
J. Fluid Mech. (2013), vol. 715, pp. 163–180. c© Cambridge University Press 2013 163
doi:10.1017/jfm.2012.508

Estimating wall-shear-stress fluctuations given
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A model for the instantaneous wall-shear-stress distribution is presented for zero-
pressure-gradient turbulent boundary layers. The model, based on empirical and
theoretical considerations, is able to reconstruct a statistically representative fluctuating
wall-shear-stress time-series, τ ′w(t), using only the low-frequency content of the
streamwise velocity measured in the logarithmic region, away from the wall. Results,
including spectra and second-order moments, show that the model is capable of
successfully capturing Reynolds number trends as observed in other studies.
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1. Introduction
A key defining parameter for wall-bounded flows is the wall shear stress, τw. The

mean, time-averaged, value τ̄w has been extensively investigated both theoretically and
experimentally, and is often expressed as a friction velocity, Uτ = √τ̄w/ρ (where ρ
is the fluid density), which has been used as the scaling velocity in boundary layer
analyses going back to Prandtl (1905). Various empirical/semi-theoretical formulations
have been proposed for how τ̄w varies with Reynolds number including those of
Kármán–Schoenherr (Schlichting & Gersten 2000), Coles–Fernholz (Fernholz & Finley
1996), and Monkewitz, Chauhan & Nagib (2007), amongst others.

Far less is known about the fluctuating component of wall-shear stress, τ ′w, where

τ ′w(x, t)= τw(x, t)− τ̄w(x) (1.1)

and how its statistics change with Reynolds number. In classical scaling approaches
that assume the law of the wall (see Smits, McKeon & Marusic 2011a) the statistics
of τ ′w

+ = τ ′w/τ̄w are invariant with Reynolds numbers. However, it has been shown in
laboratory (Alfredsson et al. 1988; Marusic & Heuer 2007) and numerical simulation
(Örlü & Schlatter 2011) studies of wall-bounded flows that Reynolds number effects
do exist, and very large instantaneous values of wall shear can occur well above the
mean values. For example, the maximum of the instantaneous fluctuating wall shear
stress can exceed five times the mean value (see figure 3 of Örlü & Schlatter 2011),
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and such events occur more frequently as the Reynolds number increases (Klewicki
2010; Lenaers et al. 2012). Such large excursions can be important in a range of
applications where scouring and mechanical damage can result because of excessive
levels of instantaneous shear stress. In environmental flows, such as in rivers and
streams, the fluctuating wall shear stress is of significant ecological importance, as it
is linked to erosion, bed formation, sediment transportation, interfacial gas and nutrient
transport, etc. (Grant & Madsen 1986; Rowiński, Aberle & Mazurczyk 2005; Grant &
Marusic 2012).

From an experimental point of view, direct measurement of the instantaneous wall-
shear-stress distribution is challenging as it requires a non-intrusive method applied
at or very close to the wall (Chew et al. 1998). These difficulties are compounded
in high-Reynolds-number flows where spatial and temporal resolution effects become
prohibitive (Hutchins et al. 2009; Smits et al. 2011b). Direct numerical simulations
(DNS) can overcome these problems, but remain limited, even nowadays, to low
Reynolds numbers. Consequently, there is a significant lack of knowledge of the
Reynolds number (Re) dependence of τw, particularly at high Re. Several methods
have been developed to palliate these issues and provide estimates of the wall
shear stress (however only in the mean sense). For example, in zero-pressure-gradient
smooth-wall flows, the law of the wall and the Reynolds-stress method are commonly
used, and have proven to be reasonably accurate (Chauhan, Ng & Marusic 2010).
However, these methods become less accurate in other flow configurations such as
rough walls, complex geometries, or in the presence of emergent vegetation (see
Rowiński et al. 2005, for a review of the main methods available for the evaluation
of the skin friction). Despite the known errors, these methods remain widely used in
environmental flows (Brand et al. 2010), because they are currently the only way to
estimate the skin friction. In an attempt to address this, herein we propose an empirical
model that is capable of reconstructing the instantaneous distribution of the wall shear
stress based on inner–outer interactions.

In wall-bounded turbulent flows, it is now well established that the near-wall region
(where viscous wall scaling alone applies for the mean flow, typically taken to be
below the logarithmic region) is not independent of motions in the outer region (taken
to be the logarithmic region and above), and in fact the interactions can be quite
strong. Large- and very-large-scale motions have been observed to develop in the outer
layer (Kim & Adrian 1999; del Álamo & Jiménez 2003; Tomkins & Adrian 2003;
Hambleton, Hutchins & Marusic 2006; Hutchins & Marusic 2007a, amongst others),
in all types of wall-bounded flows (Monty et al. 2007; Marusic & Hutchins 2008).
These large-scale events have been shown to be dependent on changes in Reynolds
number, becoming more energetic and prominent as Re increases (Hutchins & Marusic
2007a). Particularly, it has been put forward that these events influence significantly
the near-wall flow, by means of superposition and amplitude modulation effects
(Bandyopadhyay & Hussain 1984; Grinvald & Nikora 1988; Hutchins & Marusic
2007b; Mathis et al. 2009b, 2011b; Chung & McKeon 2010). Brown & Thomas
(1977) have previously reported the influence of the outer region onto the wall shear
stress by clearly identifying a large-scale superposition effect, and this is supported by
Örlü & Schlatter (2011) who, through DNS, documented the low-wavenumber changes
in the two-dimensional spectra map of wall shear stress (see their figure 4).

