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There are many open questions regarding the behaviour of turbulent boundary layers subjected to
pressure gradients and this is confounded by the large parameter space that may affect these flows. While
there have been many valuable investigations conducted within this parameter space, there are still
insufficient data to attempt to reduce this parameter space. Here, we consider a parametric study of
adverse pressure gradient turbulent boundary layers where we restrict our attention to the pressure gra-
dient parameter, b, the Reynolds number and the acceleration parameter, K. The statistics analyzed are
limited to the streamwise fluctuating velocity. The data show that the mean velocity profile in strong
pressure gradient boundary layers does not conform to the classical logarithmic law. Moreover, there
appears to be no measurable logarithmic region in these cases. It is also found that the large-scale
motions scaling with outer variables are energised by the pressure gradient. These increasingly strong
large-scale motions are found to be the dominant contributor to the increase in turbulence intensity
(scaled with friction velocity) with increasing pressure gradient across the boundary layer.

Crown Copyright � 2011 Published by Elsevier Inc. All rights reserved.
1. Introduction

Turbulent boundary layers developing in the presence of a pres-
sure gradient occur in all bluff-body flows (the trailing edge of an
airfoil is a well-known example) and in diffuser flows. As such, the
understanding of adverse pressure gradient (APG) boundary layers
is of critical importance to a wide range of engineering applica-
tions. Furthermore, the phenomena of boundary layer separation
occurs when the flow encounters an adverse pressure gradient.
For these reasons APG boundary layers have been the subject of
numerous experimental and numerical investigations since the
mid-twentieth century. Table 1 lists some of the parameters for a
selection of the existing database. While each of these studies
has revealed important characteristics of pressure gradient flows,
they collectively expand the parameter space that is known to af-
fect the boundary layer. A significant barrier to progress in under-
standing the effects of pressure gradients on boundary layers is the
uncertainty over the importance of each of the parameters. As a re-
sult, there has been little progress in reducing the parameter space
for the purposes of prediction and control.

While there are many open questions regarding APG turbulent
boundary layers, there are some established behaviours that
should be summarised here. The most recognisable feature of an
APG flow is the amplified wake of the mean velocity profile.
Samuel and Joubert (1974), Nagano et al. (1998) and Aubertine
011 Published by Elsevier Inc. All r

nty).
and Eaton (2005) among others, have shown that the wake
strength increases with the pressure gradient. Perry et al. (2002)
and others have provided relationships between the pressure gra-
dient parameter b and the wake strength for equilibrium boundary
layers; these are always increasing, monotonic functions. Tradi-
tionally, the evolution of the boundary layer has been character-
ised by the shape factor, H, of the mean velocity profile. This
parameter has been shown to increase in the presence of an ad-
verse pressure gradient (see, for example, Nagano et al., 1998;
Spalart and Watmuff, 1993; Ska_re and Krogstad, 1994). The turbu-
lence intensity in the outer region has also been found to rise with
pressure gradient as shown by Marusic and Perry (1995) when
scaled with the friction velocity (in addition to all previous refer-
ences). More recently, Nagano et al. (1998) observed that the mean
velocity profile in the logarithmic region was shifted below the
classical log law in APG boundary layers. Spalart and Watmuff
(1993) found a similar result, however they also noted that the
apparent value of j decreased with pressure gradient.

Although these characteristics are known, the role of the vari-
ous candidate parameters is uncertain. Therefore, the aim of this
study is to independently investigate the effects of three parame-
ters that are known to be influential in adverse pressure gradient
turbulent boundary layers:

1. Pressure gradient parameter
ights re
b ¼ d�

so

dP
dx

;

served.

http://dx.doi.org/10.1016/j.ijheatfluidflow.2011.03.004
mailto:montyjp@unimelb.edu.au
http://dx.doi.org/10.1016/j.ijheatfluidflow.2011.03.004
http://www.sciencedirect.com/science/journal/0142727X
http://www.elsevier.com/locate/ijhff


Table 1
Flow and experimental parameters for existing adverse pressure gradient boundary layer data. zþmin is the minimum
non-dimensional wall-distance measureable with the instrumentation available. Other parameters are defined in the
text.

Authors l+ zþmin b Reh

Samuel and Joubert (1974) 24–65 12 0.09–8 5000–30000
Cutler and Johnston (1989) 60–70 12 2–12 12000–25000
Nagano et al. (1998) 7.9–15.6 1 0.76–4.66 1290–3350
Ska_re and Krogstad (1994) �11 3 12–21 25000–54000
Marusic and Perry (1995) 7–38 20 0–7 2200–19100
Aubertine and Eaton (2005) 3–4 3 �0.4–2.3 3000–6300
Skote et al. (1998) DNS DNS 0.24–0.65 360–690
Lee and Sung (2008) DNS DNS 0.25–1.68 850–1400

Fig. 1. Illustration of the wind-tunnel geometry (side view).
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where d⁄ is the displacement thickness, P the static pressure, x
the streamwise coordinate and so the wall shear stress. This
parameter was proposed by Clauser (1954) who wrote that it
represents the ratio of the pressure gradient force (d⁄dP/dx) to
‘‘the only other gross force on the layer’’, the wall friction, so.
This is the most commonly discussed of the parameters affect-
ing pressure gradient boundary layers. One reason for this is
that b being constant is a necessary condition of an ‘‘equilib-
rium’’ boundary layer. Here, we adopt the simplified definition
of equilibrium, which relates only to the similarity of the mean
velocity deficit profile (Marusic et al., 2010c).
2. Friction Reynolds number
Res ¼
dUs

m
;

where d is the boundary layer thickness, Us ¼
ffiffiffiffiffiffiffiffiffiffiffi
so=q

p
is the fric-

tion velocity, q is the density and m is the kinematic viscosity of
the working fluid. This parameter may be thought of as a ratio of
large-scale to small-scale motions in wall-turbulence and is the
sole parameter for zero pressure gradient flows (since there is a
monotonic relationship between this and the Reynolds number
based on momentum or displacement thickness). The recent
study by Hutchins et al. (2009) has shown that the turbulence
intensity of ZPG boundary layers increases throughout the layer
with Reynolds number. As mentioned above, increasing APG
strength also has this effect. Therefore, it is necessary to isolate
these two parameters in order to understand the contributions
from each.
3. Acceleration parameter
K ¼ m
U2

