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A defining feature of the inner-outer interactions in wall-bounded turbulent flows is the imprint

of the outer large-scale motions on the inner small scale. Recently, Mathis et al. [“Large-scale

amplitude modulation of the small-scale structures in turbulent boundary layers,” J. Fluid

Mech. 628, 311 (2009)] quantified this imprint by applying the Hilbert transform to small-scale

components of the fluctuating streamwise velocity, u. They found that the wall-normal profile of the

amplitude modulation between the large scale and the envelope of the small scale exhibits strong

resemblance to the skewness profile of u. In this study, we assess this apparent relationship and show

that the Reynolds number trend in the skewness profile of u is strongly related to the amplitude mod-

ulation effect of the small scales by the large. This observation also leads to an alternative diagnostic

for the amplitude modulation effect, which is one component of the skewness factor based on a scale

decomposition. VC 2011 American Institute of Physics. [doi:10.1063/1.3671738]

In wall-bounded turbulent flows, the highest levels of

shear and turbulence production occur close to the wall.

Considerable attention has been devoted to studying the

small-scale motions that populate this “inner” region. A long-

standing question in the field is the nature of the interaction

between this inner region and the large-scale motions in the

“outer” region, with varying viewpoints on the degree of

interaction.1–5 In recent years, the discussion has gained

greater clarity with the advent of high-Reynolds number facili-

ties and improved instrumentation,6–8 in conjunction with

enhanced capabilities in numerical simulation.9,10 Accumulat-

ing evidence supports the view that large-scale events are

universally present in wall-bounded flows,4,11–15 and that the

large-scale features significantly influence the near-wall region,

imposing a strong “footprint” down to the wall12,16 (e.g., the

attached-eddy hypothesis of Townsend17), distinctly modulat-

ing the small-scale motions in the inner region.18 Further, it

appears that the large-scale motions become increasingly ener-

getic at higher Reynolds numbers, thus strengthening their

interaction with the inner small-scale motions. A fuller discus-

sion of these advances and other issues arising at high Reyn-

olds numbers can be found in recent reviews.6,19,20

In an attempt to characterize and quantify the modulat-

ing influence, Mathis et al.21 developed a procedure involv-

ing a single-point amplitude modulation coefficient, defined

as the correlation coefficient between the filtered envelope of

the small-scale fluctuations, EL uþS
� �

, and the large-scale

component, uþL , as

AMðzþÞ ¼ uþL ELðuþS Þffiffiffiffiffiffiffi
uþ2

L

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ELðuþS Þ

2

q
:

(1)

Here, z is the distance normal to the wall and the

subscriptþ indicates normalization with the friction velocity

Us and the kinematic viscosity of the fluid, �; for example,

uþ¼ u/Us and zþ¼ zUs/�. To obtain the terms in Eq. (1), the

fluctuating streamwise velocity uþ was decomposed into the

large-scale uþL and the small-scale uþS ; u
þ ¼ uþL þ uþS , by

choosing the cut-off wavelength kþx ¼ 7000 (where kx is the

streamwise wavelength). The cut-off wavelength was deter-

mined by studying spectrograms,21 and the results were

insensitive to its variations within 30%.22 The filtered enve-

lope of the small-scale contribution was obtained via a

Hilbert transformation (see Sreenivasan23 and, for specific

details, Mathis et al.21). This correlation coefficient AM(zþ)

is similar to the one proposed by Bandyopadhyay and

Hussain,5 who studied the interaction between small- and

large-scale motions in various shear flows. It should be noted

that the concept of amplitude modulation is closely related to

the concept of intermittency as discussed by Sreenivasan23

and Kholmyansky et al.,24 where an enveloping function is

used to modulate faster fluctuations. A typical trend of the

wall-normal variation of AM(zþ), along with the skewness

profile Su(zþ) of the streamwise velocity component, is

shown in Fig. 1 for Kármán number Res¼ 2800 (where

Res¼ dUs/�, with d the boundary layer thickness). In their

paper, Mathis et al.21 commented that the profiles of AM(zþ)

and the skewness Su(zþ) resemble each other strongly but did

not investigate the connection further.