Other mechanisms for the inner–outer interactions have been described in the
literature, and further work is needed to firmly establish how these relate to
superposition and modulation effects. The superposition component is directly related
to the attached eddy hypothesis (Townsend 1976; Perry & Marusic 1995), and
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similarly to the effect of large inactive eddies generated in the interior of the boundary
layer whose vorticity has an impact on the high-shear region near the wall (Hunt
& Morrison 2000). The inferred amplitude modulation effect is a nonlinear process
and its effects are also probably consistent with a description of wall turbulence
in terms of an interacting range of scales of attached packets of eddies. There is
some evidence that these packets of eddies can be organized into very-large-scale
motions (Kim & Adrian 1999; Adrian, Meinhart & Tomkins 2000; Dennis & Nickels
2011a,b), which produce large-scale variations in wall shear stress (Hutchins et al.
2011). A related kinematic representation of this is to consider the turbulence in terms
of internal shear layers (Hunt et al. 2010), and interactions can be considered in
terms of blocking and the shear sheltering mechanism reported by Jacobs & Durbin
(1998) and Hunt & Durbin (1999). Here, the larger positive outer fluctuations are
able to break down the shear (sheltering) layer and penetrate into the buffer layer.
This induces high stresses and high skewness at the wall, increasing with Reynolds
number (Ptasinski et al. 2003; Zaki & Saha 2009), effects which are respectively
similar to those induced by superposition and amplitude modulation (Mathis, Hutchins
& Marusic 2011a). Further discussions of recent advances in wall-bounded turbulent
flows, including inner–outer interactions, are given in the recent reviews by Klewicki
(2010), Marusic et al. (2010c), Marusic, Mathis & Hutchins (2010a) and Smits et al.
(2011a).

By directly applying the observations of superposition and modulation of the
large-scale motions on the small, Marusic, Mathis & Hutchins (2010b) developed
an empirical model that is able to reconstruct the streamwise velocity field in the
near-wall region of the zero-pressure-gradient turbulent boundary layer. The model
predicts profiles of representative fluctuating streamwise velocity signals within the
inner layer, given only the information of a single point of the large-scale fluctuation
in the log region. The formulation models both the superposition and modulation
effects imposed by the large scales on the near-wall region. The underlying idea is that
the near-wall small-scale motions are universal, i.e. they do not change with Reynolds
number. However, these small-scale motions are influenced by large-scale log-region
events and the intensity of the influence increases with Reynolds number. Therefore,
the Reynolds number effects are confined to the large-scale log-region signal. The
model’s formulation involves, at each wall-normal position, a universal signal and
universal parameters, which are determined from a one-off calibration experiment at an
arbitrarily chosen Reynolds number, and are assumed to be independent of Reynolds
number. The model has been shown to work very well over a large range of Reynolds
numbers, and also to be potentially applicable to other wall-bounded flows such
as internal flows (pipes and channels) and turbulent boundary layers subjected to a
streamwise pressure gradient (Mathis et al. 2011a).

In this paper, we extend the approach of Marusic et al. (2010b) to develop a
predictive model that enables us to reconstruct the fluctuating wall-shear stress when
only large-scale information from the logarithmic region is known. Using a Taylor’s
series expansion for the modulated wall shear stress, we are able to reduce the
number of parameters in the model, and we describe the calibration procedure for
determining the remaining universal parameters. It should be noted that in this
paper, the fluctuating wall shear stress refers only to the streamwise component of
the total wall shear stress, which is the component contributing to the skin friction
coefficient Cf .
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2. Wall-shear-stress model
Marusic et al. (2010b) and Mathis et al. (2011a) provide full details of the model

for the streamwise fluctuating velocity signal. We start with this model here and apply
it in the viscous sub-layer, where a linear relationship between the streamwise velocity
component and the wall shear stress is known. By dividing the formulation for the
streamwise fluctuations (equation (1) Marusic et al. 2010b) by z+ we get

τ ′+wp(t
+)= τ ′∗w (t+){1+ βu′+OL(t

+)} + αu′+OL(t
+), (2.1)

where τ ′+wp is the predicted time-series normalized by wall variables, τ ′+wp = τ ′wp/(ρU2
τ )

and t+ = tU2
τ/ν. (A preliminary version of (2.1) was reported by Marusic, Mathis

& Hutchins 2011.) The time-series τ ′∗w , which is normalized in wall units, represents
the statistically ‘universal’ wall-shear-stress signal that would exist in the absence of
any inner–outer interactions. Here, α and β are the superposition and modulation
coefficients. The subscript O refers to a signal from an outer location (log-region), and
the subscript L refers to a filtered large-scale component. It should be noted that α
in (2.1) is essentially α/z+ from Marusic et al. (2010b). (Note that the definition of
α in Mathis et al. 2011a is not strictly correct and should be modified to include the
ratio of the r.m.s., i.e. α = max(Ru′+L u′+OL

) × (u+L )rms / (u
′+
OL)rms.) The parameters τ ′∗w , α

and β are determined experimentally (described in § 4), and are hypothesized to be
Reynolds-number independent. Once these parameters are known, the only user input
required for the model is a characteristic signal of the large scales from the log region,
u′+OL . It is noted that the model consists of two parts. The first part in (2.1) models
the amplitude modulation of the small scales, here τ ′∗w , by the large-scale log-region
motions, u′+OL . The second term, αu′+OL , models the superposition of the large scales felt
at the wall.

