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Towards a closure scheme for turbulent boundary 
layers using the attached eddy hypothesis 

BY A. E. PERRY, J. D. LI AND I. MARUSIC 

Department of Mechanical and Manufacturing Engineering, University of Melbourne, 
Parkville, Victoria 3052, Australia 

In this paper, an attempt is made to formulate a closure hypothesis for adverse 
pressure gradient turbulent boundary layers using the attached eddy hypothesis of 
Townsend and Perry & Chong, which was developed originally for zero pressure 
gradient layers and parallel duct flows. 

To the authors kno-wledge, this work represents one of the few attempts to use 
coherent structure ideas in the formulation of a closure scheme. At present this 
closure scheme is primitive and many of the assumptions are of an arbituary nature 
but the analysis at least points out where the difficulties are and which areas need 
more work. 

1. Introduction 

In the past few decades, strong evidence has been presented, which suggests the 
existence of coherent structure in turbulent boundary layers (Kline et al. 1967). 
However, so far there are only a few papers which attempt to incorporate coherent 
structures in a closure model. By a closure model we mean a theoretical construction 
which gives a link between the mean velocity field and the turbulence field (in 
particular the Reynolds shear stress field). This enables the Reynolds momentum 

equations to be closed. There has been some work along this line which gives closure 
in certain regions. For instance, Walker et al. (1987, 1989) have constructed a model 

using a double roller eddy system in the viscous sublayer. The model proposed by 
Perry & Chong (1982) is valid for flows beyond the viscous buffer zone. Here a brief 
review of the Perry & Chong model is given. 

Based on the Townsend attached eddy hypothesis (1976), the flow visualization 

experiments of Head & Bandyopadhyay (1981) and Perry et al. (1981), Perry & 

Chong (1982) have postulated that wall turbulence consists of a 'forest' of hairpin, 
horseshoe or 'A' vortices. It is generally believed that these vortices come from the 
viscous buffer zone. Helped by both vortex stretching and mutual induction, they lift 
themselves up from the wall and leave two long tails in the buffer zone. The two legs 
which form a 'A' shape, protrude into the turbulent wall region. They are inclined 
at approximately 45? to the freestream velocity and lean in the downstream 
direction. The distance Ao between the two tails follows Kline's scaling (see Kline 
et al. 1967), i.e. A0 100P/U while the top of the 'A'-shaped eddy is in a 'Q' shape 
(Hinze 1975). For simplicity, Perry & Chong (1982) confined their attention to 'A'- 

shaped eddies. Beginning with an isolated A-vortex, they showed that because of its 

image in the wall the vortex undergoes a stretching process in which the vortex 

height h increases approximately uniformly with time and the distance A between the 
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'legs' of the vortex at the wall decreases such that the product Ah remains constant. 

They also showed that viscous diffusion ultimately dominates the stretching process 
and proposed that when the legs of the A-vortex eventually come together the vortex 
dies by vorticity cancellation. A random array of A-shaped vortices, all at different 

stages of stretching but with the same circulation, was called a 'hierarchy'. They 
found that in order to derive a logarithmic law for the mean velocity in the turbulent 
wall region, it is necessary to have different scales of hierarchies which are 

geometrically similar and with the same characteristic velocity scale UT. Furthermore 
the PDF of these hierarchy scales must follow an inverse power law, the smallest 

hierarchy scaling with the viscous scaling being ca. lOOv/UT and the largest hierarchy 
with the boundary-layer thickness. Here the turbulent wall region is defined as 
10Ov/8H UT < z/dH < 0.15, where v is the kinematic viscosity, &H is the boundary- 
layer thickness, UT is the wall-shear velocity and z is the local distance from the wall. 
The lower limit of this region is chosen for safety to ensure that the mean flow in this 

region follows the logarithmic law. How these hierarchies form is a mystery and 
vortex pairing has been suggested as a possible mechanism. 

