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Many flows of practical interest occur at high Reynolds number, at which the flow in 

most of the boundary layer is turbulent, showing apparently random fluctuations in 

velocity across a wide range of scales. The range of scales over which these fluctuations 

occur increases with the Reynolds number and hence high Reynolds number flows are 

difficult to compute or predict. In this paper, we discuss the structure of these flows and 

describe a physical model, based on the attached eddy hypothesis, which makes 

predictions for the statistical properties of these flows and their variation with Reynolds 
number. The predictions are shown to compare well with the results from recent 

experiments in a new purpose-built high Reynolds number facility. The model is also 

shown to provide a clear physical explanation for the trends in the data. The limits of 

applicability of the model are also discussed. 

Keywords: boundary layer; wall turbulence; attached eddy hypothesis; 

high Reynolds number 

1. The mean velocity profile 

The single most well-known (but not undisputed) classical relationship relating 
to turbulent wall-bounded flows is the logarithmic dependence of the mean 

streamwise velocity on the distance normal to the surface. Despite the continuing 
controversy regarding this 'law', it is still the simplest description of the mean 

velocity variation that is consistent with experimental data over a wide range of 
flow conditions. It is discussed here since it is part of the classical description of 

turbulent boundary layers and its derivation is a good example of the scaling 
arguments and general approach used later. There are a variety of ways to derive 
this variation, but here we will appeal to the simplest argument. In general, the 

mean velocity in a turbulent wall-bounded flow will depend on the wall shear 

stress, the kinematic viscosity of the fluid, the distance from the wall and the 
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thickness of the layer. The mean velocity itself, even far from the wall, will also 
depend on the variation that occurs in the viscous-dominated sublayer and may 
also be affected by the free-stream velocity. However, it is plausible that the 
mean velocity gradient in the direction normal to the wall might depend only on 
local conditions near the point of interest. Using this assumption, we can then 

imagine a point far from the wall, where viscosity is no longer important, and 

simultaneously far from the outer edge of the layer so that the outer velocity and 

length-scale are irrelevant. Hence, the only relevant parameters are the wall 
shear stress (or equivalently the wall shear velocity) and the distance from the 
wall. Dimensional analysis then gives 

^-i^. (1.D dz K z 

where U is the mean velocity at some distance z above the wall; UT 
= 

\/tw/p is 
the wall shear velocity; and k is the universal von Karman constant. rw is the 
shear stress acting on the wall and p is the density of the fluid. Equation (1.1) 
integrates to give the 'log-law', i.e. 

t/ + =-ln(z+) + C, (1.2) K 

where U+ = 
U/ UT and z+ = zUT/v, where v is the kinematic viscosity of the fluid. 

The data presented in ?5 give strong support to this analysis. Note, however, that 
some researchers dispute the existence of the log-law and offer other alternatives 

(e.g. Barenblatt et al. 1997; George Sz Castillo 1997), but the authors of this paper 
believe that this classical law has a sound theoretical basis and is well supported by 
the data. The interested reader is directed to the references cited. 

2. The attached eddy hypothesis 

An attempt will be made here to summarize the main ideas behind the attached 

eddy hypothesis of Townsend (1976) and the extension of that hypothesis to the 
model of Perry Sz Chong (1982). The aim is to lay down the essential features of 
the structure of turbulent boundary layers according to the model and point out 
those that may be tested using the experimental results available. 

In a book remarkable for its sheer density of original ideas, Townsend (1976) 
laid out a model for the structure of wall-bounded equilibrium layers based on 

arrays of large 'eddies'. This was, in part, inspired by the success of similar 

large eddies in explaining the correlation measurements of Grant (1958) in a 

plane wake. These eddies may be thought of as the velocity fields of some 

representative vortex structures. 
Given the apparent success of the log-law in describing the mean velocity 

profile, with characteristic insight Townsend notes, 'it is difficult to imagine how 
the presence of the wall could impose a dissipation length-scale proportional to 
distance from it unless the main eddies of the flow have diameters proportional to 
distance of their 'centres' from the wall, because their motion is directly 
influenced by its presence. In other words, the velocity fields of the main eddies, 
regarded as persistent, organized flow patterns, extend to the wall and, in a 

sense, they are attached to the wall'. To put it more simply, any eddy with a size 
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that scales with its distance from the wall may be considered to be attached to 

the wall. Eddies further from the wall are larger in size and hence their velocity 
fields still extend to the wall (of course the velocity fields of vortex structures 

extend to infinity but they decay rapidly at large distances). 
It is eddies of this type that form the basis of the attached eddy hypothesis. 

