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High-Reynolds-number data in turbulent boundary layers are analysed to examine
statistical moments of streamwise velocity fluctuations u′. Prior work has shown that
the variance of u′ exhibits logarithmic behaviour with distance to the surface, within
an inertial sublayer. Here we extend these observations to even-order moments. We
show that the 2p-order moments, raised to the power 1/p, also follow logarithmic
behaviour according to 〈(u′+)2p〉1/p = Bp − Ap ln(z/δ), where u′+ is the velocity
fluctuation normalized by the friction velocity, δ is an outer length scale and Bp

are non-universal constants. The slopes Ap in the logarithmic region appear quite
insensitive to Reynolds number, consistent with universal behaviour for wall-bounded
flows. The slopes differ from predictions that assume Gaussian statistics, and instead
are consistent with sub-Gaussian behaviour.
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1. Introduction

High-Reynolds-number boundary layers are one of the most practically relevant
turbulent flows since they occur whenever inertia-dominated flows interact with solid
boundaries. Applications range from airflow in the vicinity of aircraft wings to
turbulent flow in wind farms. The most well-known universal feature of such flows
is the logarithmic law (Prandtl 1925; von Kármán 1930) for the mean velocity profile
as a function of distance to the wall (z) in the inertial region,

〈u〉/uτ ≡ 〈u+〉 = κ−1 ln(zuτ/ν)+ B, (1.1)

for which there is significant empirical evidence (see recent reviews of Smits, McKeon
& Marusic (2011) and Jimenez (2012)). Here, uτ is the friction velocity based on the
wall stress τw according to uτ = √τw/ρ (ρ is the fluid density), ν is the kinematic
viscosity, κ is the von Kármán constant, and B is another constant. The existence of
such a basic property of wall-bounded turbulent flows has proven to be immensely
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useful to provide predictions in many applications, as well as to calibrate model
parameters, test simulations and guide theoretical understanding.

More recently, and motivated by model predictions based on the ‘attached eddy
hypothesis’ by Townsend (1976), Perry & Chong (1982) and Perry, Henbest & Chong
(1986), a logarithmic behaviour has also been observed in the inertial region for the
variance of the fluctuations in the streamwise velocity component. Specifically, there
has been growing evidence in recent years (Marusic & Kunkel 2003; Hultmark et al.
2012; Marusic et al. 2013) for a universal law of the form

〈(u′+)2〉 = B1 − A1 ln(z/δ), (1.2)

where u′+ = (u − 〈u〉)/uτ is the normalized streamwise velocity fluctuation and δ is
an outer length scale, which for boundary layers is the boundary-layer thickness, but
for pipes can be their radius, or the height of a channel. Recently, Hultmark (2012)
showed that a logarithmic profile could also be obtained from a matching procedure
for differentiated profiles of the variance within an overlap region. The prior data
are consistent with a value (the Townsend–Perry constant) of A1 ≈ 1.25 (Marusic &
Kunkel 2003; Smits et al. 2011; Hultmark et al. 2012; Marusic 2012; Marusic et al.
2013), whereas B1 is dependent upon flow conditions and geometry, and is thus not
expected to be universal.

Equation (1.2) is consistent with the attached eddy hypothesis in which the length
scales of eddies are proportional to the distance to the wall and their population
density is inversely proportional to distance. A simple heuristic argument is to say that
the streamwise velocity fluctuations in the inertial layer at some distance z from the
wall consist of the sum of independent velocity increments, each associated with the
occurrence of a wall-attached eddy. At a distance z, the number of such summands
is proportional to ∼ln(δ/z), and if the summands are statistically independent (e.g. if
the eddies are non-interacting) the variance will also be proportional to the number
of summands, and hence decrease with wall distance according to 〈(u′+)2〉 ∝ − ln(z/δ).
As the wall is approached, more and more velocity increments must be added, each
of them having the same characteristic velocity scale proportional to uτ , and thus the
variance increases.

