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Direct numerical simulations of fully developed turbulent pipe flow that span the
Reynolds number range 90 � δ+ � 1000 are used to investigate the evolution of
the mean momentum field in and beyond the transitional regime. It is estimated that
the four layer regime for pipe flow is nominally established for δ+ ≥ 180, which is also
close to the value found for channel flow. Primary attention is paid to the magnitude
ordering and scaling behaviors of the terms in the mean momentum equation. Once
the ordering underlying the existence of four distinct balance layers is attained, this
ordering is sustained for all subsequent increases in Reynolds number. Comparisons
indicate that pipe flow develops toward the four layer regime in a manner similar
to that for channel flow, but distinct from that for the boundary layer. Small but
discernible differences are observed in the mean momentum field development in
pipes and channels. These are tentatively attributed to variations in the manner by
which the outer region mean vorticity field develops in these two flows. C© 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.3702897]

I. INTRODUCTION

The content of this study centers on two primary tasks. One is to document empirically the
evolution of the terms in the mean momentum equation for fully developed pipe flow. The other is
to interpret the evolution of the terms in the mean momentum equation in the context of a recently
developed theory.3, 4

Evolution of the mean dynamics is studied over a Reynolds number range that begins shortly
after the onset of finite velocity fluctuations, and ends with the onset of what is termed the four layer
regime. The starting Reynolds number is just beyond the upper limit of the laminar regime. With
increasing Reynolds number from there, the mean momentum field qualitatively changes owing to
an additional (third) non-zero term in the mean momentum equation. Commensurate with this, the
magnitudes of the terms in this equation change as a function of radial position. Namely, within
three sub-regions the equation is brought into balance owing to two large terms and one small
term, while in another sub-region all three terms continue to contribute significantly to the balance.
Increasing Reynolds number results in the larger terms in a sub-region to become increasingly larger
than the smaller term. Herein we refer to the distinctive relative magnitudes of the terms on any
given sub-region (layer) as the magnitude ordering of terms affiliated with that layer. The evolution
with Reynolds number continues until the magnitude orderings characterizing the four layers are
well-established. This defines the onset of the four layer regime.

The theory employed directly leverages the magnitude orderings of the four layer structure to
reveal the Reynolds number scaling properties of the mean momentum equation and its solutions,
as well as provide physical insights into the operative dynamical mechanisms. One attribute of this
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theory is that it employs well-established criteria that distinguishes whether a differential equation
will admit a similarity solution. Namely, a normalized form of an equation is a candidate for
admitting a self-similar solution if this form remains unchanged as the governing parameters (in
this case just the Reynolds number) are varied.10 These are commonly referred to as invariant
or parameter-free forms. An example of an invariant form from laminar theory is the Blasius
equation for boundary layer flow over a flat plate. In this case, the governing equation admits
an invariant form over the entire width of the boundary layer. This occurs because all of the
terms in the laminar boundary layer equation retain leading order importance across the entire
layer.

The situation in turbulent wall-flows is more complex. In this case, the leading order balance
changes with wall-normal position, as described above. The theory has revealed, however, that there
is a domain near the wall where the balance expressed by the relevant magnitude ordering admits
an invariant form under inner normalization (i.e., using the friction velocity and viscosity), and
similarly shows that the leading order balance relevant to a domain near the centerline admits an
invariant form under outer normalization (i.e., using the pipe radius as the characteristic length).3, 4, 8

Thus, the theory provides a cogent basis for the existence and extent of the inner and outer scaling
domains. The identification of inner and outer scaling domains is a clear point of agreement with
virtually all (semi) theoretical descriptions of turbulent wall-flows, albeit in many treatments these
scaling domains are simply assumed to exist.

Where the present theory is most distinct pertains to what happens between the inner and outer
domains. In this regard, analysis shows that the governing differential equation formally admits
a single invariant form across a continuous hierarchy of scaling layers. Collectively, these scaling
layers are termed the Lβ hierarchy. In this name the L refers to the layer hierarchy, while the subscript
β conveys that the properties of the layer hierarchy, including the distribution of layer widths on
the hierarchy, depend upon the parameter β. Perhaps not surprisingly, this parameter is directly
related to the mean effect of turbulent inertia (Reynolds stress gradient) that is the new term that
appears in the post-instability mean momentum balance. A primary feature of the Lβ hierarchy is its
inner-normalized layer width distribution, W (y+). W (y+) exists on the Lβ hierarchy, and, at each
wall-normal position on the hierarchy, is the characteristic length that allows the mean momentum
equation to be written in its single invariant form. At the lower end of the hierarchy, W is only about
four viscous units, and at the upper end it is about a third of the pipe radius. Thus, essentially all of
the scales of motion between the inner and outer scaling domains are affiliated with the dynamics
on the hierarchy.