1

dU1

dx
;

where U1 is the local free-stream velocity. This parameter un-
iquely characterises equilibrium boundary layers since b is con-
stant in those flows. For the developing APG boundary layer, the
importance of K is not clear from analysis of the existing litera-
ture.
Other parameters also exist as discussed by Perry et al. (2002),
with the classical one being the Coles (1956) wake factor. How-
ever, this parameter is based on the premise that a universal
logarithmic law of the wall exists.
2. Experimental procedure

2.1. Flow facility

The experiments were performed in an open-return blower
wind tunnel. The important features of the tunnel are a settling
chamber containing honeycomb and five screens followed by a
contraction with an area ratio of 8.9:1, which leads into an initial
inlet section area of 940 � 375 mm. For this investigation a new,
flexible test section ceiling was made from acrylic and hung by
threaded rods such that its height is easily adjusted; the adjustable
section length is 4.2 m. For all data presented here, the sections
heights are 375 mm at the trip wire (x = 0 m), 400 mm at x = 3 m,
and 550 mm at x = 5 m. At no location is the boundary layer thick-
ness greater than 20% of the tunnel height, ensuring the boundary
layers on the floor and ceiling of the tunnel do not influence each
other. The geometry is shown in Fig. 1. This facility was previously
used by Marusic and Perry (1995) and Jones et al. (2001) and fur-
ther details can be found in these references. To maintain a con-
stant pressure gradient, the cross-sectional area of the tunnel
increases nominally exponentially.

2.2. Oil-film interferometry

The method of oil-film interferometry (OFI) was used indepen-
dently to determine the skin-friction coefficient Cf. Thirty cSt Dow
Corning 200 silicone oil was dropped onto a glass plug inserted in
the wind-tunnel floor at each location where velocity profiles were
acquired. After placing the oil droplet, the air flow was increased
from zero velocity to the measurement velocity in no more than
60 s. Temperature and pressure were sampled while real-time
images of fringes of the droplet were taken using a Nikon D90 dig-
ital camera with a 105 mm lens. OSRAM Vialox SON-E 70 or 90 watt
high-pressure sodium lamps were used to generate the fringe pat-
terns. The fringe pattern results from the interference between the
light reflected from the wind-tunnel (glass) floor and the inclined
oil-air interface. The rate of change of the distance between fringes
is related to the local shear stress,

so ¼ loil
Dx
Dt

� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

oil � n2
airsin2h

q
k

; ð1Þ

where h is the illumination incident angle, nair and noil are refractive
indices of air and oil and k is the wavelength of the light source
(k = 589.9 nm for the sodium lamp used). Further details of the



Table 2
Experimental parameters for hot-wire experiments. All data from the University of Melbourne.

Symbols U1 m/s x m d m Res Red� Reh b K�10�7 m/Us lm d lm l+ t+ TU1/d

O
a 11.97 5.0 0.098 2820 14,860 10,050 ZPG ZPG 35.0 3.8 22 0.53 14,600
�

b 17.53 4.6 0.078 2860 17,540 11,860 1.90 �1.44 29.1 3.8 24 0.42 27,000
.c 14.24 3.0 0.052 1820 6900 5020 ZPG ZPG 28.7 2.5 17 0.38 21,800
}c 12.70 3.5 0.061 1860 8560 6090 0.82 �1.44 32.4 2.5 15 0.28 31,000
o c 11.40 4.1 0.078 1940 10,070 6860 1.77 �1.96 40.7 2.5 16 0.19 21,900
h c 10.07 4.6 0.093 1980 12,730 8310 3.12 �2.56 47.2 2.5 16 0.14 18,400
⁄ c 9.80 4.8 0.104 1980 15,200 9440 4.74 �2.82 53.0 2.5 15 0.11 22,500
�

d 7.98 4.8 0.108 1770 12,290 7620 4.39 �3.47 62.1 2.5 15 0.08 18,000
�

d 12.89 4.8 0.100 2500 18,410 11,640 4.40 �2.18 40.8 2.5 16 0.19 16,000
d 17.10 4.8 0.105 3510 25,100 16,260 4.53 �1.59 30.3 2.5 16 0.34 19,600
d 19.06 4.8 0.102 3880 28,440 18,500 4.40 �1.46 27.5 2.5 16 0.41 19,300

+e 12.19 3.5 0.063 1910 8500 6050 0.96 �1.52 34.5 2.5 15 0.26 29,000
�e 14.38 4.1 0.073 2500 12,900 8860 1.67 �1.53 31.0 2.5 17 0.28 23,900
/ e 16.41 4.6 0.093 3280 21,310 14,080 3.22 �1.51 29.0 2.5 16 0.30 26,600
w e 18.02 4.8 0.105 3630 26,460 17,070 4.75 �1.52 29.4 2.5 16 0.31 26,500

a ZPG data (Hutchins et al., 2009).
b Matched ZPG data.
c Matched Res data.
d Matched b data.
e Matched K data.
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OFI method can be found in Ng et al. (2007), Madad et al. (2010).
Determining fringe spacing can be problematic if image quality is
compromised. To reduce error in the image analysis, the Hilbert
Transform method discussed by Chauhan et al. (2010) is employed.
2.3. Experimental parameters

All of the measurements were performed using single hot-wire
anemometry. Wollaston wires were soldered to the DANTEC prong
tips and etched to give a platinum filament of the desired length, l.
For the parametric study, the platinum filament diameter was / =
2.5 lm, however, in Section 4, a diameter of / = 3.8 lm was used
to match experimental conditions of comparative studies. The hot-
wire probes were operated in constant temperature mode using an
AA Lab Systems AN-1003 anemometer with an overheat ratio of 1.8
and the system had a frequency response of at least 50 kHz.