Another consequence of statistical independence among the summands, from the
central limit theorem, is tendency for Gaussian behaviour and for even moments to
behave according to 〈(u′+)2p〉 → (2p − 1)!!〈(u′+)2〉p (where n!! ≡ n(n − 2)(n − 4) . . . 1
is the double factorial). This expectation suggests that the pth root of moments of
velocity fluctuations follows

〈(u′+)2p〉1/p = Bp − Ap ln(z/δ)= Dp(Reτ )− Ap ln z+, (1.3)

i.e. a generalized logarithmic law for high-order moments. When expressed in terms of
distance to the wall in viscous units z+ = z/zν = zuτ/ν, logarithmic behaviour would
also be expected, with the same slope −Ap but with a Reynolds-number-dependent
offset Dp = Bp + Ap lnReτ , where Reτ = uτδ/ν. For Gaussian statistics, asymptotically
one expects Ap = A1 [(2p− 1)!!]1/p.

Recently, the logarithmic scaling of the variance was used by Pullin, Inoue & Saito
(2013) to examine the turbulence intensity (the ratio of the root-mean-square (r.m.s.)
to the mean velocity) of turbulent boundary layers at very large Reynolds numbers.
It was concluded that a probable consequence of the log law for mean and variance
is that turbulence intensity tends to zero at asymptotically high Reynolds number. In
fact, examining higher-order moments enables one to make such analysis stronger, in
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FIGURE 1. Variance of streamwise velocity in turbulent boundary layers at several Reynolds
numbers Reτ = 2800 (�), 3900 (4), 7300 (�) and 19 030 (©), respectively, and SLTEST data
(∗). The solid lines indicate fits to the logarithmic region, performed in the range z+ > 400 and
z/δ < 0.3.

the sense that one may even examine the limit of the maximum individual fluctuation,
since u′2|max = limp→∞〈[(u′)2]p〉1/p.

In this paper, we use experimental data in turbulent boundary layers at various high
Reynolds numbers to determine whether there is empirical evidence for a generalized
logarithmic law such as (1.3), and whether the prediction from Gaussian statistics
holds.

2. Description of data sets

For our analysis, we use the datasets from Hutchins et al. (2009) at Reynolds
numbers Reτ = 2800, 3900, 7300 and 19 030 measured in the large Melbourne wind
tunnel (HRNBLWT) with a 2.5 µm diameter hot wire, and from Hutchins et al. (2012)
for measurements at the SLTEST site in Utah’s Western Desert using a wall-normal
array of nine sonic anemometers under nominally neutrally buoyant conditions. As
a baseline reference, figure 1 reproduces known results for the streamwise velocity
variance as a function of height for the four laboratory Reynolds numbers, as well as
for the SLTEST data at much higher Reynolds number.

The familiar logarithmic region can be discerned, and solid lines show fits to the
logarithmic law (Hultmark et al. 2012; Marusic et al. 2013) 〈u+′2〉 = B1 − A1 ln(z/δ)
for each case. For the current Reynolds numbers, the range z+ > 400 and z/δ < 0.3
is chosen to perform the fits. However, we note that, for the lower-Reynolds-number
datasets, it would appear that one could also have chosen a lower z+ limit. This
would be consistent with a Reynolds-number dependence in the lower limit of the
logarithmic layer, such as the ∼3Re1/2

τ dependence that has been reported previously
(Klewicki, Fife & Wei 2009; Alfredsson, Segalini & Örlü 2011; Marusic et al. 2013).
For the present analysis, we have opted to use the simpler and more ‘conservative’
(shorter) range with a fixed z+ > 400. The resulting fits would be almost unchanged
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FIGURE 2. Premultiplied p.d.f. of normalized velocity fluctuations (u′+)2p P(u+′) for the
Reδ = 19 030 dataset, at a height of z/δ = 0.08. Different moments are represented as 2p= 2 (�),
2p= 6 (�) and 2p= 10 (©). Curves are divided by an (arbitrary) factor Kp for clarity.

in the present range of Reynolds numbers. For Reτ = 19 030, the fitted constants are
B1 = 1.71 and A1 = 1.19. For the other three lower Reynolds numbers, Reτ = 2800,
3900 and 7300, the fitted values are (A1,B1) = (1.25, 1.68), (1.23, 1.73) and (1.27,
1.72), respectively. These are shown as solid lines in the figure. We thus confirm
that A1 and B1 appear to be (approximately) independent of Reynolds number, with a
nearly universal slope of A1 ≈ 1.25, with an accuracy of ∼5 %. Owing to the scatter in
the SLTEST dataset, we do not perform fits through the data, but show it to illustrate
that the logarithmic trend and slope appear to be fairly consistent with those of the
laboratory data. The value A1 = 1.25 is essentially the same as the values reported by
Hultmark et al. (2012) and Marusic et al. (2013) (the latter including similar datasets,
as well as others).