With increasing Reynolds number W is increasingly well-represented by a linear function of
y+ on a domain interior to the upper and lower boundaries of the Lβ hierarchy. This increasing
linearity is inherently tied to the fact that the magnitude orderings associated with the four layer
structure become increasingly well-defined as the Reynolds number gets larger. Mathematically,
this means that the behaviors on the hierarchy, which are approximately self-similar at any finite
Reynolds number, approach exact self-similarity as the Reynolds number increases. This emerging
self-similarity physically pertains to the flux of turbulent inertial force across the layers on the
hierarchy, and the emergence of a mean velocity profile that is well-approximated by a logarithmic
function.

Over the Reynolds number range of the present investigation the properties of the four layer
regime just described come into being. In connection with this, recent analyses of low Reynolds
number, post-laminar, planar Poiseuille, and zero-pressure-gradient boundary layer flows reveal that
the transitional regimes in these flows are also meaningfully characterized in terms of the magnitude
ordering of terms in the equation governing their mean dynamics.1, 2 (Note that if a quantity, b, is of
leading order magnitude, say b = O(1), then it is taken to mean that both b and 1/b remain bounded
as the Reynolds number tends to infinity.) The transitional Reynolds number regime is marked by the
non-negligible influence of all of the relevant terms in the mean dynamical equation for the channel
and boundary layer, respectively. Through the transitional regime, the flow mechanisms associated
with the inertia of the turbulent fluctuations cause one of the operative terms to diminish in relative
magnitude on each of three of the four emergent layers, whereas in one layer, layer III, all of the
terms maintain equal order of magnitude for all Reynolds numbers. In the other three layers, the
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observed magnitude disparity increases with increasing Reynolds number, and the scaling properties
of the emerging four layer structure become increasingly well-defined.

The beginning of the four layer regime marks the lowest Reynolds number at which one can
reasonably assert that the scaling properties derived from the theory of Fife et al. are applicable.3, 4

The four layer regime is appropriately described as the asymptotic dynamical regime for turbulent
wall-flows, as the magnitude ordering of the terms in the mean momentum balance on each of the
layers, and the scaling properties affiliated with these orderings, are increasingly well-established
for all higher Reynolds numbers.

Of the three canonical turbulent wall flows (channels, boundary layers, and pipes), the pipe is
the only one whose evolution into the four layer regime has not yet been characterized. Thus, the
aims of the present study are to document the evolution of the terms in the mean momentum equation
that culminates with the onset of the four layer regime in fully developed pipe flow, to estimate the
minimum Reynolds number of the pipe flow four layer regime, and to compare and contrast how
the four layer regime emerges in the pipe relative to the channel and boundary layer. To set the
appropriate context, we first review the primary attributes of the four layer regime.

A. The four layer regime

To within Prandtl’s approximations, the laminar regime in the boundary layer is marked by a
balance between the time-rate-of-change of streamwise momentum and the retarding viscous force
that affects this rate of change. The laminar regime of fully developed flow in channels and pipes
is devoid of any time-rate-of-change of momentum, as the mean differential force balance purely
comprises a driving pressure force and an equal and opposite viscous force. In the boundary layer
the two opposing dynamical effects are equal at every point, but these effects (streamwise advection
and viscous force) are varying functions of the distance from the wall, y. For fully developed laminar
flow in channels or pipes, the two opposing forces are independent of y.

With the advent of instability, the nonlinear mechanisms affiliated with the inertia of the turbulent
fluctuations become increasingly important. The mean effect of these accelerations is accounted for
by the gradient of the so-called Reynolds stress in the mean differential force balance. For a pipe of
radius δ, the mean momentum balance is given by

ρ

r

d(r〈uv〉)
dr

= −d P

dx
+ μ

r

d

dr

(
r

dU

dr

)
, (1)

where the (u, v, w) velocity components are associated with the (x, r, θ ) coordinate frame. Through
the coordinate transformation, y = δ − r, and use of the once-integrated form

u2
τ

(
1 − y

δ

)
+ 〈uv〉 = ν

dU

dy
, (2)

Eq. (1) takes on the same form as for channel flow, i.e.,

d〈uv〉
dy

= u2
τ

δ
+ ν

d2U

dy2
, (3)

or in terms of simple notation

TI = PG + VF.