Perry et al. (1986) have extended this model to the whole turbulent boundary layer 
beyond the viscous region and found that the PDF of hierarchy or eddy length scales 
must be modified by a weighting function. This puts more weight on the large eddies 
so as to produce a mean-velocity-defect profile similar to that given by Hama (1954) 
or Coles (1956) beyond the logarithmic wall region. They also found that the attached 
eddies alone will not be sufficient to explain the energy dissipation. To account for 
this energy dissipation, they assumed that these attached eddies are surrounded by 
detached incoherent statistically isotropic and statistically irrotational assemblages 
of eddies which contribute to a classical Kolmogorov inertial subrange and 
dissipation range. These eddies are thought to be made up of the debris of broken up 
attached eddies. (The smallest eddies themselves carry with them some vorticity and 
therefore are rotational, but the space average (with the averaging box being the 
order of the attached eddy) of these eddies is irrotational.) 

The attached eddy hypothesis has been found to be consistent with the dimensional 
analysis results as put forward by Perry & Abell (1977) and Perry et al. (1986), in 
which the one-dimensional power spectral density j01(ki) of the streamwise velocity 
fluctuation u1 in the fully turbulent wall region has been found to have three 
identifiable ranges of the streamwise wavenumber k1. These are an outer-flow scaling 
at low wavenumbers, an inter-flow scaling from low to moderate wavenumbers and 
a Kolmogorov scaling from moderate to high wavenumbers. A region of overlap 
between the outer-flow scaling and the inner-flow scaling is found to exist (overlap 
region I) which leads to a -1 power law for the power spectral density and at high 
wavenumbers a second overlap region exists (overlap region II) which gives the 
famous -3 power law. In connection with the attached eddy hypothesis, an identical 
analysis can be carried out for the spectrum 522(kl) of the spanwise velocity 
fluctuation u2 while for the spectrum 033(k1) of the normal to the wall velocity 
fluctuation u3, only overlap region II exists. 

The above inverse power law spectrum and the well-known logarithmic mean 
velocity profile has been shown by Perry & Chong (1982) to be consistent with having 
a range of geometrically similar hierarchies of the same velocity scale but whose 
length scale 8 have an inverse power law PDF. Thus the mean velocity, most of the 
broadband turbulence intensity, the Reynolds shear stress, the turbulence energy 
spectra of different velocity components and the Reynolds shear stress spectrum 
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from low to moderate wavenumbers can be calculated from the attached eddy model 
after assuming that the various hierarchies can be characterized by a random 
distribution of a fixed shape representative eddies with their length scales following 
the inverse PDF. Clearly this model can be used to find a connection between the 
mean flow field and the Reynolds shear stress and hence a closure scheme based on 
this model can be constructed. 

Perry et al. (1986, 1987) and Perry & Li (1990) have presented some experimental 
data in turbulent pipe flows and in zero pressure gradient turbulent boundary layer 
flows over smooth and rough walls. Their results strongly support the attached eddy 
hypothesis and the associated scaling laws in these flows. Perry (1987) has reviewed 
the attached eddy model in zero pressure gradient turbulent boundary layer flows 
and a preliminary closure scheme based on this model has been suggested. Li (1989) 
and Perry et al. (1988, 1990) have extended the Perry & Chong model (hereafter 
referred to as the P&C model) to adverse-pressure-gradient flows. In this paper, some 
details of this recent development are given and suggestions are made for further 
extensions to the theory. 

2. A modification to the P&C model 

In this section the detailed procedure of using the P&C model to relate the mean 
flow velocity and the Reynolds shear stress is given. It is shown that the original 
model (Perry et al. 1986) needs to be modified in order to obtained a Reynolds shear 
stress profile which is consistent with that of the momentum balance analysis. In 

modifying the P&C model, the shear stress profile of the zero pressure turbulent 
boundary layer at high Reynolds number has been used as a guide and at the same 
time physical explanations for the various modification have been given. 

Perry et al. (1986) have shown that the mean-velocity-defect and Reynolds stress 
profiles are given by two convolution integral equations 

dUD =AE 

dAU J Mf(A) e-Aq(-AE) dA, (1) 
dAE 

u2u = J)Mi.(A)q(A-AE)dA (2) 

Here U* = (U - U)/UT, U1 is the freestream velocity, U is the local mean velocity, M 
is a universal constant to be determined, f is the vorticity function of the 

representative eddy, q is the weighting function, ui uj are the Reynolds stresses, Ij 
are the Townsend (1976) eddy-intensity functions of the representative eddy, A = 
In (8/z), AE = In (8H/z) and 8H is the boundary layer thickness (which is assumed also 
to be the scale of the largest hierarchy). 