Next, we evaluate higher-order moments of the velocity fluctuations as a function
of height. Before proceeding, the convergence of high-order moments is an issue that
needs to be verified with care. Here we evaluate the pre-multiplied velocity fluctuation
probability density function (p.d.f.) in order to determine whether the moments can
be considered statistically converged. As a representative case, we consider the high-
Reynolds-number case Reτ = 19 030 from the laboratory data, and select data at a
height z/δ = 0.08 (z+ = 1520), near the core of the logarithmic region that will be
focused on in the subsequent analysis. Premultiplied p.d.f.s for 2p = 2, 6 and 10 are
shown in figure 2. They show acceptable ‘closure’ of the premultiplied p.d.f. in the
sense that the moment, which is the area under the curve, is well captured by the
amount of data available, at least up to the highest order 2p = 10 considered here.
Similar analysis for the SLTEST dataset at z+ ≈ 4 × 104 (not shown) confirms that
moments up to 2p = 6 can be considered well converged, with a 10 % statistical
convergence error estimate for the moment 〈(u′+)6〉, leading to about a 3 % error
estimate for our quantity of interest, 〈(u′+)6〉1/3. For the 2p = 10 case, the error
estimate is close to 50 % for 〈(u′+)10〉, and thus of 10 % for 〈(u′+)10〉1/5.
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FIGURE 3. Moments of order 2p = 6 of streamwise velocity as a function of wall-normal
distance, for several different Reynolds numbers (symbols as in figure 1). The lines show the
fits in the range z+ > 400 and z/δ < 0.3, with slopes denoted by A3. Since the experimental
uncertainty of the variance of u+ is of the order of 4 % (Hutchins et al. 2009; Ng et al.
2011), it can be estimated that the uncertainty on the sixth-order moments is of the order of
(6/2) × 4 = 12 % (but on the cube root of the moment, the uncertainty is again of the order of
4 %, and is not indicated in the figure in order to avoid clutter).

3. Results

Higher-order moments for 2p = 4, 6, 8 and 10 are evaluated as a function of wall
distance for the different Reynolds-number data sets. Results are shown in figure 3 for
2p = 6. The results are consistent with a ‘generalized logarithmic law’ for the sixth-
order moments, in the same inertial layer in which the variance displayed logarithmic
behaviour. Figure 4 shows the results for the highest laboratory Reynolds-number data
considered, for all the even-order moments up to 2p = 10. The results are consistent
with a ‘generalized logarithmic law’ within the inertial layer for all the moments
considered.

The next question is whether for a given order there is a continuing dependence
on Reτ even at high Reτ , or whether the slope Ap asymptotes to a certain value
that becomes independent of Reτ , at large Reτ . To that end, we perform fits of
(1.3) to the data within the same portion of the logarithmic regions described above,
namely z+ > 400 and z/δ < 0.3. Results of the fits are shown in figures 1, 3 and
4 as solid lines. Thus we determine the slopes Ap for each of the Reynolds-number
cases for the laboratory data. The results are plotted in figure 5 as symbols. The
dashed line shows the prediction based on Gaussian statistics Ap = A1 [(2p− 1)!!]1/p,
and appears (almost) linear due to the asymptotic behaviour of the double factorial
function (n!! ∼ n(n+1)/2e−n/2 and so (n!!)2/n ∼ n).

It appears that Ap tends to values that fall below the Gaussian values (i.e. displaying
‘sub-Gaussian statistics’), once high Reynolds numbers are reached. Further evidence
of Reynolds-number independence is that the slope of the SLTEST data, as seen from
the asterisks in figure 3, is quite consistent with the slope of the largest Reynolds
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FIGURE 4. Moments of order 2p= 2 (©), 4 (�), 6 (�), 8 (4) and 10 (∗) of streamwise velocity
fluctuation as a function of wall-normal distance z+, for the Reynolds-number case Reτ = 19 030.
The lines show the fits in the range z+ > 400 and z/δ < 0.3, with (negative) slopes Ap.
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FIGURE 5. Coefficients Ap in logarithmic law for moments as a function of moment order 2p,
for various Reynolds numbers Reτ = 2800 (�), 3900 (4), 7300 (�) and 19 030 (©). Given
the ∼4 % uncertainty in the scaled moments, the uncertainty in the determined slopes Ap can
be considered to be less than 10 %. The crosses and dashed line show the results expected for
Gaussian statistics, Ap = A1 [(2p− 1)!!]1/p.

number in the laboratory data. It thus appears that the sub-Gaussian scaling of
moments does not become more Gaussian at increasing Reynolds numbers.

