data of East, Sawyer, and Nashl7 

who carried out a series of experiments on a family of 
equilibrium layers (i.e. SfJedITldx was approximately 
zero-see Sec. V). The interpolation gives the same values 
of IT as for Marusi6's data and the results are plotted to the 
same scale. It can be seen that the effect of fJedITldx is very 
large in the case of MarusiC's data and the maximum non
dimensional shear stress is considerably lower than the 
East et al. data. Thus there is no one to one correspon
dence between the nondimensional velocity defect profile 
(characterized by IT) and the nondimensional shear stress 
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FIG. 3. Nonequilibrium flow data of Marusi6 (Ref. 12). Solid lines are 
obtained using Eq. (8). 

profiles as is implied in theories which use universal distri
butions of eddy viscosity or mixing length. From what 
follows later, such theories would come to grief if 
fJedITI dx effects are significant. 

Equation (8) has been rigorously derived and so is an 
excellent tool for testing experimental data. Perry and Li ll 

applied (8) to the Reynolds shear stress data of many 
workers. Departures indicate either a lack of two
dimensionality or poor hot-wire techniques, assuming of 
course that the law of the wall and law of the wake for
mulation is correct. 

III. EVOLUTION EQUATIONS FOR EQUILIBRIUM 
BOUNDARY LAYERS 

The equations which govern the streamwise evolution 
of turbulent boundary layers will be given. Our attention 
for the moment will be confined to equilibrium layers and 
hence fJedITldx=O. We will use the logarithmic law of the 
wall, law of the wake and the momentum integral equa
tion. This latter equation is 

de + (fJ* +2)!!"- dUI =-k 
dx e UI dx S 

( 11) 

7 

.U!UJ 
6 3.23 

U~ 5 
2.46 

4 

3 

2 

FIG. 4. Authors interpolated data for the same values of II as shown in 
Fig. 3 for the approximate equilibrium flows of East et al. (Ref. 17). 
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where () and 5* are the momentum and displacement 
thicknesses respectively and are given by 

e C1 C2 
8"=S---gr' 

c 

5* CI 

8c=S 
where 

and 

Jl Joo (UI -U)2 
C2[11] = 0 12

[71, l1]d71= 0 -u:- d71· 

(12) 

(13) 

(14) 

(15) 

The analysis which follows makes use of the following def
initions and identities: 

5a dUI {3 
UI dx =-C1S 

where 

5*dp 
{3=--

1'0 dx 

where (3 is the Clauser7 pressure gradient parameter. 

(16) 

(17) 

From the logarithmic law of the wall and law of the 
wake 

Dcu'r 
_. =K.r=E[I1]exp[KS]. 

v 
(18) 

Here K1' will be referred to as the von Karman number; 
EII1] is given by 

E[I1] =exp[ -K(A+(I1/K) Wc [1,I1])]. (19) 

After a considerable amount of algebra, we arrive at 
two evolution equations which are given as (20) and (21) 
below. 

1 dS 
SE[I1] exp [KS]- dR =R[S,{3,I1], 

X x 

2 1 dX f3 
S E[I1] exp [KS]:2; dR = - C [11] , X x I 

where 

X= Ul= ~1-C 
'Uo p 

(20) 

(21) 

(22) 

where Cp is the local free-stream pressure coefficient. Also 

xUo 
R x=- (23) 

and 

v 

2{3CIS+CIS-{3C2 

R C1{KS2CI -KSC2+C2} 
(24) 

where Uo is the free-stream velocity at x =0; Rx is the most 
practical of Reynolds numbers since it is based on variables 
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explicitly specified by the user. Some of the intermediate 
equations used in arriving at the above relationships are 
given in the Appendix [Eqs. CA6) to CAlO)]. 

Equation (20) is derived from the momentum integral 
equation and the logarithmic law of the wall and the law of 
the wake. Equation (21) comes purely from the logarith
mic law of the wall and the law of the wake. 