Previous investigations have shown that the length-to-diameter
ratio (l/d) of hot-wire sensors should exceed 200 in order to mini-
mize attenuation caused by end conduction effects (Ligrani and
Bradshaw, 1987; Hutchins et al., 2009). This criteria has been fol-
lowed in all the experiments in this study. Furthermore, these pre-
vious studies have also shown that the dimensionless wire length
l+ should be as small as possible to reduce spatial resolution effects.
Unfortunately, it is not practical to reduce the wire size sufficiently
to capture the smallest structures encountered in the boundary
layers of this study. However, when comparing data, Hutchins
et al. (2009) have shown that it can be useful to match l+ between
experiments in order to maintain a similar attenuation across all
data sets. For the parametric study here l+ = 16 ± 1, and in experi-
ments conducted for comparison with published zero pressure gra-
dient data, l+ was matched with the published data.

The sampling time at each wall-normal location, T, is non-
dimensionalised in outer-scaling to give ‘boundary layer turnover’
times, TU1/d. It is important to consider this parameter when
selecting the sampling time for an experiment since the largest
flow features can exceed 6d in wavelength (Hutchins and Marusic,
2007; Monty et al., 2007; Ganapathisubramani et al., 2003) and
converged statistics typically require several thousand of these
events to advect past the sensor. For this reason, the boundary
layer turnover time was at least 15,000 in the experiments per-
formed during this investigation.

All relevant experimental parameters are provided in Table 2.
Note that the superscript ‘+’ is used to denote viscous scaling, e.g.
zþ ¼ zUs=m; Uþ ¼ U=Us; tþ ¼ tU2
s=m. Us is the friction velocity and

tþ ¼ tU2
s=m is the non-dimensionalised sample interval, where

t = 1/fs and fs is sampling rate. z is the wall-normal coordinate.
3. Flow conditions

3.1. Pressure gradient

The wind-tunnel is constructed in three sections: an inlet sec-
tion with fixed-height ceiling, a variable pressure gradient section
and an exit section (as shown in Fig. 1). The variable pressure gra-
dient section has an adjustable, flexible ceiling that is configured
such that a zero pressure gradient is maintained until x � 3 m. A
constant adverse pressure gradient is thereafter maintained until
x � 5 m. After final adjustments to the ceiling height were made,
it was found that the coefficient of pressure, Cp

Cp ¼
P � Po

1
2 qU2

0

¼ 1� U1

U0

� �2

ð2Þ

remains within ±0.01 at a given streamwise location for the range of
velocities tested. Here, P is the local static pressure, Po is the static
pressure at the inlet and U0 is the inlet free-stream velocity. Fig. 2
shows Cp plotted against streamwise location for two selected inlet
velocities.

3.2. Skin-friction

For the analysis of velocity statistics of wall-turbulence, it is
necessary to be able to accurately measure the friction velocity,
Us. This is commonly non-dimensionalised as the coefficient of
friction

Cf ¼
so

1
2 qU2

1

¼ 2
U2

s

U2
1

; ð3Þ

where so is the wall shear stress, which is measured using the oil-
film interferometry method described earlier. It is important to note
that there is a difference between Us measured with OFI and that
determined by the Clauser method using the mean velocity profile.
To illustrate this point, Fig. 3 displays the coefficient of friction plot-
ted as a function of pressure gradient parameter, b (Reynolds num-
ber is maintained constant). The skin friction determined from the
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Fig. 2. Coefficient of pressure Cp. �, U0 = 15.9 m/s and �, U0 = 10.5 m/s.
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Fig. 4. Comparison of APG and ZPG flows at matched Res � 2800. (a) Mean velocity
profiles and (b) broadband turbulence intensity profiles. (O) ZPG and (�) APG. Solid
line shows Eq. (4) with j = 0.41 and A = 5.0, dashed line shows U+ = z+ and dashed-
dot line z+ = 15.
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Fig. 3. Coefficient of friction for constant Res � 1900. The solid line connects Cf

obtained directly by OFI. The error bars of 2.5% for the OFI method are shown.
Symbols not connected with the solid line represent Cf obtained from Clauser chart.
Refer to Table 2 for symbols.
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Clauser chart method agrees with that obtained from oil-film inter-
ferometry only for zero and mild adverse pressure gradient bound-
ary layer flows. Beyond b � 2, the difference between the methods
becomes significant (approximately 10% difference in Cf). This sug-
gests that the use of the Clauser chart for moderate to strong ad-
verse pressure gradients could lead to inaccurate conclusions
about the applicability of scaling arguments for pressure gradient
boundary layers.

Throughout this paper Us is determined by oil-film interferom-
etry (except in the case of the zero pressure gradient data of
Hutchins et al., 2009, where the Clauser method was used).
4. Comparison of APG and ZPG flows at Res = 2800

We begin our analysis by comparing one relatively mild adverse
pressure gradient case (b = 1.90) with a zero pressure gradient case
published in Hutchins et al. (2009) at matched Res � 2800. By ana-
lysing only two data sets, this comparison is intended to provide
clear and simple evidence of the effects of pressure gradient on
the mean statistics.
4.1. Mean velocity

Fig. 4a displays the inner-scaled mean velocity profiles for both
boundary layer flows. Although the Clauser method was used to
determine Us by Hutchins et al. (2009), the brief analysis of the
applicability of this method in Section 3.2 suggests that this should
not affect any of the conclusions drawn here.