The required input for the model, the large-scale signal u′+OL , is obtained from
a fluctuating streamwise velocity u-signal measured, following Mathis, Hutchins
& Marusic (2009a), at the approximate geometric centre of the logarithmic layer,
z+O = 3.9Re1/2

τ . The raw u signal is first high-pass filtered to retain only the large-scale
components, and a spatial shift is applied to take into consideration the inclination
angle of the large-scale structures.

3. Details of experiments
In order to calibrate and validate the model, we use a series of datasets obtained in

the high-Reynolds-number boundary layer wind tunnel at the University of Melbourne.
The facility is an open-return blower wind tunnel with a working test section of
27 m × 2 m × 1 m. Along the test section, the free-stream turbulence intensity is less
than 0.05 % and a zero pressure gradient is maintained by bleeding air through the
ceiling via adjustable spanwise slots. See Nickels et al. (2005) for a more detailed
description of the facility.

Measurements of the streamwise velocity component have been made using hot-wire
anemometry. The single normal probes used are made from platinum Wollaston wire
of various diameters (d = 1.5, 2.5 or 5 µm). For each experiment, the etched length
of the wire, l, was adjusted to maintain a constant ratio l/d > 200, as recommended
by Ligrani & Bradshaw (1987) and Hutchins et al. (2009). Close attention has been
paid to the choice of the frequency and sampling duration for each experiment in
order to properly resolve the small-scale energy content as well as the large-scale
structures. A summary of the experimental conditions is given in tables 1 and 2.
A composite velocity profile fit (Monkewitz, Chauhan & Nagib 2008) was used to
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x U∞ δ Uτ ν/Uτ

Reτ Facility (m) (m s−1) (m) (m s−1) (µm) l+ l/d t+s TU∞/δ

4480 Melbourne 12.80 10.17 0.195 0.350 43.5 11.5 200 0.16 46 900

TABLE 1. Experimental parameters for two-point synchronized hot-wire measurements
used for the calibration; x refers to the distance between the tripped inlet and the
measurements station; ts is the time between samples; and T is the total sampling time.

x U∞ δ Uτ ν/Uτ

Reτ Facility (m) (m s−1) (m) (m s−1) (µm) l+ l/d t+s TU∞/δ

2740 Melbourne 1.60 20.12 0.058 0.737 21.1 25.5 354 0.53 26 390
3514 Melbourne 2.65 20.12 0.075 0.726 21.4 25.1 354 0.52 20 271
4228 Melbourne 3.75 20.20 0.092 0.714 21.8 24.8 354 0.50 21 845
5885 Melbourne 6.30 20.12 0.133 0.691 22.5 23.9 354 0.47 19 246
8159 Melbourne 10.00 20.52 0.187 0.686 22.9 23.6 354 0.46 16 351

10 111 Melbourne 12.80 19.95 0.235 0.661 23.2 23.2 354 0.44 19 932
13 320 Melbourne 18.90 19.98 0.322 0.641 22.3 22.3 208 0.41 14 697
17 775 Melbourne 17.95 30.00 0.306 0.934 17.2 29.0 200 0.54 11 776
22 884 Melbourne 17.95 40.70 0.296 1.247 12.9 38.6 200 0.96 13 752
1.4×106 SLTEST — — ∼100 0.260 69.2 — — 75.10 ∼180

TABLE 2. Experimental parameters for datasets used for validation; Melbourne experiments
were conducted with a single hot-wire probe; SLTEST data were acquired with sonic
anemometers.

determine the friction velocity Uτ and the boundary layer thickness δ, using the
log-law constants κ = 0.384 and A = 4.17. The results for Uτ are in good agreement
with oil-film interferometry measurements performed by Chauhan et al. (2010).

The first dataset, given in table 1, is used to calibrate the model. It consists of two-
point simultaneous measurements with a wall probe mounted at about one viscous wall
unit above the wall (z = 45 µm) and an outer probe located in the logarithmic region
(here z+O = 3.9Re1/2

τ ). The wall probe measures τ by using the linear relationship
between τ and u in the viscous sublayer (Alfredsson et al. 1988). A schematic of
the experimental setup is shown in figure 1. The wall probe is mounted over a glass
plug in order to limit interference effects between the wall and the hot wire. This hot
wire has been calibrated in-situ, directly in terms of τ , using the asymptotic similarity
formulations for Reδ∗ versus Rex as given by Monkewitz et al. (2007), and Uτ versus
Reδ∗ as given by Nagib et al. (2009):

Uτ = U∞

(
1
κ

ln(Reδ∗)+ C∗

)−1

, (3.1)

where κ = 0.384 and C∗ = 3.3. The hot-wire outer probe is calibrated against a
Pitot-static tube in the free-stream flow. Examples of fluctuating signals are given
in figure 2, where a high degree of correlation between the outer-probe velocity
signal and the wall-shear-stress signal can been observed. It should be noted that
the size of the sensing length in viscous wall units, l+ = 11.5, used for the
calibration measurements (table 1) may not be small enough to adequately resolve the
smallest scales. Smits et al. (2011b) suggested that in the viscous sublayer a sensing
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FIGURE 1. (Colour online) Experimental setup featuring the two-point simultaneous hot-
wire measurements for the calibration of the model. The wall probe is mounted in the
viscous sublayer at 45 µm above the wall (z+ = 1.03), and the outer probe is positioned at
the geometric centre of the logarithmic region z+O = 3.9Re1/2

τ .
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FIGURE 2. Example of fluctuating signals for Reτ = 4480: (a) raw fluctuating streamwise
velocity component at z+O = 3.9Re1/2

τ : and (b) raw fluctuating wall shear stress.

length l+ < 5 is necessary to capture all the energy-containing events. However, the
characteristics of the measured τw-signal have all the features that have previously
been reported in the literature: τ ′+w,rms ' 0.4, skewness of 1.0 and kurtosis of 4.78 as
shown in figure 3(b) (see Örlü & Schlatter 2011). Furthermore, the cross-correlation
profile between the τw- and u-signals, shown in figure 3(a) by the solid line, is found
to be consistent with the expected trend based on previous studies (Marusic & Heuer
2007).