Equations (20) and (21) are a pair of coupled equa
tions which have been derived for equilibrium layers where 
11 is invariant with streamwise Reynolds number Rx. One 
must keep in mind that E, C1, and C2 are all functions of 
11 alone and so are also invariant with Rx. A third equa
tion is needed for closure. From an extension of the work 
of Coles8 and Clauser7 we need to know the functional 
form 

{3={3[ 11, S]. (25) 

For further clues regarding (25) consider the following. 
For a true equilibrium layer we should have self-similarity 
in both velocity defect and the shear stress distributions 
but according to Rotta4 precise self-similarity is not possi
ble on a smooth surface except for equilibrium sink flows. 
This will be considered later. However, conditions for an 
approximate self-similarity can be obtained with the aid of 
(8). Since 8cdI1ldx=0 then (8) with (16) gives 

l' (3 
-=/1[71,11, S]-/3[71,I1, S]CS' (26) 
1'0 1 

Although it is not possible to collapse Tho for all 71 at a 
fixed 11, let us seek conditions necessary for forcing the 
profiles to match at 71 = m where m will be chosen to give 
reasonable collapse for most of the profile. In other words 

( ;) =/1[m, 11, S] - 13 [m,l1, S]:S=.2"[I1, m] 
o 1J=m 1 

(27) 

where in (27) {3 and S will be varied for fixed 11 in such a 
way as to produce a fixed .!f. It has been found 13 that 
m=O.4 appears to be close to an optimum choice for close 
to precise self-similarity for a wide range of 11 and for all S. 
It turns out that II[m,I1,S] is a ratio of two polynomials in 
S of the same order and as S-+ 00, II approaches a con
stant. Also f3[m,I1,S]/CIS has similar properties to 11 and 
as S -+ 00, 13/CIS approaches a constant. Hence for S -+ 00, 

{3 -+ const for fixed .2". 
It has been shown by Perry13 that for the cases con

sidered here the general behavior of S -+ 00 as Rx-+ 00 ap
plies. From (27) it can be seen that {3 must approach an 
asymptotic value f3g[I1] which is a function of 11 alone. In 
order to obtain closure, it is necessary to know the function 
{3g[I1]. East et al. 17 carried out a series of experiments on a 
family of equilibrium layers and assumed that {3 was a 
function only of 11 and data seem to fit a relationship pro
posed by Green et al. 18 which is 

{3g[l1] = (0.024( C2[I1]1CI [11] )2-1)/0.8. (28) 

This is shown later in Fig. 19 and it should be noted that 
for 11 =0, {3gZ -1/2 which is consistent with the work of 
Jones and Launderl9 for equilibrium sink flow at infinite 

Perry, Maru§ic, and Li 1027 
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Reynolds numbers. Here the suffix g denotes Green et aL 18 

Other similar curve fits for {3 versus II, showing little dif
ference to (28), have been proposed by Mellor and 
Gibson,20 see White.21 

Although East et aL's experiments were not carried 
out for S --> 00, for the purpose of this preliminary investi
gation it will be assumed that {3g corresponds with the 
asymptotic value of {3 for fixed Y. This is a temporary 
assumption just to develop the mathematics and numerical 
schemes. When and if a more accurate version of (28) is 
found it will be replaced. 

Let {3 variations for a fixed 2' and a given asymptotic 
value of {3g be denoted by 

(29) 

and 

(30) 

and it is understood that m=0.4. 
Applying Eq. (27) for finite S and infinite S we obtain 

CI[II]S [ 
{3tg[II, S] f3[0.4,II, S] fl[O.4,II,S] - fl[0.4,II,00] 

-lim [b[O.4,II, S]]{3 [II]]. 
$-00 C1[II]S g 

(31) 

Equation (31) gives a known analytical function for (29). 
Clauser6,7 proposed that an equilibrium layer is pro

duced if {3 is fixed for a fixed II. From work here it is seen 
that this is true only asymptotically. As a rough guide to 
the results of (31), for II=O.l, {3 increases by about 25% 
over the entire range of S and for II = 10, {3 decreases by 
about 20% over the range. See Perry13 for details. Other 
theories have been reviewed by Perryl3 and it was shown 
that their performance for producing self-similar shear 
stresses was poor. 