Once the eddy shape is fixed, its vorticity function f will be known and the eddy 
intensity functions I1j can be calculated from the Biot-Savart law. Hence (1) and (2) 
show that the mean flow and Reynolds shear stress are linked by the weighting 
function q. In this work Coles's (1956, 1962) mean velocity formulation is used, i.e. 
the law of the wall and law of the wake with the wake function as that given by Hinze 

(1959) (with a correction factor fl introduced, see Li & Perry (1989)), thus 

U/UT = K-1 lnzU/v+A +(H/K)(1 -cos (1tig)), (3) 

(U1- U)/U, = - K-1 n I + (7H/K) (- cos (fC) + cos (fi7c)). (4) 
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Figure 1. The assumed H-shaped eddy. (a) Right, looking downstream left side view. (b) Vorticity 
function. As d ->0, f- a Dirac delta function. (c) The simplified and a more realistic eddy intensity 
functions for Reynolds shear stress. 

Here g = Z/8H, K is the Karman constant, A is a universal constant, H is the wake- 

strength parameter, and the factor ,f is a function of H and is introduced to ensure 
that mean-velocity gradient goes to zero as y -- 1. With the known vorticity function 
fand (4), the weighting function q can be found from (1) by a deconvolution process 
and the Reynolds shear stress can be calculated by a convolution calculation from (2) 
in conjunction with the eddy intensity function I13. 

For simplicity, it is assumed that each of the attached eddies in the turbulent wall 
flow can be represented by a characteristic 'H-shaped' eddy as shown in figure 1 
together with its vorticity function. The advantage of using 'H-shaped' eddies in the 
analysis is that the vorticity function can be approximated as a Dirac delta function 
which greatly simplifies the mathematics. In assuming the representative eddy as 
that shown in figure 1, the long tails of the attached eddy have been neglected since 
they are mainly confined to the viscous zone (we have defined this as 0 < z+ < 100). 
In this model the detailed structure of the viscous zone is neglected and replaced by 
a slip condition at the wall. Although this region contains the tails of the attached 
eddies, their contribution to the mean flow and turbulence quantities in the 
turbulent wall region is considered to be negligible. The eddy intensity function 13, 
is assumed to be a linear function of z/8 as that shown in figure I c and this satisfies 
Townsend's (1976, p. 155) inviscid boundary condition near the wall. In fact it is this 
linear region near the wall which has the main influence on the convolution integral 
(2). The broken curve in figure l c is representative of results obtained using the 
Biot-Savart law for an isolated 'H-shaped' eddy. Such departure from the linear 
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1.0 
Z 6H 

Figure 2. Reynolds shear stress profiles calculated from (5). 

function does not alter significantly our conclusions concerning the shear stress 
distribution as discussed below. 

Using the calculated weighting function q, (2) and the linear function for I13 as that 
shown in figure 1 c, it can be shown that 

-ul u3/U~ = (1-y)+ nrHyTY-cnHfly Si (i/h1), (5) 

where 
X sin 

(t) dt and Y= Si (f'). Si (x) = fX t)dt and Y= Si(/t). 

In parallel duct flows, H n 0, this reduces to the familiar linear Reynolds shear stress 
profile. Figure 2 shows the Reynolds-shear-stress profiles calculated from (5) with 
several H values. Since viscous contributions are restricted mainly to a. layer of 
thickness 1, ' v/UT, then these contributions to the total shear stress will become 
negligible as i/-6, 0, which is equivalent to the Reynolds number (Kairman 
number) 8H UU/v-?o. In the figure, H = 0.55 corresponds to infinite Reynolds 
number zero-pressure-gradient flows. Although the shear-stress profile corresponding 
to H = 0.55 satisfies the boundary conditions at both 7 = 0 and r = 1, the maximum 
value of the normalized Reynolds shear stress is larger than unity and occurs away 
from the wall. It will be seen in the momentum balance analysis carried out in ? 3 that 
such a profile cannot be correct. 