Schlatter and Örlü26 explored the resemblance between

AM(zþ) and Su(zþ) using experimental and synthetic signals,

and urged caution on the use of the coefficient AM. Their syn-

thetic signal was obtained by randomly shuffling amplitudes

of an actual time-series signal so that the probability density

function (PDF), and hence the skewness factor, was the same

for both. They found that the modulation coefficient AM ofa)Electronic mail: rmathis@unimelb.edu.au.
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the synthetic signal was also close to the skewness factor Su of

the original signal. This finding led them to conclude that AM
may not be an independent tool for unambiguously quantify-

ing the effect of large-scale amplitude modulation of small

scales. While their study has clearly shown that the AM coeffi-

cient and the skewness factor are related, their cautious con-

clusions were restricted to relatively low Reynolds numbers

with limited scale-separation; more importantly, their syn-

thetic signal is not representative of real turbulence signals as

its energy is weighted towards the smaller scales as in white

noise (see Mathis et al., Proc. TSFP7, Ottawa, 2011). There-

fore, the results from the scale-decomposition on such a signal

(which is the first step in obtaining AM in Eq. (1)) are not nec-

essarily applicable to turbulent signals, and the caution advo-

cated by Schlatter and Örlü26 may not apply to real signals in

high-Reynolds-number turbulent flows. Bernadini and Piroz-

zoli25 also considered the implications of AM and suggested

instead that amplitude modulation can be more robustly cap-

tured by exploiting the covariance of uþL at one wall-normal

location, with ELðuþS Þ at a different wall-normal location.

They again noted an increasing top-down interaction between

the outer and inner regions with increasing Reynolds number.

Here, we advance our understanding of the relationship

between the turbulence modulation and the skewness in

wall-bounded flows, using experimental datasets obtained in

the high Reynolds number boundary layer wind tunnel at the

University of Melbourne. The data consist of time series of

u measured across boundary layers for Kármán numbers in

the range of Res¼ 2800–19 000. Details of hot-wire meas-

urements and experimental parameters are given by Hutchins

et al.27 and Mathis et al.21

To get an insight into the AM and Su relationship, we

consider the expansion of Su using a scale-decomposed

signal uþ ¼ uþL þ uþS , such that

uþ3 ¼ uþ3
L þ 3uþ2

L uþS þ 3uþL uþ2
S þ uþ3

S ; (2)

giving Su ¼ uþ3
L þ 3uþ2

L uþS þ 3uþL uþ2
S þ uþ3

S ; (3)

with X ¼ X= uþ2
� �3=2

; (4)

where a single overbar indicates the time average. Such a

decomposition was first used by Schlatter and Örlü26 for

wall-bounded flows but was previously considered by Sree-

nivasan et al.34 who studied the effects of large scales on the

inertial range in high-Reynolds-number turbulent flows.

They found that odd-order moments are affected more

strongly by the large scales than even-order moments. In

particular, they emphasized that a significant part of the

third-order structure function comes from the straining of the

small-scale kinetic energy by the large-scales. In other

words, this suggests a modulation of the small-scales by the

large. More recently, Schlatter and Örlü26 also considered

the two cross-terms of the scale-decomposed skewness factor

to propose an alternative amplitude modulation coefficient

factor (referred to as R*), in order to demonstrate the exis-

tence of an intimate relationship between statistical asymme-

try and amplitude modulation effects, as discussed above.

Based on those previous results, and further discussion with

Schlatter and Örlü,35 we employ here the same scale-

decomposition of the skewness factor to assess and under-

stand the physical meaning of this apparent relationship. It is

noted that the conclusions drawn from the following results

would be the same if we used the third order moment uþ3

instead of skewness Su.

The wall-normal variations of all the terms of the scale-

decomposed skewness factor are shown in Fig. 2 for

Res¼ 2800. Up to approximately the middle of the log-layer,

zþ ’ 200, the small-scale term uþ3
S appears to account for

the majority of the skewness factor, the other terms having

little or negligible contributions. We do not consider the

outer wake region where intermittency effects are known to

affect Su strongly.28 It is interesting to note that, as high-

lighted in the inset of Fig. 2, the cross term 3uþL uþ2
S has a

non-negligible contribution, whereas the two other terms,

3uþ2
L uþS and uþ3

L , are close to zero. It is interesting to note

that, while uþ3
L is nominally zero in the inner-region (see

Fig. 2), the second order moment of the large-scale compo-

nent, uþ2
L , increases with increasing Res.