IV. THE QUASI EQUILIBRIUM HlYPOTHESIS 

Let us now assume that these equations can be applied 
to nonequilibrium boundary layers provided that 
l3c4II/dx is sufficiently small and that local values of II for 
a given Rx can be used in (20) and (21). Such layers will 
be referred to as quasiequilibrium layers. One measure for 
sufficient smallness of l3c dII/dx can be derived from the 
shear stress equation (8) i.e., 

h[m,II, S]l3c4II/dx 

fl[m, II, S] + f3[m,II, SlCl3/UI )(dUl/dx) <1. 
(32) 

Given then condition (32), Eqs. (20) and (21) will be 
applied to some interesting nonequilibrium flow cases. So 
as to keep the study as analytical as possible, streamwise 
pressure distributions will be chosen which can be charac
terized by one single parameter. Such flows are sink and 
source flows. 

A. Favorable pressure gradients 

Let us consider sink flows. These are shown diagram
matically in Fig. 5 and if boundary layer displacement ef
fects are neglected, continuity gives 

1028 Phys. Fluids, Vol. 6, No.2, February 1994 

U1 

u.o=X 

where 

v 
K=

LUo 

FIG. 5. Sink flow. 

1-KRx' 

(33) 

and K is often referred to as the acceleration parameter. In 
fact K is related to the sink strength, thus 

21TV 
K=Q. 

It is easy to further show that 

1 dX 
~dR =K. X x 

Equation (21) can be written as 

KCI [II]S2E[IT]exp[KS] -{3tg[S, II] =0, 

i.e., 

F[K, II, S] =0. 

(34) 

(35) 

(36) 

Now {3tgis known analytically from (31) and Eq. (36) can 
be solved for II at fixed K and S numerically. This gives a 
typical plot shown in Fig. 6. 

Equation (33) and the results of (36) are substituted 
into (20) to give 

(37) 

30 

S 

28 

26 

24 
K = IO-K 

IT 

FIG. 6. II VB S for sink flow, from solution of Eq. (36). 
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FIG. 7. Sink flow boundary layer growth with Rx. 

where 

SE[II[S] ]exp[KS] 
H[S] R[S,/34[II[S], S],II[S]] . 

(38) 

Here So is the initial value of S and has been chosen such 
that K.r in (18) is of order 100. It is expected that this 
would be appropriate for a boundary layer which has been 
freshly tripped. If however, one is interested only in values 
of Rx which are high, the results should be insensitive to 
the precise value of So chosen. Once Rx versus S has been 
found, all other profile parameters can be found. 

Figure 7 shows a case where K = 10-8 and one can see 
that the layer initially thickens and then thins linearly to 
zero thickness when Rx= 108• From Fig. 8 it appears that 
S asymptotes to a constant value invariant with Rx and 
thus satisfies the Rotta4 conditions for precise equilibrium 
flow. Figure 9 shows shear stress profiles given by Eq. (8). 
Since the quasiequilibrium results give II versus Rx, the 
quantity ocCiIIldx can be calculated and the shear stress 
profiles can be calculated with the ocdITldx effect included 
and with it excluded. If it is included, the shear stress 
profiles are higher since ocdIIldx is negative. Both sets of 
profiles have been calculated and the discrepancy can be 

31 

S 
29 

27 

25 
K= 10-8 

23 
0 2 4 6 8 

Rx Cx10
7

) 

FIG. 8. SC C2/Cf ) \12)vs Rx for sink flow. 
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FIG. 9. Sink flow shear stress profiles given by Eq. (8) with and without 
the inclusion of the lie dII/dx term. In all cases, K= 10-8: Ca) Il;::::0.55, 
(b) Il;::::0.15, Cc) Il;::::0.06, and Cd) Il;::::0.02. 

seen in the profiles for the region where the boundary layer 
is growing. Thus the method has a built-in "alarm" which 
warns the user if the assumption of quasiequilibrium is 
breaking down. 

An additional interesting point about Eqs. (20) to 
(24) is that if dSI dRx=O, then as S ..... 00, /3tg-> -1/2 (see 
Perry13). 