In the wake region (z/d > 0.15) the APG mean velocity rises
higher than that of the ZPG case, typical of adverse pressure gradi-
ent boundary layers. The ‘strength’ of the wake is commonly quan-
tified by the Coles wake parameter, P (essentially a measure of the
maximum deviation from the log law). Calculation of P requires
the explicit knowledge of the log law that describes the mean
velocity data in the overlap region. That is, the constants j and A in

Uþ ¼ 1
j

logðzþÞ þ A; ð4Þ

must be known. The classical values for the smooth wall, zero pres-
sure gradient boundary layer are j = 0.41 and A = 5.0, which leads
to a value of P � 0.55 for the ZPG case. However, it is not trivial
to determine P for the APG case since an examination of the loga-
rithmic region in Fig. 4a reveals that the APG mean velocity drops
below the classical log law. This behaviour has been reported previ-
ously for strong pressure gradients (Nagano et al., 1998; Spalart and
Watmuff, 1993; Lee and Sung, 2008), although it is noted that the
measurements of Aubertine and Eaton (2005) in mild pressure gra-
dient flows (b < 2.3) show the mean velocity does follow the classi-
cal log law within the considerable scatter of the data. The
experiments of Aubertine and Eaton (2005) were conducted over
an inclined 4� ramp; it is possible that flow development differences
may be responsible for the different conclusions drawn from that
work. Furthermore, by visual inspection of Fig. 4a it appears that
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there is a difference in the extent of the logarithmic region for the
two flows. The logarithmic layer is most commonly considered as
the region of 100 < z+ < 0.15Res, however, there are numerous stud-
ies that challenge this (for example, Zagarola and Smits (1998),
Österlund and Johansson (2000), Nagib and Chauhan (2008),
Bourassa and Thomas (2009)). For the ZPG case presented here,
the logarithmic region appears to begin at z+ � 70 and extends until
z+ � 0.15Res, which is slightly more extensive than generally ac-
cepted. Although it is not so clear in the APG case, it appears that
the mean velocity profile deviates closer to the wall than in ZPG
(it is interesting to note that in the favorable pressure gradient case,
Bourassa and Thomas (2009) found the log region to be longer
compared with the ZPG case).

To more accurately evaluate the extent of the overlap region
and the logarithmic scaling of the mean velocity, it is helpful to
employ the diagnostic function

N ¼ zþ
dUþ

dzþ
: ð5Þ

If there exists a logarithmic region of the velocity profile, it will
appear in the range of z+ for which N is constant. In fact, it is easily
shown by differentiating Eq. (4) that N = 1/j in this region. A com-
parison of the diagnostic function for zero and adverse pressure
gradients is shown in Fig. 5. The zero pressure gradient mean flow
data seems to follow a logarithmic trend in the region
70 < z+ < 0.15Res. It is also evident that both cases agree well until
z+ � 100, from which point there is a deviation of the APG data.
Although the diagnostic function data are noisy (inherent in the
spatial differentiation of experimental data), it could be argued
that the wake region of the APG flow begins as early as z+ = 150
(z/d = 0.05). If so, there is effectively no logarithmic region at this
pressure gradient and Reynolds number. However, if the tradi-
tional limits of 100 < z+ < 0.15Res are employed, it is found that
j = 0.32 for the adverse pressure gradient case (with correspond-
ing A = 1.03). This is in agreement with both Nagib and Chauhan
(2008) and Nickels (2004) who also reported lower values of j
for APG compared with ZPG. Observing Fig. 5, it is obvious that
the value of j is strongly dependent on the chosen log region at
this Reynolds number. For example, if we were to consider the re-
gion 70 < z+ < 0.05Res, the APG data follow a log law with j = 0.42
and A = 4.6, while a curve-fit to the ZPG data gives j = 0.42 and
A = 5.2. It is not clear from the data presented here, or the existing
literature, whether the limited extent of the log region in the APG
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Fig. 5. Comparison of the diagnostic function for APG and ZPG flows at matched
Res � 2800. For symbols, refer to Table 2. Dashed-dot line shows j = 0.32, dashed
lines show the logarithmic region.
case is due to the pressure gradient or the relatively low Reynolds
number. Therefore, it is suggested that higher Reynolds number
data are needed to make definite conclusions about the effect of
pressure gradient on the log law using this analysis (as pointed
out by Nagib and Chauhan, 2008). This also means that the wake
parameter P cannot be stated conclusively and could be in the
range of P = 1.25 � 1.65 depending on the log law chosen.
4.2. Turbulence intensity

The scaling of the streamwise turbulence intensity near the wall
in canonical turbulent shear flows remains an open question and
has received increasing attention in the last decade (for example,
Marusic et al., 2010c,, 2001; Smits et al., 2011; Hutchins et al.,
2009; DeGraaff and Eaton, 2000). In the case of boundary layers
subjected to pressure gradients, there is far less reliable data
(covering the range of pressure gradients and Reynolds numbers)
available to enable the formulation of scaling arguments for the
second-order mean statistics. In Fig. 4b, turbulence intensity data
from the APG and ZPG cases are presented. These data were ac-
quired with carefully matched experimental conditions to permit
a valid comparison between the two flows. Specifically, the
Reynolds number (�2800) and non-dimensional hot-wire length,
l+ (�23) are matched.

For zero pressure gradient boundary layers, Hutchins et al.
(2009) pointed out that the scatter in viscous-scaled turbulence
intensity in the near-wall region is due in large part to the compet-
ing effects of Reynolds number and non-dimensionalised hot-wire
length, l+. That is, as Res is increased, large-scale structures contrib-
ute to an increase in turbulence intensity, however as l+ is in-
creased, the small-scale fluctuations become increasingly
attenuated, thus causing a decrease in measured turbulence inten-
sity. For this reason, it is useful to match l+ when comparing two
data sets.