The hypothesis itself is that the main energy-containing motion of a turbulent 

wall-bounded flow may be described by a random superposition of such eddies of 

different sizes, but with similar velocity distributions. These eddies should be 

considered as statistically representative structures in that their geometry and 

strength are derived from an ensemble average of many different structures 

of similar scale. As such there may be no single eddy in the flow with this 

precise structure (further explanation of this concept may be found in Nickels Sz 

Marusic 2001). 
Townsend then formed an expression for the contribution of a random 

superposition of attached eddies of different sizes to the correlation functions 

and, using the zero-penetration boundary condition at the wall, derived the 

distribution of eddy sizes with wall distance necessary to produce the observed 

invariance of the Reynolds shear stress (uw/U2) with distance from the wall. 

This analysis effectively leads to a population density of eddies that varies 

inversely with size and hence with distance from the wall. Simply, the number of 

eddies of size z per unit wall area is A/z where A is a constant. Using this, 

population density also leads to predictions for the variation of the other 

(normal) components of the Reynolds stress, i.e. 

? 
=Cl+Dl\og[-y 

_=Cfe + 
Alogy 

and 
-^ 

= Q, (2.1) 

where w2, v2 and w2 are the streamwise, spanwise and wall-normal components of 

the Reynolds stress, respectively, 5 is the boundary layer thickness and Ci, C2, 

C3, Di and D2 are constants. It may be noted that so far very little has been 

specified about the eddies and the behaviour essentially arises due to the zero 

penetration boundary condition at the wall and the invariance of ? uw/U2. The 
choice of the detailed structure of the eddies changes the values of the constants. 

The physical understanding of these relationships rests essentially on the fact 
that the normal to the wall component and the shear stress component at a given 
height, z, are mainly due to the influence of eddies with 'centres' at or close to 2, 
whereas the streamwise and spanwise fluctuations at a given distance from the 
wall are due to all eddies with heights greater than z. That is why these 

components increase as the distance from the wall is reduced: as we approach the 
wall the number of eddies larger than our distance from the wall increases (see 
Perry et al. 1986). Naturally, there is a limit to this increase since viscosity will 
set a limit on the size of the smallest possible attached eddy. In the model of 

Perry Sz Chong (1982), this limit is approximately 100 wall units (100v/Ur), 
although its exact value is not critical. 

The motions due to the larger eddies (well above the point of interest) are 

mainly 'sweeping' or 'sloshing' motions which carry very little shear stress since 
the scale of the flows is so large that they appear to be mostly parallel to the wall 
on the scale of the local distance from the wall. It is these flows that Townsend 
called 'inactive' since they carry little shear stress. It is important to note, 
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however, that as Townsend explains '... the inactive flow at one level is an 
essential part of active flow at other higher levels...'. In other words, when 

measuring at a particular distance from the wall, z, the active motions come from 
eddies with centres located at or near z, whereas the inactive motions are due to 
eddies much larger than z. Which motions are considered active and inactive 

depends on the location of the measurement. 
The expressions above really only apply to the 'main turbulent motion', which 

essentially relates to that region where the important length-scale is distance from the 
wall and the important velocity scale is the wall shear velocity, in other words the 

log-law region. Since the size of the eddies scales with z and their velocities with C/r, 
this is nicely consistent with the scaling arguments used to derive the log-law. 

In order to proceed further, Townsend had to specify the detailed structure of 
the eddies. He felt that conical eddies were appropriate and gave fairly good 
agreement with available correlation measurements. He did note, however, that 
'Other possibilities exist, e.g. a distribution of shorter double-roller eddies of 

various sizes each with a lateral extent comparable with distance from the wall...' 

Perry Sz Chong (1982) developed a model for the mechanism of wall 
turbulence in which the flow is made up of a superposition of attached eddies. 
Rather than conical eddies, they had vortex loops in mind, in which the vortex 
starts near or on the wall, rises above the wall and then bends back to meet the 
wall again. These have variously been called hairpin eddies, horse-shoe eddies 
and lambda eddies and are consistent with the flow visualization studies of 
Head Sz Bandyopadhyay (1981). In the first part of their paper, they 
concentrated on using such eddies to model the mean flow. They recognized 
that the gradient of the mean velocity in the wall-normal direction is due to the 