Here we have employed ν = μ/ρ and the boundary condition relating the pressure gradient to the
wall shear stress, τw, and thus to the friction velocity, uτ = √

τw/ρ. As in the channel, the mean
statement of dynamics for the pipe indicates that the net effect of turbulent inertia (TI) is balanced
by the sum of the mean pressure gradient (PG) and viscous (VF) forces.

In the transitional regime, all three terms in Eq. (3) are of non-negligible magnitude for all y.
With increasing δ+, the balance expressed by Eq. (3) is, with increasing accuracy, attained owing to
two dominant terms in three increasingly distinct layers. Since PG is always independent of y, the
emerging (four layer) structure is best illustrated by examining the ratio of VF to TI. A schematic
depiction of this ratio is shown in Fig. 1 as a function of y+ for fixed δ+ in the four layer regime.
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FIG. 1. Sketch of the ratio of the mean viscous force (VF) to mean effect of turbulent inertia (TI). This ratio reveals the four
layer force balance structure of turbulent wall-bounded flows.8 Note that this sketch is for a fixed Reynolds number, as the
layer boundaries depend on δ+. Note also that layer I in the zero pressure gradient turbulent boundary layer (dotted line in
I) differs from that of channel or pipe flow. In the boundary layer all of the terms in the mean momentum equation approach
zero as y → 0.

Figure 1 effectively depicts the mean free-body diagram for the differential fluid elements at
each position 0 ≤ y ≤ δ. Given Eq. (3), a non-trival balance can only occur owing to either two or
three co-dominant terms. This balance is attained according to a different magnitude ordering in each
of the four layers: layer I, |PG| � |VF| 	 |TI|; layer II, |VF| � |TI| 	 |PG|; layer III, |PG| � |VF|
� |TI|; layer IV, |PG| � |TI| 	 |VF|. The Reynolds number dependencies associated with the four
layer regime are important to understanding the present analyses, and thus these are summarized
in Table I. Note that the widths of layers I and IV scale with the traditional inner and outer scales,
respectively. Thus, as discussed at the outset and clarified below, the primary distinctions between
flow descriptions based upon the four layer structure and more classical descriptions pertain to how
the inner and outer domains are connected. The orderings associated with Fig. 1 identify the outer
edge of layer III as being where VF loses dominant order in Eq. (3). For all y greater than this
position, the mean dynamics are dominated by TI and PG. As indicated by Fig. 1 and the scalings of
Table I, this position is located a �y+ increment of about 0.6

√
δ+ beyond the wall-normal position,

y+
m , where −〈uv〉+ = T + reaches its maximum value. The position y+

m is also the point where TI
crosses zero, see Fig. 1. This scaling behavior is true for all δ+. Quantitatively, the scalings of Table I
indicate that layer III is nominally centered about y+

m . This is consistent with the empirical evidence
that y+

m � λ
√

δ+, with λ � 1.9.9 In contrast to classical notions, the balance of terms reflected by
the four layer structure reveals that the inner-normalized width of the sub-domain upon which VF
retains dominant order increases like

√
δ+ with increasing δ+. This is a direct consequence of the

underlying layer hierarchy.

TABLE I. Scaling behaviors of the layer thicknesses and velocity increments associated with the mean momentum equation
in turbulent wall-flows in the four-layer regime, see Fig. 1. Note that the layer IV properties are asymptotically attained as
δ+ → ∞, see Ref. 5.

Physical layer �y increment �U increment

I O(ν/uτ ) (� 3) O(uτ ) (� 3)
II O(

√
νδ/uτ ) (� 1.6) O(Uc) (� 0.5)

III O(
√

νδ/uτ ) (� 1.0) O(uτ ) (� 1)
IV O(δ) (→ 1) O(Uc) (→ 0.5)
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B. The underlying layer hierarchy

As noted above, y+
m is the distance from the wall where TI passes through zero. Thus, when

interpreted as a force, this term acts like a momentum source for y+ < y+
m and a momentum sink

for y+ > y+
m .5, 6 Furthermore, the peak values of TI (inner positive, outer negative) have been shown

to bound the continuous Lβ hierarchy of scaling layers.4, 7 The primary defining attribute of the Lβ

hierarchy is that on each of its constituent layers (3) formally admits an invariant form.3 The inner
peak in TI (inflection in T+ from upward to downward curvature) is located near y+ = 7, and the
outer peak in TI (inflection in T+ from downward to upward curvature) is located near y/δ = 0.5.2