Fig. 4b displays broadband turbulence intensity scaled with Us
for both the APG and ZPG cases. It is immediately clear that the tur-
bulence intensity is higher throughout the flow for the APG case.
The maximum difference occurs in the outer region where a
secondary hump is observed in the APG data. No secondary hump
is observed in the ZPG data at this Reynolds number as the
turbulence intensity decays almost logarithmically through the
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Fig. 6. Broadband turbulent intensity profiles for ZPG and APG data at Res � 2800
decomposed into a small-scale component (kxc < d, broken lines) and a large-scale
component (kxc > d, solid lines). The heavier line represents the ZPG case, while the
lighter represents the APG. The black dashed line indicates z+ = 15. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 7. Mean statistics for adverse pressure gradient boundary layers with
Res � 1900. (a) Mean velocity and (b) turbulence intensity profiles. For symbols,
refer to Table 2. The solid line shows Eq. (4) with j = 0.41, A = 5.0, the dashed line
shows U+ = z+ and the dashed-dot line indicates z+ = 15.
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logarithmic region. Clearly it will not be possible to collapse these
profiles with a constant velocity scale. Scaling arguments alone are
therefore unlikely to aid in the understanding of the differences in
this statistic owing to pressure gradient. To identify the source of
the differences observed in Fig. 4b, it is instructive to decompose
the turbulence intensity into a large- and a small-scale component.
This decomposition is similar to that proposed by Hutchins and
Marusic (2007) and Mathis et al. (2009), who defined a cut-off
wavelength based on an analysis of the pre-multiplied energy
spectra map of the streamwise velocity component. Here a cut-
off length-scale equal to the thickness of the boundary layer
(kxc = d) was chosen. This cut-off length scale was used by Mathis
et al. (2009) in the quantification of amplitude modulation of the
small-scales of wall-turbulence in zero pressure gradient boundary
layers. However, it is cautioned that this analysis requires high en-
ough Reynolds number to ensure sufficient separation of scales;
the data shown here are at the lower end of Reynolds numbers
considered high enough for this purpose.

Fig. 6 shows the decomposed turbulence intensity profiles for
ZPG and APG flows. It is observed that the large-scales are domi-
nant in the outer region for both cases. However the large-scale en-
ergy contribution for the APG case is much higher throughout the
flow, particularly in the outer region (where a secondary peak in
the broadband turbulence intensity is present). Although there is
also increased energy in the small-scales in the outer region of
the APG boundary layer, it is the large-scale energy increase that
is the greater contributor to the high turbulence intensity in this
region. Furthermore, the large-scale component extends its pres-
ence from the outer and logarithmic regions down to the near-wall
region. Interestingly, the adverse pressure gradient does not signif-
icantly change the small-scale component in the inner region
(z+

[ 50). This might suggest that the near-wall cycle remains sim-
ilar in both flows (analysis of other velocity components would be
required to confirm this). Regardless, it is observed that the large-
scale contribution near the wall is responsible for the difference in
turbulence intensity in this region. The increased peak in broad-
band turbulence intensity (at z+ = 15) for the APG case is therefore
due to the increased ‘footprint’ of the large-scale features. Such an
increased footprint was also reported by Hutchins and Marusic
(2007) to explain the rise in peak turbulence intensity with Rey-
nolds number for zero pressure gradient boundary layers.
5. A parametric study of Reynolds number and pressure
gradient effects

As discussed in the introduction, there is a significant history of
experimental research into boundary layers subjected to pressure
gradients. However, there is limited knowledge of the effect of
each of the relevant parameters in isolation. Here, the results of a
dedicated study into the effects of pressure gradient parameter,
b, Reynolds number, Res, and acceleration parameter, K are pre-
sented. The reader may note that Table 1 is segregated into four
groups of experimental results, of which the final three groups re-
fer to the constant Res � 1900, constant b � 4.4 and constant
K � 1.5 � 10�7 experiments respectively.
5.1. Constant Reynolds number

Fig. 7a shows the mean velocity profiles for adverse pressure
gradient boundary layers with matched Reynolds number,
Res � 1900, varying b = 0–4.7 and varying K = 0–2.8 � 10�7. Each
data set was acquired at a different streamwise location and it
should be noted that a unique inlet free stream velocity is required
to match Res. In the outer region, the adverse pressure gradient
causes the wake of the mean velocity profile to increase, as
expected. Focusing on the log region, there is a systematic devia-
tion from the log law (downward) as pressure gradient is in-
creased. Furthermore, the logarithmic region appears to reduce in
size with increasing pressure gradient, consistent with the results
of the previous section. Ska_re and Krogstad (1994) proposed that
the shift-down from the log law was due to the increased Reynolds
number. In this experiment, the Reynolds number was maintained
constant while the pressure gradient was increased, thus any Rey-
nolds number effect was isolated so that the reduction in scaled
mean velocity must be due to the pressure gradient.

In the near-wall region (5 < z+ < 15), the mean velocity profiles
are similar across all pressure gradients. This behaviour was also
reported by Krogstad and Ska_re (1995). It is also in agreement with
Nickels (2004) who showed that, in the region of z+ < 10, the mean
velocity data of adverse, zero and favorable pressure gradients col-
lapses under inner-scaling. (this conclusion was based on an anal-
ysis of the data in Nagano et al., 1998, and Spalart, 1986).

Fig. 7b shows the broadband turbulence intensity profiles for
matched Res � 1900. It is reminded that the non-dimensionalised
sensor length is maintained constant at l+=16 ± 1 for all experi-
ments to ensure similar spatial resolution effects. As noted earlier,
the effect of an adverse pressure gradient is to increase the turbu-
lence intensity throughout the layer when scaled with Us. Fig. 7b
shows just how the turbulence intensity profile grows with
increasing pressure gradient. It is important to note that the trends
observed and conclusions drawn from the scaled turbulence inten-
sity profiles will be considerably different if Us is obtained by the
Clauser method. For the inner region, the peak value of turbulence
intensity rises weakly from �7.8–9. In the outer region, however,
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the turbulence intensity increases sharply as pressure gradient in-
creases. Because the intensity in the outer region rises faster than
the inner, at b = 4.7 (the strongest pressure gradient) the intensity
in the outer region almost reaches the near-wall peak value. This
leads to the ‘double-hump’ shape of the turbulence intensity pro-
file and a further increase in b would undoubtedly lead to a pri-
mary peak in the outer region. Clearly, then, there is a notable
change in the shape of the profile with b, which affirms that the
adverse pressure gradient causes a change in the distribution of
energy in a turbulent boundary layer. This change can be described
as a relocation of the dominant energetic motions from the near-
wall region to the outer region.