mean cross-stream (spanwise) vorticity component of the superposition of 
attached eddies. Taking a random distribution of such eddies with a population 
density that varies inversely with size (as in Townsend's attached eddy model), 
they found that the logarithmic velocity profile could be reproduced. As a result 
of the similarity with the attached eddy model of Townsend, they also found the 
same behaviour for the Reynolds stresses as in equation (2.1). In addition, they 
considered the resulting spectral distribution of energy for the model and found 

that, again primarily due to the population density, this results in a k^1 power 
law spectrum for the streamwise velocity fluctuation (where k1 is the streamwise 

wavenumber) in a region close enough to the wall. Perry Sz Chong (1982) also 
made the connection between the spectra and the stresses and pointed out that a 

k~[l spectrum integrates to give a logarithmic dependence of the streamwise stress 
on the wall-normal position as given in equation (2.1). Note that a precise k~x 

region in the spectrum is not necessary for the streamwise stress to exhibit a 

logarithmic dependence since the integral is not sensitive to small departures 
from this behaviour. It is also worth noting here that the particular conical eddies 
favoured by Townsend would not produce a k\l law in the streamwise 

component and this is reflected in the equations for the stresses since the 
conical eddies give Di 

= 0 in equation (2.1). 
Physically, in terms of the attached eddy model, the occurrence of a k\l region 

in the spectrum can be explained in terms of the velocity signatures of attached 
eddies. The argument follows the same reasoning as given above for the stresses. 

At a given distance from the wall, z, a probe measuring streamwise or spanwise 
fluctuations will only register contributions from eddies of size greater than or 
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equal to z. The largest eddy contributing to the k\l region may be expected to be 

of size ?0.1(5 (since this is the largest eddy within the logarithmic region of the 

flow). The smallest eddy that contributes is of order of the distance from the 

wall, z. If we then wish to estimate the length of the k~[l region, we find the ratio 

of contributing scales is ~ 0.15/z. In order to see a decade of k\l in the spectrum, 
we would need O.ld/z^lO and the distance from the wall would need to be 

z/<5<0.01. It turns out that this estimate is a little generous and the 

measurements presented later show that the distance needs to be even less 

(Nickels et al. 2005 estimated that z/b<0.002 is required for one decade). This 

explains why Morrison et al. (2004) and McKeon Sz Morrison (2007) did not 
observe any k\l region in their spectrum since the lowest level examined was 

z/<5 
= 0.03 where a k\l region in the spectrum cannot be expected. At this point, 

the ratio of the largest to the smallest attached eddy in the turbulent wall region 
and contributing to the streamwise stress is only three at the most. 

A further point should be noted. While it is necessary to approach the wall 

closely in order to observe A^1 behaviour, the closeness of approach is limited by 
the effects of viscosity which become more important nearer the wall. Results, 
to be presented later, suggest that these effects are quite small at z+ > 100. 

McKeon Sz Morrison (2007) have examined this question in terms of the local 

Reynolds number required to establish a Kolmogorov-type inertial range in the 

spectrum. The idea is that a sufficient scale separation is required between the 

large eddies in the flow and those responsible for the dissipation. This can be 

related to the value of the Taylor microscale Reynolds number, R^. McKeon Sz 

Morrison (2007) consider previous research and available data and suggest a 

value of Rx>100 as a sufficient criterion. 

This very brief summary of the attached eddy model and the developments of 

it by Perry & Chong (1982) and others is sufficient to provide a basis for 

understanding the predictions of this 'classical' approach for high Reynolds 
number boundary layers. Note that the approach here is considered classical in 

that it fits nicely within the classical framework for high Reynolds number 

boundary layers in terms of the appropriate scaling arguments and underlying 
structure. The physics follows logically from the derivation of the logarithmic 

velocity variation for the boundary layer and it makes testable predictions for 

the spectra and stresses. It should be noted here that this model has extensively 
been refined and developed in the last 20 years and the reader is referred to 

Perry Sz Marusic (1995) and Marusic (2001) for a summary of some recent 

developments and further details of the model. 
One refinement examined in Marusic (2001) was the incorporation of long 

structures into the basic model. These structures lead to a low-wavenumber 

'hump' in the streamwise spectrum which is not present in predictions from the 

attached eddy model. Marusic (2001) found that this could be accounted for by 

considering 'packets' of attached eddies, aligned in the streamwise direction, as 

the basic structural unit of the flow. In the original model of Perry Sz Chong 

(1982), individual eddies were considered uncorrelated and hence the longest 
extent of streamwise correlation could only be of the size of the largest eddy in 

the flow (of order <5, the boundary layer thickness). This simple modification 

leaves the general structure and predictions of the model unchanged but 

replicates the contributions of these longer structures very well. Hence, the 

presence of long structures is compatible with the attached eddy model. The size 
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of this hump in the energy spectrum seems to increase with Reynolds numbers 
for low Reynolds number flows (see Kim Sz Adrian 1999; Hutchins Sz Marusic 