Various representative eddy shapes have been tried to obtain the corresponding 
weighting functions (see Perry et al. 1986) and various eddy-intensity functions I13 
which satisfy the Townsend (1976) inviscid boundary condition have been used. So 
far no case has been found which will give a maximum normalized Reynolds shear 
stress at the wall for H = 0.55. The authors suspect that such an eddy shape does not 
exist and the weighting function q needs to be modified. 

In the P&C model, it has been assumed that all the velocity scales are the same for 
different hierarchies. This may be true for duct or pipe flows, because in these flows 
the eddies which roll up from the buffer zone at the upstream station have the same 
wall-shear velocity as those which roll up from the downstream stations. In a 
turbulent boundary layer, this is no longer true, especially in flows with adverse 

pressure gradient which have the wall-shear velocity varying with streamwise 
distance. It is also a well-known fact that in turbulent boundary layer flows the 

Reynolds stress at a given station is influenced by the upstream history (Tani 1969), 
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and many workers believe that Coles's wake component is a reflection of the 
upstream history of the layer, i.e. a 'memory' effect. So far the P&C model has not 
taken this into account. 

If one considers the eddies of different hierarchies at a streamwise location XO in 
a turbulent boundary layer flow, a sudden change in wall surface (e.g. from rough to 
smooth) at XO will cause the wall-shear velocity UT to change rapidly near XO. This 
change of wall-shear velocity influences the velocity scale of the small hierarchy 
which has just rolled up from the buffer zone. The large hierarchies which come from 
upstream will not be affected greatly by this change. Instead they probably carry 
with them the velocity scales that come from the upstream stations. This example 
shows that different velocity scales should be introduced into different hierarchies for 
turbulent boundary layer flows. 

Dimensional analysis suggests that the mean vorticity 4H(Z/8) from one hierarchy 
of the attached eddies can be expressed as 

H(Z/8) = (U )/)/f(z/8), (6) 

where U7i is the velocity scale of the hierarchy scale d. The mean vorticity from all 
hierarchies after being normalized with the local wall shear velocity UT is 

dU/UT = 
f T(T//H)f(z/) )d~ (7) dz & ( 

where 81 is the length scale of the smallest hierarchy, PH(8) is the PDF of hierarchy 
length scales and T = U7i/U,. The function T accounts for the characteristic velocity 
scale variation between the hierarchy scales and is assumed to be a function of 8/8H, 

i.e. it depends only on hierarchy scale. Following Perry et al. (1986), the PDF of eddy 
scales is still assumed to be 

PH = (M/s8)0(8/8H). (8) 

Here o is the weighting function which represents only the departure of the PDF of 
hierarchy length scale from an inverse power law. When w is unity PH is an inverse 
power law PDF which yields a logarithmic mean velocity profile. Thus for 8/8H -> 0, 
o-~ 1. However for many eases, for 8/8H larger than 0.10 (say) o departs from unity 
and this represents eddy-population densities which depart from an inverse power 
law PDF. 

Substituting (8) into (7) gives, 

dU/U,T Hf f(' T (z 
dz I = () W 8 ) 8) d& (9) 

It can be seen that effectively the original weighting function q in (1) has been 
separated into T(8/8H) which represents the velocity-scale variation between 
different hierarchies and (o which represents the eddy-density departure from the 
inverse power law PDF. 

Using a similar argument, it is simple to show that the Reynolds stresses are given 
by 

Uij J -I ) )T2 - () -d (10) 

and it should be noted that a T2 is involved. 
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Although the above modification to the P&C model can be justified physically, a 
close look at (9) and (10) shows that it has not solved the problem, i.e. the maximum 
normalized Reynolds shear stress calculated from the model still occurs away from 
the wall for high Reynolds number zero-pressure-gradient flows. The reason for this 
is that higher velocity scales have been used for large hierarchies. Because of this, the 
maximum normalized Reynolds shear stress calculated from (9) and (10) is actually 
higher than that from (1) and (2). 