It was shown in Section 4.2 that a scale-based decomposition of
the broadband turbulence intensity can provide insights into the
relative contributions of small- and large-scales. Fig. 8 shows this
decomposition for fixed Reynolds number with varying pressure
gradient. The small-scale component is represented by the broken
lines and is marked as group ‘1’. The large-scale component is rep-
resented by the solid lines and is marked as group ‘2’. The line
thickness increases with pressure gradient strength.

As the pressure gradient increases, it appears that both the
small- and large-scale contributions increase also. Even near the
wall there is a weak increase in the small-scale turbulence inten-
sity. However, as found in Section 4.2, it is the increasing large-
scale component in the near-wall region which causes the peak
turbulence intensity (at z+ = 15) to rise with increasing adverse
pressure gradient. In the outer region, the influence of the pressure
gradient on the strength of the large-scale structures is clearly evi-
dent. These large-scales amplitude modulate the small-scales as
discussed by Marusic et al. (2010b). For adverse pressure gradient
flows, it is therefore suggested that the amplitude modulation will
be stronger than the ZPG case, owing to the increased intensity of
the large-scale structures. Overall there is an increased energy in
all scales in the outer region when scaled with Us, which reaffirms
the earlier suggestion that a bulk shift in energy occurs from the
near-wall to the outer region as pressure gradient increases, con-
current with an amplification of the energy of the large-scale
structures.

So far, scaling using the friction velocity Us has been used to
characterise the effect of pressure gradient. Another scaling using
the inlet velocity U0 can also be used and this is shown in Fig. 9
for results at matched Res � 1900. We emphasise here again that
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Fig. 8. Broadband turbulent intensity profiles for ZPG and APG data at Res � 1900
decomposed into a small-scale component (kxc < d, broken lines) and a large-scale
component (kxc > d, solid lines). The thinnest line represents the ZPG case, the
thickness of the line grows with the strength of APG. The black dashed line indicates
z+ = 15.
in order to achieve a matched Res � 1900, U0 had to be adjusted,
thus there was a range of unique U0 values for this case. Fig. 9
shows that the newly scaled turbulence intensity collapses in the
outer region towards the edge of boundary layer (z/d > 0.3). Nearer
to the wall, in contrast to the Us scaled data, this scaling suggests
that turbulence intensities decrease with pressure gradient for
z+ < 100. The results in Fig. 9 highlight that the absolute values of
the turbulence intensities tend to decrease with increasing pres-
sure gradient in the inner region of the boundary layer, as found
by Nagano et al. (1998). Throughout the remainder of this paper
we consider only friction velocity scaling since the focus will be
on identifying changes in the flow caused by pressure gradient rel-
ative to the zero pressure gradient case.
5.2. Constant pressure gradient parameter, b

We now isolate the pressure gradient parameter b to examine
the effect of Reynolds number on an adverse pressure gradient
boundary layer. Fig. 10a displays the mean velocity profiles for
b � 4.4 with varying Res = 1770–3880. The mean velocity profiles
collapse in the inner and logarithmic regions for all Reynolds num-
bers. These do not, however, collapse onto the classical log law (4),
which is shown in the figure for comparison. Once again, it is dif-
ficult to determine the constants in the log law that best describe
the overlap region mean velocity. Again, the diagnostic function
is employed to give further insight into the logarithmic behaviour
(see Fig. 11). The diagnostic function clearly shows the velocity
profiles peeling up from the logarithmic law as Reynolds number
increases, which is to be expected. At the lowest Reynolds number
(Res = 1770), it is obvious that there is no substantial logarithmic
region. However, even at the highest Reynolds number (Res =
3880), it could be argued that the wake region still begins as early
as z+ = 100. This supports the earlier conjecture that the logarith-
mic region is diminished by the adverse pressure gradient, such
that there is almost no logarithmic behaviour evident.

The fact that the Reynolds number does not change the loga-
rithmic region behaviour is an interesting result as it implies that
the pressure gradient is responsible for the decrease in mean veloc-
ity below the log law. However, it is reminded that the Reynolds
number range is still relatively small; further studies at higher
Res would be invaluable to better understand the scaling of adverse
pressure gradient boundary layers.
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Fig. 10b shows the broadband turbulence intensity profiles for
b � 4.4. At z+ = 15, the turbulence intensity maintains a similar
magnitude (�8.5–9) as Reynolds number increases. These values
are obviously higher than those observed for zero pressure gradi-
ent data for similar Reynolds number (see Hutchins et al., 2009),
owing to the increased large-scale energy caused by the pressure
gradient. The higher Reynolds number data appear to collapse
through most of the logarithmic region with the expected
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Fig. 11. The diagnostic function for APG flows at matched b � 4.4. For symbols,
refer to Table 2. The dashed line shows j = 0.41.
peel-off in the far outer region. This result suggests that there
may be only slight differences in the structure of the flow with
increasing Reynolds number in the near-wall and logarithmic re-
gions at a constant pressure gradient. Although not shown here
for brevity, the scale decomposition shows collapse of large- and
small-scale contributions for all but the lowest Reynolds number.
For the lowest Reynolds number, the large-scale contribution is
lower in the outer region. This is not surprising since Hutchins
and Marusic (2007) have shown that the large-scale contribution
grows weakly logarithmically with Reynolds number.
5.3. Constant acceleration parameter, K

As indicated in the introduction, there are a number of param-
eters that are used to quantify the pressure gradient. For compar-
ison here we consider cases where the acceleration paramter K is
held constant. Fig. 12a shows the mean velocity profiles for the
experiments performed with matched K � �1.5 � 10�7. Note that
both the pressure gradient and Reynolds number vary for each
experiment (0.96 < b < 4.75 and 1910 < Res < 3630). A systematic
deviation below the classical log law is once again observed as b
and Reynolds number increase. This implies that the deviation
from the log law may be best described by a function of the pres-
sure gradient parameter b only. At constant K, there is also an in-
crease in the wake region with increasing b and Res, which is
expected.