B. Zero pressure gradient flows 

Here we put K=O and with the aid of (33) and (35), 
(21) gives 

/3tg[S, II] =0 

and so 

II=II[S] 

can be found and (20) gives 

29 
S 

27 

25 

23 

21 

19 
0 2 4 

(39) 

6 8 10 

Rx eX 10
6
) 

FIG. 10. S vs Rx for zero pressure gradient flow (K=O). 
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FIG. 11. II vs Rx for zero pressure gradient flow (K = 0). Broken line 
indicates approximate trend with inclusion of "low Reynolds number 
effect." 

Js SE[II[S] ]exp[KS] 
Rx= s R[S,O,II[S]] dS. 

o 

(40) 

With this formulation one can see that a zero pressure 
gradient layer is not an eqUilibrium layer at least for finite 
S since II varies with Rx, albeit slowly. Figures 10 and 11 
show the evolution of S versus Rx and II versus Rx. Coles22 

has pointed out that for Ro less than about 2500, II drops 
to zero for decreasing Ro. This low Reynolds number ef
fect corresponds approximately with the broken line in Fig. 
11. This effect has not been incorporated into the analysis. 
This should have a negligible effect on flow at high Rx. 

Figure 12 shows the calculated shear stress profiles 
with and without the effect of 5,fiIII dx included. It can be 
seen that 5,fiIIldx has no effect and although the shear 
stress profiles do vary with Rx, they are in true quasi
equilibrium. If we assume that II =const and put /3=0, Eq. 
( 40) will yield the classical von Karman law of skin fric
tion, see PerryY 

c. Adverse pressure gradient flows 

For adverse pressure gradients being produced by a 
source, the analysis is the same as for favorable pressure 

1.0 
~ 
'to 0.8 

0.6 

0.4 

0.2 

0.0 

1.0 
~ 
'to 0.8 

0.6 

0.4 

0.2 'Rx = 9.95x106 

0.0 

FIG. 13. Source flow. 

gradients except K=-(xoUoIv)-l where Xo and Uo are 
defined in Fig. 13. Figure 14 shows the calculated shear 
stress profiles for K = - 7.5 X 10-8 with and without the 
effect of 5,4IIldx. The effect of 5,4ITldx does not appear 
to be particularly strong and so perhaps this also represents 
a case of quasiequilibrium flow. 

v. NON-QUASI EQUILIBRIUM FLOW 

It is quite obvious that for more general flow cases 
evolution equations need to be derived with an account 
made for the effects of dIll dx. Equation (8) shows that 
i2[77,II,S] -+ 00 as S ..... 00, i.e. it has a similar behavior as 
i3[77,II,S] treated in Sec. III. Since we expect rlro to re
main finite as S -+ 00, then a more appropriate parameter 
for derivatives of IT is S5,4IIldx (=~ say) and its coeffi
cient in Eq. (8) will be i2[77,II,S]/S which is finite as 
S -+ 00. Thus we will have evolution equations involving 
dIll dx and shear stress profile equations involving s. Fur
thermore, a simple relationship between the asymptotic 
value of /3 (i.e., Pa say) and II will no longer suffice for 
obtaining closure. For quasiequilibrium /3a=/3g with /3g 
given by a curve fit like Eq. (28). However, this would 
need to be replaced by some sort of multidimensional fit 
and as a first attempt to consider a broader class of layers 
we could try 

/3a=/3a[II, s] 
and that in general 

/3 =/3 [S, II, s]. 

l.0 
~ 
'to 0.8 

0.6 

0.4 

0.2 

0.0 

(41) 

(42) 

0.0 ~2 ~4 ~6 ~8 ID 

11 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

11 11 
(a) (b) (c) 

FIG. 12. Zero pressure gradient flow CK=O) shear stress profiles given by Eq. (8) with and without the inclusion of the 8c dIIJdx term. Note that (a) 
and (b) contain two data sets each-no difference is visible; (c) is a combined plot of the data sets from Ca) and (b) to illustrate the Reynolds number 
dependence. 
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FIG. 14. Source flow shear stress profiles given by Eq. (8) with and 
without the inclusion of the 6c dIT/dx term. In all cases, 
K=-7.5XlO- 8: (a) II zO.55, (b) IIzl.O, (c) II z 2.0, and (d) 
IIz3.5. 