2007); however, indications are that this increase either stops or becomes quite 
small beyond 5+ ~10 000. This may be confirmed by examining fig. 4 in Nickels 
et al (2005) in which two Reynolds numbers are shown and, perhaps more 

convincingly by comparing these results to those presented in McKeon Sz 
Morrison (2007) in the Princeton superpipe. The Reynolds number differs by a 

factor of two between these results (in different flows) and yet the height of the 
low wavenumber hump is virtually the same (this does not, of course, preclude a 

very slow growth in the height of the hump). A further comparison can be made 
with other superpipe data presented in Morrison et al. (2004) in which the 

Reynolds number is higher by a factor of 10. Here there appears to be a small 
increase in the maximum height of the peak of approximately 15%. A final 

comparison may be made with the atmospheric data of Kunkel Sz Marusic (2006) 
in the atmospheric boundary layer. While these measurements (in common with 

virtually all atmospheric data) suffer from lack of complete convergence at the 
low wavenumbers, and hence have a very large scatter, it is still possible to make 
a rough estimate of the height of the hump. These measurements with a 

Reynolds number approximately 400 times as high as in Nickels et al. (2005) give 
a best estimate of hump height only approximately 20% greater. It appears then 
that if there is any increase at higher Reynolds numbers it is very small. 
Particular attention has been paid to this issue since it has been suggested that 
the growth of this peak might 'swamp' the occurrence of a k\l region in the 

spectra. This now seems unlikely at all terrestrial Reynolds numbers. 

3. Measurements of boundary layers at high Reynolds number 

In order to examine any predictions regarding the structure of turbulent boundary 

layers at high Reynolds number, it is first necessary to make careful and accurate 
measurements of such flows. These measurements are not trivial and can suffer from 

uncertainties due to the establishment of the flow and the resolution of the 
measurement technique. In this section, we discuss some of the issues relating to the 

resolution of the measurements before going on to examine the actual measurements 

that have been made to test the predictions of the models discussed above. 
Hot-wire anemometry is one of the most commonly used measuring techniques 

for turbulence research. It involves measuring the heat transfer from a very small 

heated wire and hence inferring the velocity of the fluid passing over the wire. 

While the sensors used in turbulence research are very small (typically from 0.2 to 

1 mm in length and 1 to 5 jum in diameter), they still have finite dimensions and 

can only resolve motions in the flow larger than the wire length. Smaller motions 

are spatially averaged over the length of the wire. Since the scales of motion in 

turbulence at high Reynolds number can become very small, this spatial averaging 
can lead to misleading results if it is not considered carefully. Eddies of smaller size 

than the wire length will not fully contribute to the higher order statistics of the 

flow. The inability to resolve these small eddies is relevant for turbulence 

measurements of flows at high Reynolds number and for measurements close to 

solid boundaries. This is a direct result of the reduction in the size of the small 

scale viscous dissipative eddies and also a reduction in the size of the smallest 
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anisotropic ('attached') eddy as the Reynolds number is increased. Ligrani Sz 
Bradshaw (1987) carried out extensive normal hot-wire measurements in a 

boundary layer flow with ## 
= 2620. Near-wall measurements with subminiature 

normal hot-wire sensors revealed that a wire of length, l+ = WT/v<20-25 is 
sufficient to yield turbulence intensity measurements within 10% of the 'true' 
values all the way to the wall. They also suggested that wires with an aspect ratio 

(length/diameter) of approximately 200 will produce a uniform temperature along 
the wire length that will reduce the end conduction effects and improve the 

temporal resolution of the wire. These limits are commonly used as a guide for 

selecting sensors for the turbulence measurements. The effect of the sensor size in 
turbulence measurements has also been investigated by Hites (1997) in a high 
Reynolds number boundary layer. Normal hot-wire measurements were carried 
out along a cylindrical model with a diameter of 45.7 cm and length of 900 cm. 
Different wires with diameters ranging from 0.5 to 3.8 \xm were tested at two 

measuring stations. The first measuring station was located at 184 cm from the 

tripping device. At this station Re varied from 4100 to 9720, corresponding to 
viscous length, v/UT, of 26 to 11 jum. The second measuring station was 733 cm 
from the tripping device with free-stream velocity of 28.6 m s_1, Re=19 300 and 

vj UT=17 nm. Turbulence intensity profiles measured with two different wires, 
/+ =6 and 31, which should not collapse due to the large difference in Z 

+ 
, showed 

complete collapse. This implies that a wire length of /+ = 30 is sufficiently small to 
resolve these turbulent flows. This is inconsistent with the findings of Ligrani Sz 
Bradshaw (1987). Given the inconsistency in the literature, the safest approach for 
an experimentalist is to test for spatial resolution effects in the flow of interest by 
using sensors of different sizes. 