Fig. 12b shows the broadband turbulence intensity profiles
when K is constant. There is obviously no collapse of the
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Fig. 12. APG flows at matched K � �15.1 � 10�8 (a) Mean velocity profiles and (b)
broadband turbulence intensity profiles. For symbols, refer to Table 2. Solid line
shows U+ = j�1log(z+) + A, j = 0.41 and A = 5.0, dashed line shows U+ = z+ and
dashed-dot line z+ = 15.
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turbulence intensity with K in any region. As with the constant Res
data, an increase in turbulence intensity is observed as b and Res
increase, which is now known to be mainly due to the increased
energy of the large-scale motions. The increasing turbulence inten-
sity with matched K and the collapse of this statistic with constant
b (see Section 5.1) suggests that it is b that is more useful for char-
acterising the APG boundary layer.
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Fig. 14. (a) Skewness S and (b) flatness F for constant b 4.4 data. For symbols, refer
to Table 2.
6. Skewness and flatness

The skewness, S, and flatness, F, factors are defined as:

S ¼ u03

ðu02Þ3=2
; F ¼ u04

ðu02Þ2
: ð6Þ

Fig. 13a shows the skewness of streamwise velocity fluctuations for
varying pressure gradient. For the zero pressure gradient case, the
skewness is negative in the lower part of the traditional logarithmic
region 0.01 < z/d < 0.03. Further from the wall (0.03 < z/d < 0.15), the
pdf of streamwise velocity closely follows a Gaussian distribution
(i.e., S � 0). These trends are consistent with previous findings (for
example Balint et al. (1991)). Fig. 13a shows that the influence of
the pressure gradient is to increase the skewness over the whole
boundary layer, which was also reported by Nagano and Houra
(2002). For the inner region, Nagano and Houra (2002) suggested
that the rise in skewness is caused by ‘structural changes in the
near-wall’ region due to pressure gradient. Here it is proposed that,
for high Reynolds number (Res J 2000), the change in skewness
with pressure gradient is due to the increased large-scale influence
in the near-wall region that was found earlier to be associated with
increased b. A similar conjecture was made by Metzger and Klew-
icki (2001) who compared low Reynolds number laboratory data
with that from a high Reynolds number atmospheric surface layer.
At lower Reynolds number, it was found that in the inner region of
z+ < 100, the skewness was negative, while for the high Reynolds
number data from the geophysical flow, the skewness remained po-
sitive in the same region. Upon applying a high-pass filter to the
streamwise velocity component to separate low-frequency, large-
scale motions, it was concluded that the increased energy of
large-scale structures caused the increase in skewness from a neg-
ative to a positive value. It is therefore not surprising that the entire
skewness profile increases with b, since it has already been shown
that the large-scale energy over the entire boundary layer increases
with pressure gradient.
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Fig. 13. (a) Skewness S and (b) flatness F for constant Res � 1900 data. For symbols,
refer to Table 2.
Mathis et al. (2009) and Marusic et al. (2010b) have shown that
the skewness is related to the amplitude modulation of the near-
wall, small-scale structures by the large-scales. That study also re-
ports the rise in skewness with Reynolds number for ZPG flows and
show that this is explained by increased amplitude modulation.
The behaviour of the skewness observed in Fig. 13a indicates that
the large-scales are not only increasing in strength, but they are
also increasingly amplitude modulating the small-scales as the
pressure gradient increases.

Fig. 13b shows the flatness, F, of the streamwise velocity fluctu-
ations for the constant Res data. The zero pressure gradient flow
has the lowest value of flatness in the near-wall region and, in gen-
eral, the flatness increases with pressure gradient. In the outer re-
gion, the flatness is nearly invariant with pressure gradient. A rise
in flatness is often attributed to a rise in intermittency (Dengel and
Fernholz, 1990). This interpretation leads to the conclusion that
there is weakly increasing intermittency in the near-wall region
of the boundary layer as pressure gradient increases.

Fig. 14 shows the skewness and flatness of streamwise fluctuat-
ing velocity for constant pressure gradient parameter data with
varying Res. As with the lower-order statistics, the skewness
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Fig. 15. (a) Skewness S and (b) flatness F for constant K � �15.1 � 10�8 data. For
symbols, refer to Table 2.



Table 3
Summary of constants in Eq. (7) for ZPG and b = 4.4.

(Monkewitz et al.) ZPG b � 4.4

j 0.384 0.36
C 3.3 2.3
IWW 7.11 12.6
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collapses for all Reynolds numbers in the logarithmic and outer
regions (the deviation near the wall is due to outer-scaling of the
wall-normal coordinate, z). At this pressure gradient, the skewness
remains positive through most of the layer, consistent with the
data of Fig. 13. Similarly, flatness collapses for all of the constant
pressure gradient data in the logarithmic and outer regions and,
as with the skewness, a relatively constant deviation from a Gauss-
ian distribution of velocity in the logarithmic and outer regions is
observed.