To validate the model we use a series of datasets previously reported by
Kulandaivelu (2012). These consist of a range of Reynolds numbers between
Reτ ' 2700 and 23 000 (see table 2). In addition, a very-high-Reynolds-number dataset
is also used to infer the indicative asymptotic Reynolds number trend. These data are
from the atmospheric surface layer (ASL) measured at the SLTEST facility in the
Great Salt Lake Desert in Western Utah, as described by Marusic & Heuer (2007).
A full description of the facility and measurement procedure is available in Klewicki
et al. (1995), Metzger & Klewicki (2001) and Kunkel & Marusic (2006). Despite
the field measurement uncertainties, the SLTEST results have been found to agree
well with boundary layer data from laboratory facilities (Hutchins & Marusic 2007a;
Marusic & Heuer 2007; Marusic & Hutchins 2008; Hutchins et al. 2012).
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FIGURE 3. (Colour online) (a) Cross-correlation coefficient between τ+w and u+ of the
calibration experiment. Here, 1x = 1tUc using Taylor’s hypothesis where the convection
velocity is Uc = U(z+O). Dot-dashed lines (blue online) are from ASL measurements at
Reτ = O(106) (Marusic & Heuer 2007) for z/δ = 0.0024, 0.005, 0.0091, 0.0165 and 0.0293.
Solid line (red online) is for present data at Reτ = 4480 for z/δ = 0.058. Dashed black lines
correspond to laboratory wind tunnel results (Marusic, Kunkel & Porté-Agel 2001; Kunkel &
Marusic 2003) at Reτ = 1350 for z/δ = 0.073, 0.091, 0.115, 0.145 and 0.183. (b) Probability
density function of the total wall shear stress τ+w of the calibration measurements, for the
skewness and kurtosis values shown. The vertical dashed line marks the mean value τ+w .

4. Calibration of the model
Following the model of Marusic et al. (2010b), the parameters τ ′∗w , α and β of

the model given in (2.1) are obtained from a calibration experiment, conducted at
Reτ = 4480 (see figure 1 and table 1), from which τ ′+w (= τ ′+wp in (2.1)) and u′+OL are
simultaneously known. The first step of the calibration is to remove the large-scale
contribution from the wall-shear-stress signal. Hence, both signals τ ′+w and u′+(z+O)
are high-pass filtered at a cut-off frequency f+ = 2.65 × 10−3 (which is equivalent
to λ+x = 7000 as was used by Mathis et al. 2011a for this calibration experiment),
to retain their large-scale components τ ′+wL and u′+L (z

+
O). (See Mathis et al. 2009a and

Mathis et al. 2011a for further details about the choice of the cut-off wavelength for
distinguishing small from large scales.)

From this, using the cross-correlation between these two filtered signals, we can
determine the coefficient of superposition α, and the large-scale structural angle θL,
such that

α =max(Rτ ′+wL
u′+OL)

√
τ ′+2

wL√
u′+2
OL

, (4.1)

and

θL = arctan
1z

1xm
, (4.2)

where 1z+ = z+O − z+ ' 3.9Re1/2
τ − 1, and 1xm corresponds to the streamwise shift at

the maximum of the correlation. Here, Taylor’s hypothesis is used to convert time to
streamwise distance using a convection velocity U+c = U+(z+O), i.e. the mean velocity
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at the outer location. This choice of convection velocity is supported by the study of
Hutchins et al. (2011), who used a streamwise spatial array of skin-friction sensors to
detect the convection velocity of the large-scale-motion footprint at the wall, and found
that it closely matched the mean velocity in the logarithmic region at z+O .

The coefficient α corresponds to the maximum of the cross-correlation Rτ ′+wLu′+L
,

which is multiplied by the ratio of the r.m.s. values of the large-scale components to
account for the combination of two signals having fluctuations of different orders of
magnitude. This coefficient is found to be α = 0.0898. The mean inclination angle,
found to be θL = 14.1◦, is used to form the log-region time-series signature of the
large scales, u′+OL , by shifting the filtered outer signal u′+L (z

+
O) forward in the streamwise

direction:

u′+OL(t
+)= u′+L (t

+ + Uc1xm, z+O). (4.3)

With the coefficient of superposition α and the large-scale signature u′+OL now known,
the large-scale trend, or the mean shift, imposed by the large-scale log-region events
can be removed from the wall-shear-stress signal:

τ ′+wd(t
+)= τ ′+w (t+)− αu′+OL(t

+), (4.4)

where τ ′+wd is the ‘de-trended’ signal.
With α, u′+OL and τ ′+wd determined, the remaining unknown parameters in (2.1) are the

modulation parameter β and the universal signal τ ′∗w . Combining (4.4) with (2.1) gives

τ ′+wd(t
+)= τ ′∗w (t+){1+ βu′+OL(t

+)}. (4.5)

Hence, β and τ ′∗w are found using an iterative procedure for a solution of (4.5) that
gives a non-amplitude-modulated universal signal (we recall that τ ′∗w is defined to be
a statistically ‘universal’ wall-shear-stress signal that would exist in the absence of
large-scale effects, i.e. no superposition or modulation effects):

τ ′∗w (t
+)= τ ′+wd(t

+)
1+ βu′+OL(t+)

, β such as AM(τ ′∗w )= 0, (4.6)

where AM(τ ′∗w ) is the degree of amplitude modulation of the universal signal by the
large-scale log-region events u′+OL , as given by Mathis et al. (2009a). From this we find
β = 0.0796. The pre-multiplied energy spectrum of the universal signal τ ′∗w is shown
in figure 4, along with the original measured signal. It is noted that the universal
signal has most of its large-scale, low-frequency, content removed. Such behaviour
was expected since the calibration procedure aims to remove the large-scale influence,
leading to a statistically representative wall-shear-stress signal, τ ′∗w , that would exist
in the absence of large-scale motions. Thus, τ ′∗w is a characteristic small-scale signal
defined as universal in the sense that it is Reynolds-number independent.