To further explore the Reynolds-number dependences of sub-Gaussian statistics,
we plot in figure 6 the flatness F4(z/δ) in outer units. These data agree well
with previously reported flatness results in zero-pressure-gradient boundary layers, as
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FIGURE 6. Flatness factor F4 as a function of wall distance, for various Reynolds numbers
Reτ = 2800 (�), 3900 (4), 7300 (�) and 19 030 (©).

reviewed by Fernholz & Finley (1996). Flatness in the inertial region is seen to be
below the Gaussian value of F4 = 3, and there does not appear to be a discernible
Reynolds-number dependence in terms of sub-Gaussianity.

A related issue is the near-wall peak value of the variance and higher-order
moments. From the plots of moments, we observe that the peaks are located near
z+m1 = 15, approximately independent of moment order or Reynolds number. The
present data suggest a small dependence on Reynolds number, as has been argued
by Hutchins et al. (2009), although we note that it has been proposed that, for the
variance, the peak may become independent of Reynolds number (Hultmark et al.
2012). Conversely, if the inner peak arises purely from an extrapolation of the inertial-
layer motions, which themselves evolve with increasing Reynolds number, one would
expect

〈(u′+)2〉(z+m1)∼ A1 ln(δ/zm1)∼ A1 lnReτ , (3.1)

using the usual scaling that δ/zm1 ∝ Reτ . If so, one would expect high-order moments
to obey

[〈(u′+)2p〉(z+m1)]
1/p ∼ Ap lnReτ . (3.2)

The measured peaks are shown in figure 7 as a function of Reynolds number
for various moment orders. The dashed lines provide the extrapolated inertial-layer
prediction using the measured values of Ap. Clearly, the measurements fall below
these possible trends, indicating that the near-wall peak in high-order moments grows
much slower with Reynolds number than predicted by extrapolation of the generalized
logarithmic law in the inertial layer, down to a fixed z+m1. Therefore, it appears more
likely that the peaks could be related to the logarithmic law extrapolated down only
to a value z+m2 ∼ Reγτ with γ > 0. As mentioned before, γ = 1/2 has been suggested
in the literature (Klewicki et al. 2009; Alfredsson et al. 2011; Marusic et al. 2013)
as the lower limit of the logarithmic region for the second-order moment. Then the
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FIGURE 7. Scaling of peak of velocity moments as a function of Reynolds number, for various
moment orders 2p = 2 (©), 4 (�), 6 (�), 8 (4) and 10 (∗). Dashed and dot-dashed lines are

〈(u′+)2p〉1/ppeak ∼ Ap ln(Reτ ) + Kp and 〈(u′+)2p〉1/ppeak ∼ 0.5Ap ln(Reτ ) + K ′p, respectively, where Ap is
the measured slope in the logarithmic regions, and the Kp are arbitrary offsets. The solid line is
the Gaussian prediction [(2p− 1)!!]1/p 〈(u′+)2〉peak , for 2p= 10.

peak moments would scale as 〈(u′+)2p〉(z+m2)]1/p ∼ Ap(1 − γ ) lnReτ . The case γ = 1/2
is shown with dot-dashed lines in figure 7, and can be seen to give good agreement for
the moments of high orders 2p = 8 and 10, but not for the lower orders 2p = 2 and 4,
for which the data increase with Reτ even slower than with a slope of 0.5Ap.

Finally, if one simply took the measured variance as a function of Reynolds
number (circles in figure 7) and assumed Gaussian statistics, one would predict

〈(u′+)2p〉1/pz+m1
∼ [(2p− 1)!!]1/p 〈(u′+)2〉z+m1

, shown in the figure for 2p = 10 as a solid
line at the top. The slope appears to be close to the observations (which are shown as
asterisks), but a significant offset (of ∼7) is visible.