It is conjectured that an analysis similar to that for equi
librium flow can be carried out which will yield (42) by 
forcing shear stress profiles to be invariant with S. In quasi
eqUilibrium flow it was assumed that if II is fixed so also is 
the shear stress distribution (i.e., S is not involved). By 
analogy, in non-quasiequilibrium flow II and S fix the shear 
stress profiles. 

From the above philosophy and conjectures it can be 
seen that for closure we need Eq. (41). This relationship 
would probably need to be deduced from e1i.periment. Un
fortunately, this relation is for infinite S and experiments 
are carried out at finite S. Perhaps some sort of extrapola
tion scheme could be devised fcir obtaining (41). Whatever 
is devised it is obvious that a great deal of high quality 
experiments will be required. Large gaps will exist' in the 
data no matter how extensive or thorough the experimen
tal program is, and some sort of modeling might be needed 
to curve fit the results for the purposes of extrapolation and 
interpolation. As in the past, the intention of turbulence 
modeling is to give rational tools for curve fitting. 

A promising candidate for such modeling is the at
tached eddy hypothesis. 

VI. APPLICATION OF THE ATTACHED EDDY 
HYPOTHESIS 

Figure 15 shows schematically a representative at
tached eddy in a turbulent boundary layer. Work by Grass 
et al. 23 and Smith et al 24 shows that hairpin or horseshoe 
or n -shaped eddies form in wall turbulence but undergo a 
whole variety of distortions (see also Robinson25

). How
ever, the authors are using the term "representative eddy" 
in the Townsend sense. This is a statistical eddy which is 
the simplest shape that will give the desired link between 
the mean flow and Reynolds shear stress distribution. This 
eddy leans in the streamwise direction at a fixed angle, its 
height is fJ and it can be seen to contribute to a spanwise 
component of vorticity. If there is a random array of such 
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FIG. 15. Sketch of attached eddy of length scale 6. 

eddies with an average surface density proportional to 
l/fJ2, then the contribution from such an array of height fJ 
to the mean vorticity is given by 5, where 

(43) 

where UT is the characteristic velocity scale of the eddy 
(assumed to be the friction velocity). The function I de
pends on eddy shape and can be found by finding the mean 
spanwise component of vorticity on horizontal sectioning 
planes (see Perry and Choni6 and Perry et al. ).2 Further 
details may be found in Perry27 and Perry et al 28 From the 
Biot-Savart law the contribution to the Reynolds stress 
1l(1l;UJ) is given by 

A(1l;UJ) [=] 
U2 I jj fJ • 

T 

(44) 

Here Uj are fluctuating components of velocity, i.e. 
u! =u', U2=V', and U3=W' used earlier. This application of 
the Biot-Savart law need be applied to only one eddy and 
an image of it in the wall. Again this is outlined in Perry 
et al. 2 Introducing logarithmic variables 

(45) 

it can then be shown with an array of eddies randomly 
distributed over the wall that the gradient of the mean 
velocity defect 01)= (U!- U)IUT and the Reynolds stress 
UjU jare given by two convolution integrals 

dU'!, f"" -A. d}.E = _"" Mh[}.]e m[).-}.E]T[}.-}.E]d}., (46) 

U'Uj f"" ~= MJjj[}.]m[}.-}.E] T 2 [}.-}.E]d}. 
UT -'" 

(47) 

where eddies have scales fJ ranging from fJ! (the scale of the 
smallest eddy::::: l00vIUT ) to fJe , the scale of the largest 
eddy which is equal to the boundary layer thickness. It is 
assumed that all eddies are geometrically similar. In (46) 
and (47) h[}.]=/[zlfJ] and Jij[}.]=IjJzlfJ]. (In some ear
lier publications,3 h[)'] was written as I[}.] etc. The present 
notation is more correct.) 