5. Quasi-steady description of the inner–outer interaction
Before further describing the model, it is worthwhile considering the problem from

a theoretical point of view, simplified by the boundary conditions created at the wall.
The classical view on the universality of near-wall turbulence is that all the flow
variables, if expressed in wall units, are independent of the Reynolds number. Thus,
for the skin friction τw this means

τw = τ0τ
∗
w(t
+)= τ0τ

∗
w(tτ0/µ), (5.1)
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FIGURE 4. (Colour online) Pre-multiplied energy spectra of the original wall shear stress τ ′+w
for Reτ = 4480, and the universal wall-shear-stress signal τ ′∗w .

where τ0 = τ̄w = ρU2
τ is the mean skin friction, µ is the dynamic viscosity, and τ ∗w(t

+)
would be a universal function with all its statistics independent of Re, and its time
average equal to one, τ̄ ∗w = 1. (It should be noted that all the quantities here are the
total values, while fluctuations are explicitly marked with a prime and time-average
values with an overbar.)

The experimentally observed effect of large-scale structures on the near-wall
turbulence is in contradiction with (5.1). We propose therefore to replace (5.1) with a
model recognizing a quasi-steady character of the dependence of the skin friction on
the large-scale effects.

To do this we suppose that the near-wall turbulence is universal, but it is affected by
slowly varying outer structures and, hence, τ0 is slowly varying with time:

τ0(t)= τ̄0 + τ ′0(t). (5.2)

Then instead of (5.1) we have:

τw = τ0(t)τ
∗
w(tτ0(t)/µ). (5.3)

Here, τ ∗w remains a universal function of its argument, but it is amplitude-modulated
by a large-scale, low-frequency varying signal. It is also frequency-modulated via a
slowly varying factor in its argument. In general, this second effect might be important.
However, when checked we found that it is quite weak as far as the comparisons and
calibration procedures considered in the present work are concerned. For this reason
we will neglect any frequency-modulation effect in what follows. Then (5.3) can be
rewritten as

τw = (τ̄0 + τ ′0)τ ∗w. (5.4)

To compare this to the model (2.1), we can rewrite (5.4) in term of fluctuations

τw = τ̄w + τ ′w (5.5)

and

τ ∗w = 1+ τ ′∗w . (5.6)
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Since the characteristic time scale of the large-scale structures is much greater than
the characteristic time scale of the near-wall turbulence, it can be assumed that the
large-scale fluctuations τ ′0 and the universal fluctuating component τ ′∗w are uncorrelated,
leading to τ0 = τ̄w. It should be noted that this assumption has been confirmed using
the calibration dataset in table 1, in which we found τ ′0τ ′∗w ' 0. Substituting (5.5), (5.6),
and τ0 = τ̄w into (5.4), neglecting the nonlinear fluctuation terms, and rearranging gives

τ ′+w =
τ ′w
τ̄w
= τ ′∗w

(
1+ τ ′0

τ̄w

)
+ τ ′0
τ̄w
. (5.7)

Comparing this with the wall-shear-stress predictive model given in (2.1), which has
the form

τ ′+wp = τ ′∗w (1+ βu′+OL)+ αu′+OL, (5.8)

where u′+OL is the fluctuating large-scale signal from the log region, one can see that if
the modulation effect is quasi-steady and the fluctuations are small enough to neglect
the nonlinear terms then

τ ′0
τ̄w
= αu′+OL (5.9)

and

τ ′0
τ̄w
= βu′+OL, (5.10)

that is, α and β should be equal. In the calibration of the model in § 4 these quantities
were found independently from the experiment using a very different procedure, and
we found that α = 0.0898 and β = 0.0796. The small difference between these values
gives the first confirmation of our interpretation of the modulation effect. It is noted
that the procedure for determining β relies on a choice of scheme to quantify the
degree of amplitude modulation, which results in variations in the precise value of
β depending on the adopted scheme (some alternatives have been recently discussed
by Schlatter & Örlü 2010, Bernardini & Pirozzoli 2011 and Mathis et al. 2011a,b).
The theoretical arguments that lead to α = β are preferred as they involve fewer
assumptions.

6. New calibration method
Based on the theoretical basis developed above, the model is simplified and re-

calibrated assuming that the coefficients of superposition α and modulation β are
identical. Therefore, (2.1) becomes:

τ ′+wp(t
+)= τ ′∗w (t+){1+ αu′+OL(t

+)} + αu′+OL(t
+), (6.1)

where now only two unknown quantities appear (α and τ ′∗w (t
+)). Here, the same

procedure as used in § 4 is applied to determine the coefficient α, the large-scale
structural angle θL, and to form the log-region time-series signature of the large scales
u′+OL . Once these parameters are determined, the new universal signal τ ′∗w (t

+) is found
by simply solving (6.1):

τ ′∗w (t
+)= τ

′+
w (t

+)− αu′+OL(t
+)

1+ αu′+OL(t+)
, (6.2)

where τ ′+w (t
+), u′+OL and α = 0.0898 are simultaneously known.
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FIGURE 5. (Colour online) Reynolds number trend of the pre-multiplied energy spectra of
the predicted wall-shear-stress signal.