The properties of the Lβ hierarchy are determined by the slope and curvature of T+(y+), and with
increasing δ+ self-similar dynamics on the hierarchy are attained as a function of scale. Namely,
there is a balance breaking and exchange of forces across each layer of the hierarchy that replicates
what also occurs across the average layer of the hierarchy, which is layer III of Fig. 1.

An important property of the Lβ hierarchy is its layer width distribution, W (y+). By definition,
at any position on the hierarchy W is the inner-normalized length scale that allows Eq. (3) to be
written in an invariant form. W (y+) is therefore accurately described as the natural length scale of
the mean mechanism of turbulent inertia at any given position on the hierarchy. Within this context,
it is significant to note that W (y+) has been analytically shown to asymptotically scale with distance
from the wall,4, 7 and thus constitutes the origin of the distance from the wall scaling that is often
assumed in turbulent wall-flow analysis.

Moreover, this scaling together with the hierarchy of layers makes it consistent with coherent
eddy models based on Townsend’s attached eddy hypothesis.11–13 In these phenomenological models
a hierarchy of different size, geometrically similar, eddies is prescribed, with a varying population
density per length scale of the eddy. The eddies are “attached” per Townsend’s description in that
their features scale with their distance from the wall, as do the W (y+) layers on the Lβ hierarchy.
Establishing firmer connections between the structure of the Lβ hierarchy and the action of the
self-similar eddy distributions of the attached eddy hypothesis would seem to naturally provide a
theoretical foundation for this phenomenology.

W (y+) is given by the order of magnitude estimate

W (y+) = O(β−1/2), (4)

and for pipes and channels the parameter β can be evaluated using

β = dT +

dy+ + 1

δ+ , (5)

where T + = −〈uv〉+. There is a unique (one-to-one) correspondence between the value of β and
the y+ position on the hierarchy. This is made explicit by the definition of the function

Tβ(y+) = T +(y+) + y+

δ+ − βy+. (6)

This function, which formally defines T+ in terms of β, is used in the analysis to show that a balance
breaking and exchange of forces analogous to that which occurs across layer III for Eq. (1) (see
Fig. 1) also occurs as a function of scale (as defined by the W distribution) across each layer of the
Lβ hierarchy.

Somewhat unexpectedly, analysis of channel flow data reveals that, over an internal domain
beginning near the outer edge of layer III, Eq. (4) provides a precise estimate for the value of the
leading coefficient in the logarithmic equation for the mean velocity

U+ = 4

A2
ln(y+ − C) + D. (7)

In this equation, C and D are constants of integration. The details of the analysis reveal that C is
an offset that effectively shifts the origin to the onset of the hierarchy.3 Within an internal domain
beginning near y+ = 2.6

√
δ+, W (y+) and A are related by4, 7

A = 2
dW

dy
. (8)
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This expression shows that an exactly constant value for A corresponds to an exactly constant slope
in the W (y+) distribution. This equivalent condition is approached as δ+ → ∞. The properties of
the pipe flow W distribution are explored later using Eq. (4), with β computed using (5).

Relation (8) directly stems from the fundamental definition of A

A(β) = −d2T̂β

d ŷ2
(ŷ = 0). (9)

In this expression, Tβ is given by Eq. (6), and the hat denotes normalization by the corresponding
W value on the hierarchy. The position ŷ = 0 corresponds to where Tβ attains its maximum for
each respective value of β; the value of β determining both the wall-normal position of the layer,
and its W (y+) width. Thus, within each layer the specific value of Tβ attains its maximum value at
ŷ = 0, just as T+ attains its maximum at y+

m , which equivalently equals ŷ = 0 for layer III of Fig. 1.
Equation (9) expresses a condition of dynamical self-similarity on the hierarchy. This expres-
sion explicitly shows that A = const. results owing to a self-similar flux of turbulent iner-
tial force from one layer to the next on the hierarchy. The present investigation clarifies how
this self-similar property emerges as the four layer regime is established through transition pipe
flow.