To overcome this difficulty, another weighting function has been introduced and 
the weighting function will reduce the contribution to the total Reynolds stresses 
from larger hierarchies. One possible justification for this is that such a function 
might account for a possible change in the representative eddy shape with hierarchy 
scale. Some support for this will be discussed later. Also to keep the problem 
tractable we will consider a scenario where the eddies change their shape in such a 
way so as to alter the turbulence intensity and the Reynolds shear-stress profiles 
while preserving the velocity-defect profile. Hence the mean flow equation (8) is 
retained and the Reynolds stresses can be expressed as (repeated subscripts do not 
mean summation) 

UU = fH (Z)T si ()T (-)o ()d (11) 

where Sij(8/8H) is required as a factor which modifies Iij and for simplicity has been 
assumed to be a function of 8/8H only. It should be pointed out that the Reynolds 
stresses are assumed to come entirely from the attached eddies and that contributions 
from the detached Kolmogorov inertial subrange eddies are small. This is probably 
true for the Reynolds shear stress but perhaps not true for the normal stresses. 

The closure equations of the turbulent boundary layer flows after changing to the 

logarithmic variables as that used in (1) and (2) are 

dUD (AE 

d 
= Mf(A)e-A(A-AE)T(A-AE)dA, (12) 

In (12) and (13) after assumingf(A) and 13-(A) for a fixed eddy shape, one needs to 

dAE Jo 

u = 
JE(13) 

In (12) and (13) after assumingf(A) and /I(A) for a fixed eddy shape, one needs to 
separate o, T and S13 to solve these closure equations. The difficulty in using (12) and 
(13) is that the mean-flow velocity and the turbulence quantities are no longer 
directly related. Since S13 is involved in the Reynolds shear-stress calculation, some 

knowledge about the Reynolds shear-stress profiles will help to construct it, hence 

leading to a tractable way of solving (12) and (13). 

3. Shear-stress profiles in two-dimensional turbulent boundary layer flows 

Here, analytical expressions for the shear-stress profiles in zero- and arbitrary- 
pressure-gradient flows will be given and they are derived using the mean-flow- 
momentum and continuity equations in conjunction with the similarity laws (3) and 

(4). For the mathematical details, see Li (1989). Many people have attempted such 
an analysis, among them Coles (1952), Tetervin & Lin (1955), Townsend (1956), Coles 
(1957) and Rotta (1962), all with some simplifying assumptions which we have 
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avoided here. Some of the results concerning the zero-pressure-gradient flows have 
been given in Li et al. (1986) and Li & Perry (1989). Granville (1988) also derived the 
shear-stress profiles for smooth and rough walls in zero-pressure-gradient flows but 
the asymptotic behaviour of these zero-pressure-gradient-shear-stress profiles was 
not discussed. 

It is assumed that the turbulent boundary layer can be divided into a viscous zone 
(which includes the sublayer and the buffer zone) and an outer flow region. In the 
outer flow region the velocity profile can be written as 

(U- U)/U, =-f(y,, ). (14) 

Using the boundary-layer approximation and assuming two-dimensional flow, the 
mean momentum and continuity equations for zero-pressure-gradient flows are 

UdU/8x+ WaU/dz = p-laa/rz (15) 
aU/ax+aW/az = o, (16) 

where 
T/p= aU/z-l U3'. (17) 

In (15) the term 3d( U-.U)/lx has been neglected. Here W is the local mean velocity 
component normal to the wall, u' is the streamwise Reynolds stress and 3 is the 
normal Reynolds stress. In further work it might be possible to include normal shear 
stress since there are successful scaling schemes for the attached eddy contribution 
and the contribution from the Kolmogorov inertial subrange. 

The boundary conditions are 

U= W=0, T=TQ at z=O, (18a) 

U=U, T=O at z= ,. (18b) 

In this paper, we are mainly interested in the shear-stress profiles outside the 
viscous zone. After some algebra, Li (1989) and Li & Perry (1989) have shown that 
the shear stress profile can be expressed as 

T/To =1 +C/B, (19) 
where B = KS2C1 - Ko-C2 + C2, 

C = K2f- KO2f- f d + of- dy - Kf f d + Kj f2 dy, 

C-=f d, C2 f=2'd and o = U1/UT. 

In (19), a viscous correction term has been neglected. In doing this, we are 
effectively assuming that the mean velocity logarithmic law is valid down to q = 0. 