27 Such behaviour is

consistent with previous findings that elongated low-speed

regions are usually flanked on either side by high-speed

regions of the same magnitude.12,29–31

To gain a better understanding of the role of all domi-

nant terms of the decomposed skewness factor, profiles of

FIG. 1. (Color online) Profile of the amplitude modulation coefficient AM
and skewness factor Su; Res¼ 2800.

FIG. 2. (Color online) Profile of the scale-decomposed skewness factor;

Res¼ 2800.
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Su, uþ3
S and 3uþL uþ2

S are plotted in Fig. 3 for several Reynolds

numbers. By comparing data over a large range of Reynolds

number, from laboratory facilities to atmospheric surface

layers, Metzger and Klewicki32 have previously reported an

increase of Su with Reynolds number in the near-wall region.

In particular, they observed a change in the sign of the mini-

mum occurring in the buffer region, which is consistent with

the presented data shown in Fig. 3(a) (the vertical dot-dashed

line marks the location of the minimum at zþ ’ 30.) The

physical understanding of this change in the sign of skew-

ness with increasing Reynolds number has been lacking and

hence the observation has been somewhat controversial since

the time it was first reported by Metzger and Klewicki. How-

ever, the Reynolds number trend of the dominant terms of

the scale-decomposed skewness given in Figs. 3(b) and 3(c)

do provide some insights. The small-scale term uþ3
S appears

to contribute locally to the rise of the minimum observed in

the Su profile at zþ ’ 30. In contrast, 3uþL uþ2
S is dependent

on Reynolds number across the whole boundary layer, espe-

cially in the buffer layer with values nearly four times higher

for the Res¼ 19 000 case compared with the Res¼ 2800

profile. What is also particularly notable is the high degree

of resemblance of these profiles in Fig. 3(c) to the profiles of

the amplitude modulation coefficient AM shown in Fig. 1.

This is clearly seen in Fig. 4, where the two cases are plotted

together. This correspondence suggests that the cross-term

3uþL uþ2
S of the scale-decomposed skewness factor may be

used as an alternative or complementary diagnostic tool to

AM, to quantify the level of amplitude modulation of the

small-scales by the large-scales. This is not a very surprising

conclusion given that this term is similar to a small-scale en-

velope uþ2
S

� �
correlated with a large-scale component uþLð Þ,

which is intrinsically linked to the large-scale amplitude

modulation effect. It should be noted that in this comparison

the envelope of the small-scales, uþ2
S , is not filtered, and thus

tracks not only the large-scale modulation but also the small-

scale variations.

The similarity between AM and 3uþL uþ2
S also suggests

that the Reynolds number trend of the skewness factor is

closely related to a rising amplitude modulation effect as Res

increases. Indeed, it is now known that the large-scale

motions strengthen with increasing Reynolds number, as

does the amplitude modulation effect21 shown here to con-

tribute to the rise in skewness. In fact, a reconstruction of the

skewness factor without the cross-term 3uþL uþ2
S , e.g.,

Su ¼ uþ3
L þ 3uþ2

L uþS þ uþ3
S , shows a constancy over one order

of magnitude in Reynolds number, as seen in Fig. 5, as

FIG. 3. (Color online) Reynolds number trends of (a) the skewness factor

Su and dominant terms of the expansion of the skewness factor, (b) uþ3
S , and

(c) 3uþL uþ2
S . The vertical dot-dashed line marks the location of the minimum

of Su.

FIG. 4. (Color online) Profile of the amplitude modulation coefficient AM

(the left vertical axis) and the cross term 3uþL uþ2
S of the skewness factor

expansion (the right vertical axis), for Reynolds numbers Res¼ 2800, 7300,

and 19 000.

FIG. 5. (Color online) Reconstruction of the skewness factor without the

cross term 3uþL uþ2
S , e.g., eSu ¼ uþ3

L þ 3uþ2
L uþS þ uþ3

S .
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opposed to the trend observed in Fig. 3(a). This feature has

been observed recently by Marusic et al.22,33 in their predic-

tive model of the streamwise fluctuating velocity field of the

near-wall region, which specifically takes into account the

amplitude modulation effect. They noted that all odd-order

moments are incorrectly predicted, particularly at high

Reynolds numbers, if the amplitude modulation effect is not

included.
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