Equations (46) and (47) were first derived by Perry, 
Li, and Marusic3 and are a generalization of Townsend's! 
attached eddy hypothesis. However, they incorporated a 
change of eddy shape with scale which the authors pres-
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FIG. 16. Townsend's eddy intensity functions. Sketch only. 

endy consider to be unnecessary at this stage. Here w is a 
weighting function which is a measure of how the PDF of 
eddy scales differ from an inverse power law in S; T is a 
weighting function which is a measure of how the velocity 
scale of eddies of a given scale l) differ from U 7" The func
tion w switches to zero when A < Al and A> A E' This ef
fectively controls the limits of the integration. 

The constant M in (46) and (47) is universal and its 
value depends on how I and' I jj are normalized. For 
DIS --+0 but S > S1> wand T are unity and this ensures that 
we ~btain the logarithmic defect law and -UIU3/U;--+ 1 for" 
z/Sc sufficiently small. It is assumed that S,ISl> 1, where 
this is actually proportional to the von Karman number. 
The functions Iij[z/S] are the Townsend eddy intensity 
functions and sketches are shown in Fig. 16. Of particular 
importance is the behavior of Iij[z/S] as Z/S-O. This be
havior can be derived from Townsend's inviscid boundary 
condition applied at z/S=O. These eddies are assumed to 
ride over the boundary with slip. For simplicity we will 
assume that a representative eddy is it "II-shaped" eddy, as 
shown in Fig. 17. This gives a Dirac delta function for heAl 
and 113[Z/S] will be assumed to be a triangle. This is not 
precisely the case but is close. It satisfies the Townsend 1 

inviscid boundary condition and also shows the rapid drop 
in the far field influence of the eddy for z> S. The triangle 
distribution and the delta function are. very convenient 
functions for convolution integrals and although they are 
approximations they are adequate for demonstration pur
poses here. Suppose we made wand T equal to unity for all 
A-AE i.e., all SlSc ' Equation (46) will give a pure loga
rithmic defect' profile and we know 

dCJ't 1 
dAE =~ 
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FIG. 17. "II-shaped" eddy details, its vorticity distribution, and the as
sumed triangular eddy intensity distribution. 

and this sets the value of M and thus the normalizing 
factor for h[;t]e-..1. is known. Thus MI[A]e-..1. is known. 
Equation (47) gives a linear stress distribution approach
ing 1 for z/Sc-+O. This boundary condition sets the nor
malization for MJI3[A]. This case could represent flow in a 
duct with parallel walls since we have a logarithmic law in 
velocity defect from the wall to the center and T/TO is linear 
going from 1 at z/Sc=O to 0 at z/Sc= 1. This result is 
completely at variance with standard eddy viscosity or 
mixing length theories. These would insist on a constant 
shear stress for a logarithmic profile of mean velocity 
whereas here we have a linear stress. Other mean velocity 
and shear stress profiles can be correctly represented with 
this formulation by appropriate and plausible variations of 
T and w with (S/Sc)' The formulation fits in very naturally 
with the logarithmic law of the wall and law of the wake 
model and shear stress profiles of the correct shape can be 
easily generated. 

Let us see if we can derive a function /3a=/3a[II] for 
quasiequilibrium flow with simple hypotheses. We will use 
the zero pressure gradient layer as a basic flow and attempt 
to use only empirical constants belonging to this zero pres
sure gradient case. For this example we will take II=0.55. 

In ~. (46) dU*J/dAE is known since II is known; 
Mh(A]e- is known as was determined above since we are 
assuming a "II eddy" shape. If we deconvolve (46) we 
obtain w T. Now from the momentum theory for zero 
pressure gradient it can be shown from (8) that for /3 = 0 
and ScdII/dx=O 

T 7]1- fdld7] 
lim-=l+. (49) 

8-+00 TO C1 

This has the interesting property that 
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FIG. 18. Comparison of the attached eddy model shear stress with the 
momentum equation (51) result. 

arlro 1 
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(50) 

Here again we see, this time from momentum, that a log
arithmic profile in mean velocity can be consistent with a 
linearly varying stress distribution. Tennekes and Lumley29 

(pp.192-193) reach the same conclusion. Hence the LHS 
of (47) is known; MJdA] is known and by a deconvolu
tion WT2 is known. From this and the previous result, W 
and T are known separately for the zero pressure gradient 
case. 