As Rotta (1962) has pointed out, the shear-stress profile (19) is not universal 
although a universal velocity-defect profile is used in deriving it. Since skin-friction 
coefficient approaches zero (i.e. cr -oo) as Reynolds number U,TH/V approaches 
infinity, the shear-stress expression (19) can be simplified for infinite Reynolds 
number to 

T=i + f -f d C, (20) 

which is a universal function of y and is shown in figure 3. The gradient of the shear- 
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Figure 3. The total shear stress profile in zero pressure-gradient turbulent boundary layer flows 
when Re -oo (equation (20)). Note the finite slope as -+>0. 

stress profile in the logarithmic region (which is defined as y0 < q < 0.15, it is also 
called the turbulent wall region) is not zero when the Reynolds number approaches 
infinity, but it is given by 

8(T/7o)/aV = - i/KC. (21) 

This behaviour of the shear stress profile has also been pointed out by Spalart (1988). 
For adverse-pressure-gradient flows, we assume that the one parameter velocity- 

defect-profile family (14) is valid, U1 = Ul(x), H = HI(x) and the effect of the viscous 
zone is small. In the present work a(u2 -u)/Dx will be neglected but it should be 
included for flows approaching separation. 

The momentum equation in arbitrary-pressure-gradient-boundary layers after 
applying the freestream condition is 

U + W U + U xU (22) ax az paz ax 

Li (1989) has shown that the shear-stress profile for arbitrary-pressure-gradient 
turbulent boundary layer flows can be expressed as 

IT d6 H do dH 8Hd dUl 
1t+A1 -+A2 (T +A38H x-+A4 Cl d ' (23) 

T0 dx o-dx dx U1dx 

where 

A1 = (oqf- r fd -f fd+? f2 d,+ 

A2, oj fdY-2 f2d +f fdfd, 
Jo o o 

3 ( Jo -fi f \_ 

A4 -3o f d + df+ 2 f2 d -+ fdd. 
Jo Jo Jo 

Equation (23) shows that the total shear stress is a function of 8H, H, a and U1 
which are all functions of x. 

4. Attaining closure and a discussion about Sj 

To separate () and T in (12) and (13), assumptions are needed. One way to separate 
( and T is to assume o = 1, while T can be obtained from (12) by a deconvolution 
method using a fast Fourier transform algorithm. 813 can be obtained as follows. For 
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0 0.2 0.4 0.6 0.8 1.0 
Z/6H 

Figure 4. Reynolds shear stress profiles calculated from (13) (-----, -, ---) and compared 
with the calculated results from (23) (-). Experimental data from East et al. (1979): A, flow no. 
3; a, flow no. 4; <, flow no. 5. 

convenience it has been assumed that 813 is a universal function, i.e. it does not 
depend on the parameters H, cr and the various streamwise direction derivatives as 
mentioned in ?3. The Reynolds shear-stress profile is a universal function in zero- 
pressure-gradient turbulent boundary layer flow when Reynolds number approaches 
infinity. By substituting (20), o and T into (13), S13 can be derived by using a 
deconvolution procedure (an analytical expression for S13 can be derived under the 
above assumptions). The 813 obtained from this is then put back into (13) and is used 
for calculating Reynolds shear stress for other flow cases. Hence (12) and (13) provide 
the necessary equations for closure. 

Figure 4 shows the Reynolds shear-stress profiles calculated using (12) and (13) 
and these are compared with those calculated using (23). In calculating the profiles 
using (23), the mean-flow data of East et al. (1979) have been used and the direct 
viscous effect has been neglected. The data shown in the figure are from East et al. 
(1979). It can be seen that the curves calculated from both the model and the 
momentum balance agree well and they also agree well with the data up to H = 1.69. 
This is encouraging since it should be kept in mind that all constants were 
determined from the zero-pressure-gradient case of infinite Reynolds number. 

Section 2 has shown that the inclusion of S13 is necessary in order to give a 
reasonable result for the Reynolds shear-stress profiles. Perry (1987) conjectured 
that the single simple original weighting function ((8/8H) in (1) and (2) could include 
the effects of population density departure from the inverse power law, the velocity- 
scale variation between hierarchies and a loss of geometrical similarity of the eddy 
shape. In the earlier work of Perry (1987), all of these effects were considered to be 
necessary but the conclusion here is that a single function is inadequate. In equations 
(12) and (13), we have assumed that ( represents the effect of population-density 
departure from the inverse power law and T represents the velocity scale variation. 
Si3 has been assumed to be the effect from a loss of geometrical similarity of eddy 
shape from one hierarchy to another. The fact that 8i3 or its equivalent does not 
appear in equation (12) means that we have restricted the way the eddy shape should 
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(a) b-H (b) Hbb 