7. Predictions
With all parameters of the model being calibrated, i.e. τ ′∗w , α and θL, the predictive

model can now be used to reconstruct a statistically representative wall-shear-stress
signal τ ′+wp at any Reynolds number, using (6.1) and provided only the corresponding
large-scale signal u′+OL . The measured log-region signal, u′+(z+O), is taken at the same
wall-normal location z+O used during the calibration. It should be emphasized that this
signal does not require a fully spatially resolved measurement, but it does require
information for structures with a non-dimensional frequency of f+ < 2.65 × 10−3. The
large-scale signal u′+OL is then obtained using (4.3).

Below, we present shear-stress predictions from measurements in the logarithmic
region for the datasets given in table 2, which cover a large range of Reynolds
numbers, from Reτ ' 2700 to 1.4× 106.

The pre-multiplied energy spectra of the predicted wall-shear-stress signals,
kxΦτ ′+wpτ

′+
wp

, are shown in figure 5 for several Reynolds numbers. Though no
experimental data are available for comparison, it can be seen that the model
captures well the overall Reynolds number trend, i.e. a slight increase with Reτ of
the large-scale energy content. This behaviour agrees well with recent understanding
of Reynolds number effects in the turbulent boundary layer, which are now well
established to be closely related to the strengthening of the large scales with
Re (Townsend 1976; Adrian et al. 2000; Metzger & Klewicki 2001; del Álamo et al.
2004; Marusic et al. 2010a, and others). The increase in the energy contained in the
long wavelengths also suggests an increase in the r.m.s of τ ′+w . This is well supported
by figure 6 which shows the fluctuation magnitude of the predicted wall-shear-stress

signal,
√
τ ′+2

wp , as a function of the Reynolds number. Also included in this figure
are available data for a flat-plate zero-pressure-gradient turbulent boundary layer from
Österlund (1999), Komminaho & Skote (2002) and Schlatter & Örlü (2010). The

overall Reynolds number trend of
√
τ ′+2

wp appears to be correctly captured by the

model, and it is in good agreement with the recent work of Örlü & Schlatter (2011).

They reported that
√
τ ′+2

wp increases slowly with Reynolds number, and they attributed
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FIGURE 6. (Colour online) Fluctuation magnitude of the wall shear stress
√
τ ′+2

wp versus
Reynolds number Reτ , for the prediction, and available data for a zero-pressure-gradient
turbulent boundary layer. The solid line indicates the Reynolds number trend reported

by Schlatter & Örlü (2010)
√
τ ′+2

wp = 0.298+ 0.018 ln(Reτ ). The dashed sloping line indicates

the trend
√
τ ′+2

wp = 0.240+0.018 ln(Reτ ). The horizontal dashed line marks the classical value

of 0.4 suggested by Alfredsson et al. (1988).

this to the growing influence of the large scales (in contrast with the long-standing
classical view of the constant value of 0.4 given by Alfredsson et al. 1988). However,

the predictions show an overall underestimation of
√
τ ′+2

wp . An application of the
correction scheme of Smits et al. (2011b) demonstrates that this discrepancy is only
partially attributable to spatial resolution effects due to the finite size of the hot-wire
sensor used in the calibration measurements (l+ = 11.5). Hot-wire measurements very
close to the wall will also experience heat transfer between the probe and the wall,
reducing the measured signal intensity (Bruun 1995; Chew et al. 1998). This seems
to be the more significant cause of the discrepancy in this case. Nevertheless, the

correctly predicted Reynolds number trend in
√
τ ′+2

wp gives a good indication of the
capabilities of the model, which are only dependent on the quality of the calibration
measurements.

It is worth noting that the input of the wall-shear-stress model, u+OL , remains exactly
the same as the input for the velocity model proposed previously (Marusic et al.
2010b; Mathis et al. 2011a). The robustness or insensitivity of the predictions to
variations in the input signal (e.g. to the choice of cutoff filter used to extract u+OL or
the precise log-region location where this signal is acquired) are the same for both
models, and this has been well documented in Mathis et al. (2011a) and Inoue et al.
(2012).

8. Predictions based on model calibrated using DNS dataset
As seen in figure 6, the present model, calibrated using experimental measurements,

underestimates the wall-shear-stress intensity. This is probably due to spatial resolution
effects and also heat loss to the substrate (Bruun 1995) which could be overcome by
making a new calibration measurement using smaller sensors. However, a calibration
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FIGURE 7. (Colour online) Pre-multiplied energy spectra of the universal wall-shear-stress
signal τ ′∗w obtained using experimental and DNS datasets.

measurement using a sufficiently small hot-wire sensor to avoid spatial resolution
effects remains a challenging experiment, both in terms of feasibility and reliability.
To address this problem, the wall-shear-stress model was re-calibrated using the DNS
dataset of del Álamo et al. (2004) at Reτ = 934, which has an equivalent spatial
resolution of l+ = 3.8. The use of DNS data is justified based on the observation
that the small-scale near-wall motions are very similar across all smooth wall-bounded
turbulence, regardless of the flow geometry and large-scale content (e.g. pipe, channel
or boundary layer, see Jiménez & Pinelli 1999; Schoppa & Hussain 2002; Monty
et al. 2009, among others). In addition, a very similar superposition and amplitude
modulation effect is also observed in all of these flows (Hutchins & Marusic 2007b;
Monty et al. 2009; Mathis et al. 2009b). Under this assumption, the primary difference
between turbulent pipe, channel and boundary layer flows lies only in the large scales
(which are geometry specific). Since this information will be removed during the
process of extracting the universal wall shear stress, the universal parameters can,
in theory, then be extracted from any smooth wall-bounded flow with zero or weak
pressure gradient.