4. Concluding remarks

In conclusion, observations of a new generalized logarithmic law for high-order
moments in high-Reynolds-number turbulent boundary layers have been presented.
The results point to a sequence of possibly universal coefficients Ap, of which A1 is
the Townsend–Perry constant. Higher-order moments are consistent with sub-Gaussian
statistics, which implies that Ap cannot be trivially related to A1 and a theory for Ap is
still missing.

We point out that prior work has examined sub-Gaussian statistics in turbulence
(Jimenez 1998; Wilczek, Daitche & Friedrich 2011). In particular, Jimenez (1998)
shows that, for sufficiently steep spectra (steeper than k−1), there is no contradiction
between the central limit theorem and sub-Gaussian statistics for velocity fluctuations.
However, in the boundary layer’s logarithmic region and at scales that dominate the
variance, the spectra display a scaling that is (at least approximately) not far from
k−1 spectral scaling. Since the spectra are thus close to the cross-over k−1 scaling,
it is unclear whether the analysis of Jimenez (1998) can be applied to explain the
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present observations. The analysis of Wilczek et al. (2011) uses the p.d.f. equation to
show that sub-Gaussian p.d.f.s are to be expected in isotropic homogeneous turbulence,
but the analysis has not been applied to non-homogeneous boundary-layer turbulence.
The work of Tsuji, Lindgren & Johansson (2005) is also of relevance in the present
context. They quantified the differences between the shapes of the velocity fluctuation
p.d.f.s and Gaussian p.d.f.s using the Kullback–Leibler divergence and found that the
deviations are nearly constant across the inertial layer. While they did not observe
logarithmic behaviour for the moments, their results are consistent with the present
results.

Referring back to the considerations of Pullin et al. (2013), it is possible to
conclude, based on the present results, that even the maximum (instantaneous)
value of u′ may be asymptotically small compared to the free stream velocity at
increasingly large Reynolds numbers. This conclusion is based on the following
arguments (Pullin et al. 2013): assuming that the lower limit of the logarithmic
region for the even moments of u′ follows z+m2 ∼ Reγτ , i.e. zm2/δ ∼ Reγ−1

τ , the
asymptotic behaviour of the scaled moments in the boundary layer would be
〈u′+ (zm2)

2p〉1/p ∼ Bp−Ap(γ −1) lnReτ → Ap(1−γ ) lnReτ at Reτ →∞. Combined with
the estimate (uτ/U∞)

2→ κ2/ (lnReτ )
2 at Reτ →∞ (i.e. the Coles–Fernholz relation;

Pullin et al. (2013)), it is clear that the ratio

〈u′ (zm2)
2p〉1/p

U2∞
∼ κ

2Ap(1− γ ) lnReτ
(lnReτ )

2 → 0 when Reτ →∞. (4.1)

Now consider the random variable g formed by squaring the fluctuating streamwise
velocity, g = u′2. It is known that the maximum value of a random variable can be
obtained from its infinity norm as gmax = limp→∞〈gp〉1/p. Hence, we conclude that the
maximum value of u′2 follows

u′2max
U2∞
= lim

p→∞
κ2Ap(1− γ ) lnReτ

(lnReτ )
2 → 0 when Reτ →∞, (4.2)

provided the generalized Townsend–Perry constants Ap remain finite for any moment
order p. Thus, if the generalized logarithmic behaviour we observe in this paper
extends to any order moment (and we provide evidence that it holds up to tenth-
order moments), even the maximum individual velocity fluctuation would become
vanishingly small compared to the free stream velocity (strictly speaking, the
difference in velocity between the wall and the free stream) at asymptotically high
Reynolds numbers. Hence, the present observations should motivate further theoretical
developments.

In terms of empirical models, e.g. those based on a superposition of attached eddies,
the sub-Gaussian statistics and non-trivial dependences on wall distance may imply
particular correlations among eddies across different scales. Further work is needed to
uncover such correlations and also to show how they may relate to modulation effects
between the large- and small-scale motions in the flow (Mathis, Hutchins & Marusic
2009). Lastly, the generalized logarithmic law for high-order moments should prove
useful to test the accuracy of large eddy simulation models beyond the usual tests that
are mostly based on low-order statistics.
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