For completeness, Fig. 15 displays the skewness and flatness of
streamwise velocity fluctuations for the case of constant K. The
trends are similar to Fig. 13: no collapse is observed in the skew-
ness, which rises through most of the layer, and the flatness
increases in the near wall region with increasing b.
7. Shape factor H

The behaviour of the shape factor, H = d⁄/h, with increasing
Reynolds number has recently been clarified by the work of
Monkewitz et al. (2008) for zero pressure gradient flows. However,
the pressure gradient (and upstream history) has a complex effect
on the mean velocity and so the effect on the shape factor is not so
well-understood (although it has been shown that the shape factor
increases with b, see for example, Nagano et al., 1992; Spalart and
Watmuff, 1993; Ska_re and Krogstad, 1994). The additional compli-
cation is the dependence of H on Reynolds number, and, as dis-
cussed previously, many investigations allow both b and Res to
vary between experiments (as shown in the survey of existing data
in Table 1). This makes it difficult to determine the behaviour of H,
unless an impractically wide range of b and Res is studied. In this
investigation, each of the parameters has been isolated and this
will hopefully provide some insight into the effect of pressure gra-
dients on shape factor.

Monkewitz et al. (2008) developed a relationship between H
and the Reynolds number based on displacement thickness, Red� ;
the shape factor continually decreases with increasing Red� . For this
reason the shape factor is plotted against Red� in Fig. 16 for each of
the experiments conducted. For the constant Res experiments
(note that Red� does not necessarily remain constant when Res is
kept constant if the pressure gradient is varied) the shape factor in-
creases sharply as the pressure gradient increases. In contrast, the
constant b data (symbols inside squares) decrease with increasing
Reynolds number, as is the case for zero pressure gradient bound-
ary layers.
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Fig. 16. Shape factor, H vs RedI for constant Res, constant b data and constant K
data. The dashed and the solid lines represent H ¼ ð1� IWW=ðj�1 logðRedI Þ þ CÞÞ�1

established by Monkewitz et al. (2008) with existing constants for ZPG and
proposed constants for b � 4.4 shown in Table 3. For symbols, refer to Table 2.
The formulation for the shape factor as a function of Red� deter-
mined by Monkewitz et al. can be written as

H ¼ 1� IWW

Uþ1

� ��1

¼ 1� IWW

j�1 logðRed� Þ þ C

� ��1

; ð7Þ

where

IWW ¼
Z 1

0
ðUþ1 � UþÞ2dg:

Here g = z/D and D ¼ d�Uþ1 ;C must be determined by curve-fitting
ðUþ1 ;Red� Þ data. If the outer-scaled velocity defect profiles exhibit
Reynolds number similarity, then IWW is constant (it has been
shown that IWW = 7.11 in zero pressure gradient boundary layers).
All three parameters for the ZPG case are provided in Table 3 and
the resulting formulation is plotted as the broken line in Fig. 16.
Since the constant b data appear to follow a similar trend, the
parameters IWW, j and C were calculated for the b � 4.4 data. These
are also presented in Table 3. It was possible to calculate IWW = 12.6
from the velocity profiles because they exhibit Reynolds number
similarity over the range studied (although not shown, velocity de-
fect profiles collapse throughout the logarithmic and outer regions
when b is held constant). It should be noted that, due to the limited
data available (five Reynolds numbers), the values of the three
parameters determined are estimates only. Nevertheless, the result-
ing formulation for H follows the data very well (the solid line in
Fig. 16). Therefore, the evidence presented here suggests that the
functional form of H with Reynolds number does not change with
pressure gradient (at least not for mild pressure gradients and mod-
erately high Reynolds numbers).

8. Conclusion

A parametric study in turbulent boundary layer flows subjected
to adverse pressure gradients has been conducted. Specifically,
three data sets were acquired with only one of the following
parameters held constant in each set: pressure gradient parameter,
b, Reynolds number or acceleration parameter, K.

The preceding discussion of results may be summarised as
follows:

1. The oil-film interferometry method was used to determine the
wall shear stress and it was shown that different results were
obtained compared with the Clauser chart method for stronger
pressure gradients (b J 2).

2. In the traditionally accepted logarithmic region of the flow,
there is a systematic decrease in mean velocity below the log
law (fitted to the ZPG data) with increasing APG strength. Fur-
ther inspection of this region revealed that the wake of the
mean velocity profile in APG flows begins much closer to the
wall than in the ZPG case. This leads to the conclusion that,
for mild to strong adverse pressure gradients, there is effec-
tively no identifiable logarithmic region (within the Reynolds
number range of the study).

3. Reynolds number similarity is observed in the mean velocity
profiles when b is held constant and the shape factor formula-
tion of Monkewitz et al. (2008), developed for ZPG flows,
appears to follow the data closely.
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4. The large-scale structures in the turbulent boundary layer are
clearly energised by the presence of the adverse pressure gradi-
ent. The increased energy of these large motions is felt through-
out the layer and a higher broadband turbulence intensity
results. Thus, the effect of pressure gradient on the turbulence
intensity has similarities to the effect of increasing Reynolds
number in zero pressure gradient flows. However, the amplifi-
cation of the large-scale energy by the pressure gradient is
much more severe than that due to Reynolds number for the
experimental range reported in this investigation.

5. Skewness profiles show that increasing APG strength causes a
rise in the skewness. Marusic et al. (2010b) have shown that
increased skewness is a symptom of increased amplitude mod-
ulation of the small-scales of turbulence by the large-scales.

An extensive database of carefully acquired experimental re-
sults in APG boundary layers is presented here, which could be a
valuable resource for numerical simulation validation and research
into boundary layer control. However, there remain many open
questions that will only be answered through further experimenta-
tion. The parametric approach adopted here has permitted a
clearer insight into the importance of only a limited number of
variables, leaving scope for similar studies considering other vari-
ables. This study has also been limited to the streamwise velocity
component; experiments are planned to measure the other veloc-
ity components within a similar parameter space, but this remains
a challenge due to the small size of the probes required to access
the near-wall region. Perhaps of greatest need are APG data at
higher Reynolds number, since investigations to date remain con-
siderably distant in Reynolds number from those of important,
high-energy-consuming engineering applications.

The authors are grateful for the support of the Australian
Research Council.
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