The spatial wall-shear-stress DNS data are converted to a time-series using Taylor’s
hypothesis taking f = 12.1Uτ/λx, as proposed by Kreplin & Eckelmann (1979). From
this calibration new parameters α, θL and τ ′∗w were obtained. The new values for
the constants are α = 0.0989 and θL = 14.8. The corresponding pre-multiplied energy
spectrum of the universal signal τ ′∗w is shown in figure 7, along with the previous
result from the experimental calibration measurement. The effect of the attenuation for
the wall wire is clearly visible at the higher frequencies (f+ & 10−2), whereas a very
good agreement is observed at the lower frequencies. This suggests the reliability of
the calibration procedure using low-Reynolds-number data. (One might have suspected
that the limited scale separation between small- and large-scale features might be a
limiting factor for this technique at low Re).

The fluctuation magnitude of the predicted wall-shear-stress signal using the DNS
calibration is shown in figure 8, along with results from the literature. The Re trend is
seen to be captured very well. These results show that the accuracy of the predictions
relies on the quality of the dataset used to calibrate the model. In situations where
the measured fluctuating wall shear stress is attenuated (by spatial resolution, heat
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FIGURE 8. (Colour online) Fluctuation magnitude of the wall shear stress
√
τ ′+2

wp versus
Reynolds number Reτ , for the prediction based on calibration with DNS data, and available
data for a zero-pressure-gradient turbulent boundary layer. The solid line indicates the

Reynolds number trend reported by Schlatter & Örlü (2010)
√
τ ′+2

wp = 0.298 + 0.018 ln(Reτ ).
The horizontal dashed line marks the classical value of 0.4 suggested by Alfredsson et al.
(1988).

conduction to the wall, or aerodynamic interference effects) one can expect the model
to give lower predictions.

9. Conclusions
In this paper, we have proposed a model that is able to reconstruct a realistic

wall-shear-stress time-series signal for the smooth-wall zero-pressure-gradient turbulent
boundary layer. To reconstruct the wall-shear-stress signal at any Reynolds number,
the model requires only a signal of the large scales from the logarithmic region. The
model has been built upon the recent model developed by Marusic et al. (2010b) and
Mathis et al. (2011a) for the streamwise velocity component. The underlying idea
is that the near-wall small-scale structures are universal, and the Reynolds number
effects are modelled through an inner–outer interaction consisting of superposition and
modulation effects of the large scales on the small scales. In addition, a theoretical
description of the influence of the large-scale motions on the near-wall turbulence has
allowed us to refine the mathematical formulation of the wall-shear-stress model. In
the theoretical description the inner–outer interaction is described as a quasi-steady
response of the near-wall turbulence to slow, large-scale variations of the skin friction.
A low-frequency fluctuation is then added to the mean skin friction, which manifests
itself both in modulation and superposition effects. The theoretical formulation, written
in terms of fluctuations, coincides well with the empirical formulation, which has
led us to identify that the coefficients of superposition and modulation should be
identical in the wall-shear-stress model’s formulation. This allows us to reduce the
number of parameters, resulting in a new procedure to calibrate the model. The
model is shown to predict reasonably well the Reynolds number-dependence of the
wall-shear-stress fluctuation magnitude, which is in good agreement with recent results
(Örlü & Schlatter 2011). Furthermore, it is shown that the accuracy of the results is
dependent on the spatial resolution of the calibration measurements, which does not
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affect the Reynolds number trend. Hence, DNS data seem to be the most reliable
data for calibrating the model as they provide accurate wall-shear-stress information
with minimal spatial resolution effects, whereas near-wall experimental measurements
remain highly challenging.

The present model is desirable for many practical problems related to turbulent
boundary layers, where wall-shear-stress information is inaccessible or inaccurate but
a low-frequency velocity signal away from the wall is available. For example, this
could be useful in large-eddy simulations where only large-scale information above
the near-wall region is available. The present model could be used to refine the
near-wall models employed. In flow control applications, such as drag reduction, the
wall-shear-stress model would be valuable to assess the efficiency of the control
device in affecting the skin friction. Finally, in environmental studies, such as on
the atmospheric surface layer, or a stream or river, the near-wall region is largely
inaccessible, and the present wall-shear-stress model could possibly constitute a
valuable tool to complete and enhance the reliability of the field measurements.
It is emphasized that the model has thus far only been calibrated and validated
for flat-plate smooth-wall flows, and the model’s parameters would strictly need to
be re-calibrated for the appropriate roughness and pressure-gradient conditions for
the given application. Given the highly challenging nature of accurate experimental
measurements of friction velocity and fluctuating wall shear stress in rough-wall and
pressure-gradient boundary layers, it seems likely that DNS may provide the most
feasible and reliable way of calibrating the universal parameters of the model in these
cases.
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DEL ÁLAMO, J. C., JIMÉNEZ, J., ZANDONADE, P. & MOSER, R. D. 2004 Scaling of the energy
spectra of turbulent channels. J. Fluid Mech. 500, 135–144.