Let it now be assumed that 

and 

T=T[A-AE,II], 

i.e. W[A-AEl is universal for equilibrium and quasiequilib
rium flow but T, the weighting factor for velocity scales, 
depends on II as well as A - A E' It has been found from 
cursory studies that this set of assumptions lead to the 
largest maximum shear stress in adverse pressure gradient 
layers and this is consistent with equilibrium layers as men
tioned in Sec. II. Let us now apply (46) and (47) to pres
sure gradient flows. From (46) if we know II we know the 
LHS. We know Mh[A]e-A. since eddy shape will be as
sumed to be independent of pressure gradient. Now, 
w[A-AEl is known since it was obtained from the zero 
pressure gradient case and is taken to be universal. By a 
deconvolution of (46) we obtain T[A-AE,IIJ. We now 
substitute this into Eq. (47). We know MJ13[A] and 
W[A-AEJ since it is universal and finally from a convolu
tion of (47) we determine -u 1 u31 U; . 

Now it is known from (8) that for Dc dIIldx=O 

. r 2f3aTJf TJf- f6 fdTJ 
lim-=l+--+ . (51) 

S-oo ro C1 C! 

By varying f3a we match (51) to the convolution integral 
result obtained from (47) above thus establishing a rela
tionship between f3a and II. In Fig. 18 the matched rlro 
distributions given by (51) and (47) are shown. The 
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FIG. 19. Attached eddy model prediction compared to empirical curve-fit 
of Green et al. 18 and experimental data of East et aL,17 Clauser,6 Krogs
tad and Skare32 and Li.9 For the model formulation (3) is used for 
11>0.25 (solid line) and formulation (2) is used for 11<0.25 (dotted 
line). 

matching was based on a least squares error criterion. For 
the particular arbitrary choices made for f and 113 , it is 
seen that the trigonometric Coles wake function given by 
(3) works better than the Lewkowicz formulation (2) as 
seen for the II = 4 case. On the other hand, the results from 
(51) and (28) are insensitive to the choice between these 
two wake functions. Figures 19(a) and 19(b) show f3a 
versus II. Equation (3) was used for II> 0.25 but (2) was 
used for II < 0.25 because of problems with r mentioned in 
Sec. II. Considering the present crudity of the model, the 
results look promising. 

Once the correct eddy shape is known the attached 
eddy hypothesis should give the broadband distributions of 
uIIU;, u~/U;, u~/U;, 1Tjll3IU;, and all spectral dis
tributions (see Perry et aL 2 and Perry and Lill ). However, 
additional contributions from the Kolmogorov subrange 
would also need to be incorporated by further eddy struc
tures additional to the attached eddies. 

For the case of non-quasiequilibrium flow both wand 
T will probably be functions of both A-AE and II. It is 
hoped that with the aid of experiment and hypotheses, 
some further valid physical insights into eddy structure 
will emerge. 
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VII. CONCLUSIONS AND DISCUSSION 

It appears that with the logarithmic law of the wall and 
the law of the wake formulations together with the self
preserving flow hypothesis of Rotta,4 that approximate 
equilibrium and quasiequilibrium layers have their nondi
mensional shear stress distributions completely specified 
once II is specified. Thus n specifies completely both the 
nondimensional velocity defect distribution and shear 
stress distribution. This is equivalent to having a universal 
distribution of eddy viscosity given by 

€ 
8 U =1P[1], II]. 

e T 

(52) 

Such a relationship was first anticipated by Clauser1 and 
later developed in closely related closure schemes by Ce
beci and Smith30 I,Uld Mellor and Gibson.2° Thus equilib
rium and quasiequilibrium conditions imply that Eq. (52) 
should be valid. This of course does not necessarily mean 
that a gradient diffusion mechanism is at work, but it is 
simply that by default equations of the form of (52) work 
here. Such equations always work if there is a simultaneous 
self similarity in velocity defect and shear stress (e.g. plain 
mixing layers and under some conditions jets and wakes). 
As soon as ~ (=S8cdllldx) has any effect (as is the case 
in the Marusic layer) Eq. (52) would come to grief if used 
as a closure hypothesis in a standard differential field 
method. On the other hand, one could say that the method 
developed here for eqUilibrium and quasiequilibrium flow 
is effectively an integral version of a Cebeci and Smith type 
of method but it has built in a warning which indicates 
when (52) is breaking down. Furthermore, closure does 
not come via an equation like (52) but an equation which 
gives the asymptotic value of f3a in terms of n, i.e. 

f3a=f3a[II). 