4. Apparatus and experimental techniques 

The test facility was purpose built for the study of high Reynolds number, 
turbulent boundary layers and consists of an open return blower wind tunnel 
with a 27 m working length and a 2 X1 m cross-section. The flow conditioning 
consists of a honeycomb section, a perforated plate followed by six screens and a 
contraction of area ratio 6.25, where the aspect ratio is held constant along the 

length to minimize corner flow influences (Callan Sz Marusic 2001). The 
maximum speed of the wind tunnel is 45 ms-1 and it has a free-stream 
turbulence intensity of 0.05% (at 30 m s_1). Measurements were carried out for 

boundary layers developing on the tunnel floor, which is covered by aluminium 

plates of 6X2 m in size and 6 mm in thickness. The surface roughness of these 

plates is 1.5 jam (r.m.s.) as measured with a Perthometer M3. Measurements for 
the main study, developing flows, were limited to three reference unit Reynolds 
numbers {/?/*/ 

= 6.48 X IO5,1.33 X IO6 and 1.94 X106 per metre. They correspond to 
nominal reference free-stream velocity, [/?, of 10, 20 and 30 ms-1, respectively 
(some measurements were also taken at 40 ms-1 for one downstream station). 

Further measurements at matched Reynolds number, constant Re, were carried 
out at three reference unit Reynolds numbers of 6.48 X105, 1.03 X106 and 
1.59 X106 per metre, and the corresponding nominal reference free-stream velocity 
of 10, 16 and 24 m s-1, respectively. Ambient flow conditions were measured using 
a calibrated thermocouple and an electronic barometer. 
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A nominally zero pressure-gradient was maintained along the working section 

using a series of 1 m width adjustable ceiling panels. Air bleeding and adjusting 
the height of these panels were the two mechanisms used to control the 
streamwise pressure variation. A biplane screen, 25 mm square-mesh with 3 mm 
wire diameter, was placed at the exit of the working section so as to increase 
the pressure in the working section and facilitate the bleeding of air. The 

adjustable ceiling panels were located sufficiently far from the plate such that 
the flow near the boundary layer on the floor was as for a normal zero pressure 
gradient boundary layer. A similar technique was used by Marusic Sz Perry 
(1995) to impose various pressure gradients on a boundary layer. Careful 

measurements of their flow showed that the bleeding did not have any 
detrimental effect on the normal development of the layer. It was possible to 
maintain the pressure-coefficient (Cp) variation along the entire measuring 
section of the tunnel, to within +0.7% for the 20 and 30 ms-1 cases, but for 
the 10 ms-1 case, the Cp distribution varied by +1.0%. Mean flow velocity 
profiles were measured using 1.0 mm total head Pitot tube and with single 
normal hot-wires. The static pressure was measured by a static tube placed 
approximately 25 mm above the total head tube. The Pitot tube readings were 
corrected for the effect of shear using the MacMillan (1956) correction. The 
Clauser chart technique was used employing traditional constants, /c = 0.41 and 
^4 = 5.0, to deduce local skin friction coefficient, Cf 

= 
2rw/pU2. After conducting 

a careful study of tripping devices and locations, the decision was made to 

trip all boundary layers developing along the inner surface of the contraction 

using sandpaper sheets, grade 40 of 115 mm width, placed 750 mm upstream 
from the exit. 