C. Objectives

Key properties reviewed above are used to characterize the onset of the four layer regime in
pipe flow. In this regard, it is relevant to note that previous analyses indicate that channel and
boundary layer flow develop the four layer structure via distinctly different routes, and that the onset
of this regime occurs at different Reynolds numbers: δ+ � 180 in the channel, and δ+ � 360 in
the boundary layer.1, 2 The reasons for these differences are attributable to the differences in both
the governing mean dynamical equation and boundary conditions of these flows. The channel and
pipe, however, are both governed by Eq. (3), and thus it is rational to anticipate that the route to the
four layer regime will occur similarly in these flows. Owing to their different geometries, however,
the boundary conditions of pipe and channel flow are likely to exert different influences on the flow
development. These, and other relevant issues, are investigated and elaborated upon further in the
data presentation below.

II. NUMERICAL METHODS AND DATA SETS

Direct numerical simulations (DNS) were carried out using a parallel spectral element–Fourier
code. The Fourier coordinate requires geometric homogeneity and in this problem that is either in
azimuth (leading to a cylindrical coordinate formulation) or along the axis (Cartesian). In either case
the remaining planar geometry is discretized using nodal spectral elements with a Gauss–Lobatto–
Legendre local mesh in each element, and second-order time integration is employed. For all but
the highest Reynolds number data set examined here, the cylindrical coordinate formulation was
used; the implementation and convergence properties of this code version were detailed previously,14

while the Cartesian formulation is similar to earlier works.15

Leading simulation parameters are summarized in Table II. At the lower end of the Reτ range
examined, the domain length Lx = 4πδ, while at the upper end, Lx = 8πδ. It has been shown that
for the statistics considered in the present work, the larger length is required for convergence at the
upper end of the Reτ -range, while the shorter length is adequate for Reτ < 500. 16 Near-wall mesh
spacings are within well-established guidelines for wall-based DNS that provide �y+ < 1, �x+

< 15 and �rθ+ < 6.
For each simulation the collection of statistics was initiated after sufficient time had elapsed to

let the flow to reach a statistically steady state, and averaging was conducted for a minimum of 10
wash-through times based on the bulk flow speed and domain length.
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TABLE II. Summary of computational parameters.

Reτ Lx/δ �x+ �y+|wall �rθ+|wall

91 4π 5.4 0.4 3.6
111 4π 5.8 0.4 3.6
157 4π 8.2 0.6 3.9
171 8π 6.7 0.5 8.4
314 4π 13.2 0.9 6.2
500 8π 6.8 0.1 8.2
1002 8π 7.9 0.6 6.5

III. RESULTS

The onset of the four layer regime is estimated using the criteria previously employed for
channel and boundary layer flow.1, 2 This is done by examining the ordering of terms described
relative to Fig. 1, as well as the scaling behaviors associated with the layer widths and velocity
increments across the layers documented in Table I. Two criteria relating to the ordering of terms
in layers II and IV are employed, and then supplemented by verifying the layer scaling properties.
In layer II the requisite ordering is given by |VF| � |TI| 	 |PG|, while in layer IV it is given by
|TI| � |PG| 	 |VF|. These orderings are (subjectively) deemed to be satisfied when the smaller of
the two dominant terms is at least ten times larger than the smallest term near the middle of the given
layer (e.g., when |TI/PG| > 10 in the middle of layer II).

Figure 2 plots the ratio VF/TI in a manner consistent with the depiction of Fig. 1. These profiles
indicate that the −1 ratio of layer II emerges from below, and that the −1 ratio is nearly exactly
met for the three highest δ+, and over an expanding y+ domain with increasing δ+. The layer II
profile evolution in Fig. 2 is very similar to what occurs in the channel, and distinct from the layer
II formation in the boundary layer.2 The trend in the profiles also seems to indicate that in the pipe,
layer I becomes thinner with increasing Reynolds number. Although difficult to discern from the
figure, the layer IV ratio for the lowest three Reynolds numbers retains nonzero values all the way
to the centerline. This persistence of a viscous influence in the outer region of the transitional flow
is also similar to what is seen in both the boundary layer and the channel.