ALFREDSSON, P. H., JOHANSSON, A. V., HARITONIDIS, J. H. & ECKELMANN, H. 1988 The
fluctuating wall-shear stress and the velocity-field in the viscous sublayer. Phys. Fluids 31 (5),
1026–1033.

BANDYOPADHYAY, P. R. & HUSSAIN, A. K. M. F. 1984 The coupling between scales in shear
flows. Phys. Fluids 27 (9), 2221–2228.

BERNARDINI, M. & PIROZZOLI, S. 2011 Inner/outer layer interactions in turbulent boundary layers:
a refined measure for the large-scale amplitude modulation mechanism. Phys. Fluids 23,
061701.

BRAND, A., LACY, J. R., HSU, H., HOOVER, D., GLADDING, S. & STACEY, M. T. 2010
Wind-enhanced resuspension in the shallow waters of South San Francisco Bay: mechanisms
and potential implications for cohesive sediment transport. J. Geophys. Res. – Oceans 115,
1–15.

BROWN, G. L. & THOMAS, A. S. W. 1977 Large structure in a turbulent boundary-layer. Phys.
Fluids 20 (10), S243–S251.



178 R. Mathis, I. Marusic, S. I. Chernyshenko and N. Hutchins

BRUUN, H. H. 1995 Hot-wire Anemometry. Oxford University Press.
CHAUHAN, K. A., NG, H. C. H. & MARUSIC, I. 2010 Empirical mode decomposition and Hilbert

transforms for analysis of oil-film interferograms. Meas. Sci. Technol 21, 105404.
CHEW, Y. T., KHOO, B. C., LIM, C. P. & TEO, C. J. 1998 Dynamic response of a hot-wire

anemometer. Part II: a flush-mounted hot-wire and hot-film probes for wall shear stress
measurments. Meas. Sci. Technol. 9, 764–778.

CHUNG, D. & MCKEON, B. J. 2010 Large-eddy simulation of large-scale structures in long channel
flow. J. Fluid Mech. 661, 341–364.

DENNIS, D. J. C. & NICKELS, T. B. 2011a Experimental measurement of large-scale
three-dimensional structures in a turbulent boundary layer. Part 1: vortex packets. J. Fluid
Mech. 673, 180–217.

DENNIS, D. J. C. & NICKELS, T. B. 2011b Experimental measurement of large-scale
three-dimensional structures in a turbulent boundary layer. Part 2: long structures. J. Fluid
Mech. 673, 218–244.

FERNHOLZ, H. H. & FINLEY, P. J. 1996 The incompressible zero-pressure-gradient turbulent
boundary layer: an assessment of the data. Prog. Aerosp. Sci. 32, 245–311.

GRANT, S. B. & MARUSIC, I. 2012 Crossing turbulent boundaries: interfacial flux in environmental
flows. Environ. Sci. Technol. 45, 1443–1453.

GRANT, W. D. & MADSEN, O. S. 1986 The continental-shelf bottom boundary layer. Annu. Rev.
Fluid Mech. 18, 265–305.

GRINVALD, D. & NIKORA, V. 1988 Rechnaya Turbulentsiya (River Turbulence). Hydrometeoizdat
(in Russian).

HAMBLETON, W. T., HUTCHINS, N. & MARUSIC, I. 2006 Simultaneous orthogonal-plane particular
image velocimetry measurements in turbulent boundary layer. J. Fluid Mech. 560, 53–64.

HUNT, J. C. R. & DURBIN, P. A. 1999 Perturbed vortical layers and shear sheltering. Fluid Dyn.
Res. 24, 375–404.

HUNT, J. C. R., EAMES, I., WESTERWEL, J., DAVIDSON, P. A., VOROPAYEV, S., FERNANDO, J.
& BRAZA, M. 2010 Thin shear layers – the key to turbulence structure? J. Hydraul Environ.
Res. 4, 75–82.

HUNT, J. C. R. & MORRISON, J. F. 2000 Eddy structure in turbulent boundary layers. Eur. J.
Mech. (B/Fluids) 19, 673–694.

HUTCHINS, N., CHAUHAN, K., MARUSIC, I., MONTY, J. P. & KLEWICKI, J. 2012 Towards
reconciling the large-scale structure of turbulent boundary layers in the atmosphere and
laboratory. Boundary-Layer Meteorol. 145, 273–306.

HUTCHINS, N. & MARUSIC, I. 2007a Evidence of very long meandering features in the logarithmic
region of turbulent boundary layers. J. Fluid Mech. 579, 1–28.

HUTCHINS, N. & MARUSIC, I. 2007b Large-scale influences in near-wall turbulence. Phil. Trans. R.
Soc. Lond. A 365, 647–664.

HUTCHINS, N., MONTY, J. P., GANAPATHISUBRAMANI, B., NG, H. C. H. & MARUSIC, I. 2011
Three-dimensional conditional structure of a high Reynolds number turbulent boundary layer.
J. Fluid Mech. 673, 255–285.

HUTCHINS, N., NICKELS, T., MARUSIC, I. & CHONG, M. S. 2009 Spatial resolution issues in
hot-wire anemometry. J. Fluid Mech. 635, 103–136.

INOUE, M., MATHIS, R., MARUSIC, I. & PULLIN, D. I. 2012 Inner-layer intensities for the
flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy
simulations. Phys. Fluids 24 (7), 075102.

JACOBS, R. G. & DURBIN, P. A. 1998 Shear sheltering and the continuous spectrum of the
Orr-Sommerfeld equation. Phys. Fluids 10 (8), 2006–2011.
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