The normal single sensor probe is a DANTEC 55P05 and was used with a 
constant temperature anemometer system (AN-1003 from AA lab systems) 
operating at an overheat ratio of 1.8. The frequency response of the system to a 
2 kHz internal pulse was greater than 200 kHz. Wollaston wires are soldered to 
the probe and etched to give a platinum filament with core diameters of 5.0 
and 2.5 jam, with active lengths of approximately 0.9 and 0.4-0.6 mm, 

respectively. A static calibration technique, with a third-order polynomial 
curve fit, is used to convert the measured anemometer output voltage into 

velocity. The normal hot-wire is statically calibrated against a Pitot-static 
tube pair. The uncertainty in the wall distance is estimated to be +5|im. 
Hot-wire signals were sampled online using a Microstar 16 bit data acquisition 
board model DAP3000a/21. Turbulence intensity measurements were taken in 
bursts of 8000 samples and four bursts were found to be sufficient to obtain 
results converged to within 1%. The signals were sampled at 200 Hz and 
filtered at 20 kHz. The ^-spectra were measured with calibrated normal wires 
and the signals were sampled at 80 kHz and low-pass filtered at 32 kHz. Data 
were sampled in bursts of 218 points and 500 bursts were found to give 
converged results. More details regarding spectra measurements can be found 
in Nickels et al. (2005). Taylor's hypothesis of frozen turbulence was used 
to transform the spectral argument from the frequency domain, /, to the 

wavenumber domain fcl5 such that 

h=^, (4.1) 
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Figure 1. Log-law for highest Reynolds number (## 
= 64 000) mean velocity profile. The symbol 

size indicates the uncertainty in the measurements. 

where Uc is the local mean convection velocity, which is assumed to be equal to 
the local mean velocity. The spectra were normalized such that 

?00 _ 

0n(fci)dfc1 
= u2, (4.2) Jo 

where 0ii(&i) is the power spectral density (PSD) per unit streamwise wave 
number ki. 

5. Results and discussion 

(a) Mean flow results 

In order to demonstrate the applicability and extent of the logarithmic law 
derived earlier, figure 1 shows the log-law compared with the variation of the 
mean velocity for the highest Reynolds number boundary layer measured. The 

log-law for these data certainly seems to be a good approximation over two 
decades in wall distance where it lies well within the (small) uncertainty of the 
data. Further measurements were made at eight streamwise stations with the 
first station located 0.4 m after the tripping device and the last station at 21.7 m. 
Detailed mean flow analysis can be found in Hafez et al. (2004). Mean flow 

velocity profiles for the developing flow are shown in inner flow scaling in figure 2. 
The profiles are also compared with the log-law of the wall employing traditional 
constants. Apart from a slight overshoot within the buffer region, there is very 
good collapse of the data in the turbulent wall region, TWR, across the 
full Reynolds number range, l.lX103<i?^<5.2X104. Here, the TWR is defined 
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Figure 2. Mean low-velocity profiles with inner flow scaling. Profiles are shifted up 5 units for the 

20 m s-1, 10 units for the 30 m s_1 and no change for the 10 m s_1; dashed-line represents log-law, 
k = 0.41 and ,4 = 5.0. Reynolds number range: l.lX103<i^<5.2X104. 

as 2:+>100 and z/<5<0.15. Outside the TWR, deviation from the log-law and 
later blending with the background irrotational flow occurs smoothly. It should 
be noted that the collapse of the data with inner scaling is due to the use of the 
Clauser-chart method for estimating Ur. The logarithmic variation of the mean 

flow, however, is unaffected by the method of analysis. 

(b) Streamwise stress 

(i) Spatial resolution 

Figure 3 shows the streamwise turbulence intensity profiles taken for positions 
with the same Reynolds number (#0 

? 18 000), but with different wire lengths. 
We might expect the attenuation to extend to a wall distance which is some 

multiple of Z+ and an examination of the results suggests that the attenuation 
starts to occur where z+ <3/+, approximately. The 10 m s_1 case represents the 

most resolved measurement in our study (l+ 
~ 

10 and 22 shown in the graph) and 
the only small differences between the two different wire lengths are limited to 
values of z+<60. This result is in agreement with the finding of Ligrani Sz 
Bradshaw (1987), but not with Hites (1997). The data of Hites at ## = 19 000 
(as discussed earlier), were measured with wires length l+ of 6 and 31. Hites' 
data gave a peak value of approximately 7.3 at about z+ = 15, and roughly 
constant value of 5.8 for 70<z+ <700. These values agree well with the present 
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Figure 3. Effect of spatial resolution. Streamwise turbulence intensity profiles at the same Reynolds 
number (Rd~18 000), but with different non-dimensional wire lengths. 