Relative to the stated criteria, detailed examination reveals the following. In layer IV TI is
smaller than PG (albeit only slightly), and thus according to the criteria the relevant comparison of
magnitudes is between TI and VF. For δ+ = 157, TI attains values more than 22 times that of VF in
the inner part of layer IV, but then drops to only about 8 times larger nearer to the centerline. This
structure of an interior inertial zone and the re-emergence of outer region viscous influences is also
seen, but more subtly, in transitional channel flow DNS, and has been interpreted to be associated

FIG. 2. Ratio of the mean viscous force to the mean effect turbulent inertia in pipe flow for 90 � δ+ � 1000.
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with the spread of TI toward the periphery.1 In layer II, however, TI and PG have the same sign and
sum to equal VF. Examination of TI relative to PG in layer II at δ+ = 157 indicates that TI is never
more than 8 times larger than PG. Thus, these analyses indicate that the δ+ = 157 flow is clearly
not within the four layer regime. At slightly higher Reynolds number (δ+ = 171), TI is at least 9.6
times greater than VF throughout layer IV, while TI attains a value of about 9.3 times that of PG in
layer II. At this Reynolds number the magnitude ordering criteria are on the verge of being met.

Relative to the layer widths and velocity increments, those associated with layer II have been
determined to be most critical. For the δ+ = 171 flow the measured layer II thickness is 24.4 viscous
units, and this varies by about 14% from the value of 21.0 found using approximate scaling formula
listed in Table I. Similarly, the layer II velocity increment is about 0.54Uc or about 8% different
from the value listed in Table I.

Based upon these analyses we conclude that the δ+ = 171 flow is very close to satisfying the
criteria set for the four layer regime. Overall, it is apparent that the δ+ value marking the onset
of the four layer regime in pipe flow is close to that determined for channel flow, i.e., δ+ � 180.
Further evidence supplied below reinforces this assertion, and suggests that the best estimate for the
emergence of the four layer structure in pipe flow lies in the range 180 � δ+ � 200.

The evolution of the mean dynamics toward the four layer regime is further clarified by exam-
ining the profiles underlying the ratios of Fig. 2. These are shown in Fig. 3. Universal features of the
VF profile are that it identically equals PG at y = 0, is strictly non-positive everywhere, and equals
zero at the pipe center. Universal features of the TI profile are that it is zero at the wall, crosses
zero at a Reynolds number dependent location, and equals PG at the pipe center. The mechanism of
turbulent inertia in wall-flows is spatially localized in an interior zone at the onset of the transitional
regime.1, 2 During the early nonlinear development stage of this regime, however, TI spreads both
toward the wall and the centerline, until it becomes constrained by the boundary conditions. Relative
to the Lβ hierarchy, these boundary condition constraints effectively set the minimum and maximum
values of W (y+) such that they attain Reynolds number invariant values that are O(ν/uτ ) and O(δ),
respectively. Once this occurs, the inner and outer lengths become parameters relevant to scaling
turbulent wall-flows. For turbulent pipe and channel flows, the positions of minimum and maximum
W (y+) identically correspond to the maximal values of |dT+/dy+|, or equivalently, the inflection
points in the T+ profile. These are denoted by ypi and ypo, respectively. As predicted by the theory,
these positions increasingly lock into invariant values near y+

pi = 7 and ypo/δ = 0.5 as δ+ → ∞.
The profiles of y+

pi and ypo/δ versus δ+ for the present flows are shown in Fig. 4. (Note that
for plotting purposes ypo/δ is multiplied by 10.) During the transitional regime, both y+

pi and ypo/δ
rapidly decrease. Once in the four layer regime, however, they decrease much more slowly. The δ+

range over which this rate of decrease changes from rapid to slow brackets the noted estimate for
the beginning of the four layer regime. The horizontal lines on Fig. 4 denote the estimates of y+

pi and
ypo/δ at large δ+. Thus, it is seen that at δ+ � 180 y+

pi is about one viscous unit from its asymptotic

FIG. 3. Inner-normalized mean viscous force and time-averaged turbulent inertia profiles in pipe flow for 90 � δ+ � 1000.
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FIG. 4. Positions of the inner and outer maxima of the dT+/dy+ profiles of Fig. 3. Note that the inner peak approaches a
fixed y+ value (y+

pi � 7), while the outer peak approaches a fixed y/δ value (y/δ � 0.5). The vertical line (δ+ � 180) indicates
the present estimate for the onset of the four layer regime.

value, and by δ+ = 1002 this difference is approximately halved. Similarly, near the onset of the four
layer regime ypo/δ � 0.6, and by δ+ = 1002 ypo/δ � 0.54. As with channel flow, both y+

pi and ypo/δ
approach their high δ+ values from above. The analogous processes in the boundary layer occur
differently.