, / / / , , ////^/i//////////// //// ///// \/ /1// // 

Figure 5. A suggestion for possible change in the eddy geometry from small hierarchy (b) to large 
one (a). In (a) and (b) a/b is the same but b/8 is different. These hierarchies have the sane 6,(z/6H) 
but different 123(z/8). 

be changed, i.e. we are effectively assuming that from one hierarchy to another the 
eddy structures are changing in such a way that this change will affect their 
contribution to Reynolds stresses but not to the mean vorticity. 

Figure 5 illustrates one way in which this could occur. Here by an appropriate 
change in aspect ratio b/8, we keep the mean-vorticity distribution the same i.e. 
6H(z/8) is assumed unchanged but we vary I13 hence the contribution to the Reynolds 
shear stress. There are many other geometrical variations which could occur and 
which need to be explored, e.g. a change in the fine scale features of the vortex core 
(e.g. the possible spiralling of vortex sheets within the core) and perhaps changes in 
the angle of inclination of the eddies to the wall and how these changes are related 
to the mean principle rate of strain axis. We have illustrated here the simplest 
possible geometrical change which upsets the often assumed one to one relationship 
between the mean flow field and the Reynolds shear stress field. 

5. Conclusions and discussion 

The attached eddy hypothesis is showing considerable promise in leading to a 
useful formulation for the prediction of turbulent boundary layer development with 
streamwise pressure gradients. It has been shown that the Perry & Chong (1982) 
model needs to be modified to be applicable to flows other than in parallel ducts and 
pipes. By using the simple 'H-shaped' eddy it is found that the velocity scale must 
vary with eddy-length scales and by doing this, some of the 'history' effects from 
upstream have been brought into the model. To obtain agreement with observed 
Reynolds shear-stress distributions, it is necessary to introduce yet another weighting 
function to reflect the variations in the contribution to the Reynolds stresses from 
different hierarchies. The physical meaning of this weighting function has been 
attributed to the loss of geometric similarity in the attached eddies as they grow from 
one hierarchy to another. To find a tractable way of separating various weighting 
functions, the eddy shape change has been restricted in the present paper such that 
only the contribution to the Reynolds stresses has been affected but not the mean- 
flow velocity. Because of this restriction, the mean-flow-velocity-defect profile and 
the Reynolds stresses are no longer connected by the same weighting function and 
some knowledge about the shear-stress profile is necessary in order to separate the 
various weighting functions. The shear-stress profiles in zero- and adverse-pressure- 
gradient flows have been derived by using Coles's (1956, 1962) law of the wall and law 
of the wake in connection with the boundary-layer equations. The shear-stress profile 
in zero-pressure-gradient flows approaches a universal one only when the Reynolds 
number approaches infinity. A closure is formed by using this profile along with the 

assumption that the weighting function S13 is independent of Reynolds number and 
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wake strength parameter H. These closure equations have been used to calculate the 
Reynolds shear-stress profiles and these profiles are compared with the experimental 
data of East et al. (1979) as well as the shear-stress profiles calculated from the 
derived analytical expressions. Favourable agreements have been found in adverse- 
pressure-gradient flows up to 17 2. Although it is impossible to know exactly how 
the characteristic eddies change their shapes from one hierarchy to another, some 
possible changes the eddies might undergo have been suggested by using intuitive 
arguments. It is hoped that a simple and universally valid formulation for the shape 
function Sij can be found so that an efficient closure scheme can be constructed. 

The formulation given by (12) and (13) is consistent with the ideas expressed by 
Townsend (1961) that turbulence must be modelled with an account made for the 
fact that physical processes occurring at a point are related to processes remote from 
that point. In other words, the flow cannot be analysed on a point by point basis such 
as is implicit in those methods which use transport coefficients or other types of 
coefficients related to the local properties of the flow. The flow should really be 
analysed as an integrated whole with regard for the distribution of quantities remote 
from the point of interest. The convolution integral equations given by (12) and (13) 
satisfy these requirements. 

The authors thank the Australian Research Council for the financial support of this project. 
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