measurements at 24 m s_1 and wire length l 
+ 

of 32.4, which is attenuated due to 

spatial resolution. It is odd that the Z+=6 measurements appear to be 
attenuated despite the nominally good spatial resolution. Another interesting 
feature of the plots is that the highly attenuated profiles, Z+ =35 and 53, can be 
seen to have double peaks, one close to the wall and the other further away (the 
peak for Z+ = 35 is harder to see on this plot due to the number of profiles shown). 
This behaviour represents an attenuation of turbulence energy over a large 
portion of the boundary layer. Similar trends have been observed in boundary 
layer flows by Fernholz et al. (1995) and more recently by Morrison et al. (2004) 
in which a peak is becomes apparent when Z+ >30: this is also when it becomes 

apparent in the results shown above. This observation is consistent with an 

explanation for its appearance as being due to insufficient spatial resolution. An 

interesting feature of this second, spurious, outer peak in our results is that its 

position depends on Z+. In the case of l+ =35, it is at z~^ 
= 170 and for l+ =53, it 

is at ?p 
= 240. Since z^ varies with Z+ then if a wire of a fixed physical length 

is used to measure a flow with changing Reynolds number (which leads to 

changing Z 
+ 

) then the position of this peak will appear to be a function of 

Reynolds number. This is an example of the way in which insufficient spatial 
resolution can give misleading results. In the case of all of the other results 

presented here, the worst spatial resolution of the hot-wire was Z+=32 and 
conclusions are only based on measurements taken in regions of the flow where 
the attenuation due to spatial resolution was negligible. Inadequate spatial 
resolution is, then, one possible explanation for the appearance and movement of 
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Figure 4. Variation of the streamwise turbulence intensity at z+=300 versus S +. Data compared 
with the attached eddy prediction. 

the outer peak in the streamwise Reynolds stress observed by Fernholz et al. 

(1995) and Morrison et al. (2004). Measurements with much smaller probes are 

planned for the superpipe at Princeton and should help to resolve this issue. 

(ii) Predictions of the attached eddy model 

Since we are interested in predicting the behaviour of boundary layers at high 
Reynolds number, it is useful to examine the prediction of the attached eddy 
model for the variation of the streamwise stress with Reynolds number. Equation 

(2.1) can be rewritten 

-^2 
= Ci + Alog (-) 

= C\ + Alog <5+ - Alog z+. (5.1) 

If we now examine a fixed value of z+ =300, say, then we have an equation for 
the variation of the streamwise stress at this non-dimensional location with the 

Reynolds number, <5 +. Figure 4 shows the result compared with the theory and 
the agreement is quite good over about a decade in Reynolds number. There are 

two reasons for choosing the value of z+ =300. The first is that this is far enough 
from the wall for the effects of spatial resolution to be negligible for all the 

measurements and the second is that Marusic et al. (1997) have shown that there 
is a correction to the basic behaviour which varies approximately as (z+)-1'2 

which is fairly small at z+=300. There are actually several corrections which 
account for viscous effects and outer flow effects, but these have been neglected 
here since they are not significant in this case. These corrections should be seen 
as refinements to the essential attached eddy model and approach. The reader is 
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directed to the reference for further information. The value of Dx used here 

should be universal and is the same as that used in Marusic et al. (1997) to 

analyse other data (D1 
= 

1.03). The model is particularly useful since it not only 

gives a good prediction of the functional form of the relation but also, more 

importantly, gives a simple physical explanation for the increase with Reynolds 
number. Fixing z+ and increasing the Reynolds number, 5+ means moving closer 
to the wall since z/5 

= z+ /5 +. As noted earlier, moving closer to the wall leads to 
an increase in the streamwise (and spanwise) stress due to the increased number of 

eddies that are above the probe position and hence contribute to these quantities. 
Kunkel Sz Marusic (2006) also showed that the logarithmic dependence is 

apparent in the atmospheric boundary layer at 5+ ~ 4X10?two orders of 

magnitude higher than the measurements shown here (with the same 

constant, Dx). The model has also recently been extended by Marusic Sz Kunkel 

(2003) to predict the near-wall peak of the streamwise stress that occurs in the 

buffer region of the layer (at z+ ~ 15). 