For the transitional regime boundary layer, y+
pi initially moves very close to the wall and then

slowly approaches y+ � 7 from below. There is also some evidence that ypo/δ retains values in excess
of 0.6 up to considerably larger Reynolds numbers.2 Note, however, that in the boundary layer ypo/δ
does not necessarily coincide with the position of Wmax . This stems from the non-constancy of the
mean advection profile.

The significances of y+
pi and ypo/δ are further clarified by noting their relationships to the Lβ

hierarchy and its characteristic length scale distribution, W (y+). Some of these are depicted in
Fig. 5, which shows the profiles of T + = −〈uv〉 and W dT +/dy+ at δ+ = 171. Since W is the
natural length scale distribution for the mechanism of turbulent inertia, the weighted profile of
dT+/dy+ provides a clear graphical depiction of the source and sink character of TI for y+ < y+

m
and y+ < y+

m , respectively. At any given δ+, it is easily shown that the source and sink contributions
integrate to zero owing to the boundary conditions on T+. In Fig. 5 this parity of equal and opposite
contributions is exemplified by the approximately equal magnitude positive and negative peak values
of W dT +/dy+. (Note that with increasing δ+ the difference between the magnitude of the positive

FIG. 5. Profiles of T+ and W dT +/dy+ at δ+ = 171.
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FIG. 6. Actual and predicted values of y+
m versus δ+: actual values, •; values predicted from Eq. (10), �.

and negative peaks diminishes.) As indicated on the figure, the positions of the peaks also locate the
beginning and end of the Lβ hierarchy.2

Furthermore, since W (y+) approaches linearity interior to two end points that are moving apart
at a rate proportion to δ+, one can use these end points to estimate the position of the zero-crossing
in dT+/dy+ (position of maximal T+, y+

m ). Namely, the theory indicates that

y+
m =

√
y+

pi y+
po , (10)

should predict the value of y+
m in the four layer regime, and do so with increasing accuracy

as δ+ → ∞.2

Figure 6 compares the actual values of y+
m with the prediction of Eq. (10) over the range

90 � δ+ � 1000. Prior to the four layer regime, the present data indicate that y+
m retains a nearly

constant value of about 30. This is different from what is observed in either channel or boundary
layer flow, although both exhibit a δ+ range over which the rate of increase in y+

m with increasing
δ+ is less than

√
δ+.1 Within a framework that hypothesizes the existence of an overlap layer, the

formulation of Afzal17 apparently captures this leveling-off effect as a third-order correction to his
meso-layer theory. The theory described in Sec. I B is, however, distinct from these and similarly
constructed analyses in that it does not rely on the rather prescriptive set of assumptions associated
with the overlap layer hypothesis.4 Instead, it is based upon the properties directly admitted by
Eq. (3). This distinction is exemplified by Eq. (10). In contrast, overlap layer based formulations
rely on asymptotic expansions of various forms (generally having terms that are cast in powers of
Reynolds number), and, owing to the unclosed nature of Eq. (3), have unknown relationship to its
solutions.

In the pipe (10) provides a good estimate for the value of y+
m even in the transitional regime.

This is especially distinct from the behavior of boundary layer flow, where the actual and predicted
values only begin to coincide in the four layer regime. Once in the four layer regime, comparison
with the reference line indicates that the measured values of y+

m increase, but at a rate less than
√

δ+.
Elsnab et al.1 observed similar behaviors in channel flow. At higher Reynolds numbers, however,
both channel and pipe flow data have been shown to be well-fit by y+

m � 2.0
√

δ+.8 (In this regard it
is relevant to note that the asymptotic estimates for y+

pi = 7 and ypo/δ = 0.5 predict that y+
m = λ

√
δ+

with λ = 1.87.2) Consistent with the behaviors depicted in Fig. 4, the data derived from Eq. (10)
approach the asymptotic estimate from above, with the last two points adhering to λ = 2.08 and
2.03, respectively. Overall, the trends of the data in Fig. 6 suggest that the onset of the four layer
regime in pipe flow may occur somewhat closer to δ+ = 200 than 180.