This may be obtained experimentally perhaps if we know 
how to extrapolate to infinite S or with the aid of some
thing like the attached eddy hypothesis. Such a: hypothesis 
with its convolution integrals used in conjunction with the 
integral scheme proposed here is consistent with 
Townsend's31 statemeitts about modeling of wall turbu
lence. Rather than using exchange coefficients related to 
local flow variables, the layers should be looked at as an 
"integrated whole" with the transport properties at one 
point being related to motions in regions remote from the 
point of interest. . 

For the more general class of layers the influence of 
S8cdllldx=~ is appreciable and it is conjectured that we 
need a relation like 

The functional form of this could be deduced from system
atic experimental data and the attached eddy hypothesis 
could be a useful curve-fitting device for interpolation and 
extrapolation. Perhaps by monitoring the behavior of the 
weighting functions Q) and T in experiments, some clues 
for further hypotheses may emerge. 

Of course, everything treated here depends on the 
Rotta4 hypothesis, that is, if conditions are found from the 
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mean continuity and momentum equations for giving self 
similarity, then if these conditions are applied self similar
ity will occur. This may not happen because even though 
the conditions are necessary they may not be sufficient. 
Further systematic experiments are needed to verify this 
hypothesis. 
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APPENDIX: SOME DETAILS OF ANALYSIS 

Substituting (4) and (5) into (6) and integrating we 
obtain 

T 
-=I+AIXI+A2X2+A~3+A~4 
TO 

where 

Ai=Ai[ 1], II, S] 

where 

d8e 
X I=

dx' 

dII 8e dUI 
X 3=8edx ' X4= U

I 
odx . 

The At's are given by 

Al = tP3 +StP4 , A2= -tPl-S tP2, 

A3=tP6+S tP7' A4=StPs+tPl +StP2, 

where 

tPl = 2e2-e3, tP2= -el' 

tP3=e2- e3, tP4=e4-el' 

tPs=e4- 2el, tP6=e6-e7' 

tP7= -es, 

and where 

el = J
0

17 f d1], e2 = J
o

17 f2 d1], 

e3=f L17 f d1], e4=1]f, 

(Al) 
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This is the form arrived at by Perry and Li ll and in an 
equivalent form by Marusic. lo Now relationships can be 
established between the X is as follows. From the logarith
mic law of the wall and law of the wake 

X2=EI(XI+NX3+X4) 

where 

and 

From the outer boundary condition 7/70=0 at 'Y]= 1 

0= 1 + BIXI + B2X2 + B~3 + B~4 

where 

Bi=AJl,rr,S] . 

CA2) 

(A3) 

(A4) 

(A5) 

From Eqs. (A2)-(A5) XI and X 2 can be expressed in 
terms of X3 and X4 to give 

7 m ~d~ 
-=/1 ['Y],rr,S] + f2['Y],rr,S]8cdx + h['Y],rr,S]-u -d . 
~ I X 

Further equations which are useful for deriving the evolu
tion relationships (20), (21), and (22) are 

<1>= dlnUr=_l dUr(~ d8c)-1 
dln8c UT dx 8c dx 

(
Kf3(d8c ) -I ) / =- C

I 
dx +1 (KS+l), (A6) 

de {d8c 2 
dx= dX[S(CIKS -C2KS+CZ)] 

- [-CIS+2C2]~1 } / (S3(KS+ 1)), (A7) 

de 1 /3 
dx =S!+ (3SCI - 2C2) S3C

1 
' (A8) 

d8c (KS+ 1) + (3KCIS-2KC2+2CI )/3/CI 
dx (CIKS2-CZKS+C2) 

(A9) 

and 
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