(iii) Spectra 
As mentioned earlier, the attached eddy model as extended by Perry Sz Chong 

(1982) also predicts a k~[l variation for the streamwise spectra. This variation can 

also be derived from scaling arguments, but implicit in these arguments is a 

structure consistent with the attached eddy model discussed here. Essentially, it 
assumes that there is a range of sizes of eddies in the flow with characteristic 
velocities that scale with UT and with sizes that scale with z. From this basis there 
are various ways of deriving the k~[l behaviour, for example an overlap argument 
as used by Nickels et al. (2005). Essentially, the idea is that there is a range in 
wavenumber space in which the effects of both viscosity and the outer length-scale 
(e.g. the boundary layer thickness or the pipe radius) are negligible. The essential 
feature of this region is that an overlap exists where both inner and outer scaling 
are simultaneously valid. Inner scaling here refers to non-dimensionalization 

using the length-scale z, the wall-normal position and the velocity scale UT, the 
friction velocity. Outer scaling uses the length-scale 5, the boundary layer 
thickness and the same velocity scale UT. Inner scaling requires that 

~~u? ^T"/(M' 
(5-2) 

and outer flow scaling requires that 

t=^t=/(M)- 
(5-3) 

where </>ii(kiz) is the PSD of the streamwise velocity fluctuation per unit non 
dimensional wavenumber k\Z. If there is a region where these two scalings are 

simultaneously valid, then the streamwise spectrum (PSD) must vary as k~[l. 
Figure 5 shows spectra measured in the Melbourne facility taken from Nickels 
et al. (2005). The Reynolds number for this flow is <5+~15 000, which is 

comparable with the Reynolds numbers examined in McKeon Sz Morrison (2007; 
figure 4) from the Princeton superpipe. In this plot, the spectra have been 

premultiplied by ki such that a plateau on the plot corresponds to the A:^1 
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Figure 5. Spectra showing A;-1 region. 

behaviour. On this plot, which is scaled with the distance from the wall z, the 
curves peel-off from the plateau as the wall-distance is increased?a behaviour 
which is consistent both with the scaling arguments and the attached eddy model. 
When plotted scaled with outer scaling, the profiles collapse at the low 
wavenumber end and peel-off at the high end?consistent with the scaling 
arguments and the attached eddy model. The reader is directed to the reference for 
more details regarding both the measurements and the conclusions drawn from 
these measurements. For the purposes of this paper, it is sufficient to show that 
there is a region of kT1 behaviour in the streamwise spectra and its appearance, 
location and scaling are all consistent with the attached eddy model as discussed 
here. An important point should be stressed here. The authors have chosen to 

present the results premultiplied and in close up to show the variation of the levels. 
Even the results that peel-off are quite close to k~x behaviour if the numbers are 

compared. When this plot is shown in non-premultiplied form in the usual way 

(on log-log axes), the kT1 slope appears to cover almost two decades. That is why 
the integration of the spectra still effectively gives logarithmic behaviour for the 
stresses even where the close-up premultiplied spectrum appear to have peeled-off 
from the k~x plateau. The level shown that is closest to the wall is at z+ = 100. As 

mentioned earlier, it is important that the effects of viscosity should be small at 
this level. Following the analysis of McKeon Sz Morrison (2007), it is possible to 
work out the value of Rx at this level. The value is i?^=147 which comfortably 
exceeds the minimum requirement of Rx> 100 as suggested in their paper. 

It is also worth pointing out that the model predicts the same behaviour 
for the spectrum of the spanwise velocity component, 022(^1)5 but different 
behaviour for the spectrum of the wall-normal component, (/>ss(ki). Using the 

argument that the contributions to the wall-normal component come mostly 
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from eddies of size z, we then expect inner scaling for ^33(^1), but not outer 

scaling and hence there is no overlap. Kunkel Sz Marusic (2006) have shown that 

inner scaling does indeed collapse ^33(^1), over a range of three orders of 

magnitude in Reynolds number, whereas outer scaling does not work at all and, 
as a result, there is no kT1 region apparent in the spectrum. This observation 

provides additional support for the model. 

6. Conclusions 

It has been shown that the attached eddy model of the turbulent boundary layer 
provides testable predictions of the behaviour of these flows at high Reynolds 
numbers. It does this by postulating a particular underlying physical structure for 
the flow and then developing the implications of such a structure for the 

measurable statistical properties of the flow such as the mean velocity, the 

Reynolds stresses and the spectra. While some of this behaviour might be 

predicted based on other assumptions, the beauty of the model is that it ties 

together scaling arguments, mean-flow behaviour, Reynolds stresses and spectra 
in one internally consistent physical model. The empirical evidence presented here 
is consistent with the predictions of the model and lends support to the underlying 
ideas. The experiments presented for comparison are unique in providing well 

converged data measured with good spatial resolution at high Reynolds number. 

High Reynolds number data of this quality are necessary in order to test the 

predictions of this, and other, models. The quality of the measurements presented 
here has been achieved through the careful design and construction of the purpose 
built high Reynolds number facility at the University of Melbourne. 
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