Multiscale analysis that exploits the magnitude ordering of the terms in the four layer regime
reveals the conditions under which Eq. (3) will admit a logarithmic mean velocity profile.3, 4 At
any finite δ+, these conditions are only approximately met, but the accuracy of the approximation
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improves with increasing δ+. The theory indicates that logarithmic behavior (approximate or exact)
will emerge where the W (y+) profile first becomes linear (approximately or exactly). As indicated
by Eq. (9), an exactly linear W profile physically indicates that the flux of turbulent inertial force
is exactly self-similar from one layer to the next on the hierarchy.7 Analysis of turbulent channel
flow reveals that the order of magnitude expression given by Eq. (4) provides an estimate via
Eq. (8) for A of 1.25. This corresponds to a value of 0.39 for the von Kármán constant (coefficient)
in the traditional logarithmic equation.7 In the boundary layer, however, while a linear W profile
emerges with the advent of the four layer regime, its slope at low δ+ apparently under-estimates the
leading coefficient in Eq. (7) (presuming that C and D have attained constancy in this expression as
well). Analysis of available boundary layer data further reveals that, with increasing δ+, the estimate
derived from Eq. (8) improves.2 The reasons for the differences between the channel and boundary
layer were attributed to the fact that the mean advection profile in the boundary layer evolves both
in shape and magnitude (while the analogous pressure gradient term in the channel only evolves in
magnitude), and the existence of an active vorticity annihilation process in the outer region of the
channel (while no such process exists in the boundary layer). This latter process is significant relative
to the pipe, since, although there is an active vorticity annihilation process in the outer region, the
area over which it must occur diminishes like r as the centerline is approached.

The evolution of the W (y+) profiles from the present data is shown in Fig. 7. As with the
previous analysis of channel flow,7 the W distribution was found using Eq. (4), with β determined
using Eq. (5). As δ+ increases, a region of increasingly constant slope develops for y+ � 2.6

√
δ+,

and for y+ values less than this, the profiles increasingly merge onto a single curve. This latter feature

FIG. 7. Layer width distribution of the Lβ hierarchy for transitional and four layer regime pipe flow; (a) linear axes and
(b) logarithmic axes. Note that the Reynolds number of each profile is given by the end point position y+ = δ+ in (b). The
curve-fit of the W (y+) distribution at δ+ = 1002 is over the range 2.6

√
δ+ ≤ y+ ≤ δ+/3 and given by 7.52 + 0.644y+. The

dashed profile is that of Wu and Moin18 at δ+ = 1142.
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is especially apparent in Fig. 7(b). In accord with the previous estimates for the onset of the four
layer regime, these two attributes are first reasonably approximated at δ+ = 171, and clearly so by δ+

= 314. The linear profile of Fig. 7(a) demonstrates that the region of approximately constant slope
increases in y+ units. This directly connects to the fact that the upper end of the Lβ hierarchy becomes
a fixed fraction of δ as δ+ becomes large, see Fig. 4. Similar to both channel and boundary layer flow,
the minimum value of W evolves toward something close to 4 viscous units, while its maximum
value evolves to about δ/3. For the purposes of comparison with the previous analysis of channel
flow, the δ+ = 1002 W profile was fit by a linear curve over the domain 2.6

√
δ+ � y+ � δ/3. This

yields a slope of A/2 = 0.644, which corresponds to a von Kármán coefficient of about 0.415. For
comparison, a curve-fit of the W profile from the δ+ = 1142 pipe flow DNS of Wu and Moin18

yields a nearly identical result. Although the data uncertainties preclude any firm conclusions at
this time, the slightly higher value than found in the channel is observationally consistent with
previous estimates for the logarithmic profile slope found using direct curve-fits of the mean profile
itself,19, 20 and physically with the less efficient mechanism of vorticity annihilation in the pipe
relative to the channel mentioned above. These physics are further supported by the similar, but
more clearly evident phenomena observed in the boundary layer (which has no imposed vorticity
annihilation process in the outer region), and the observations made relative to Fig. 2 indicating that
the appearance of outer region viscous effects are more apparent in transitional pipe DNS than in
channel DNS at the same δ+.

IV. DISCUSSION AND CONCLUSIONS

The mean dynamical equation for pipe flow can be cast into a form that is identical to that for
channel flow. It is thus not surprising that the transitional flow evolution toward the four layer regime
in these two flows is similar, and different from what occurs in the boundary layer. Characteristic
traits shared by these two flows include the approach from above of y+

pi and ypo/δ toward their high
δ+ values (Fig. 4), and the approach of the y+

m prediction of Eq. (10) to the high δ+ trend from above
(Fig. 6).

From the present analysis we conclude that the onset of the four layer regime occurs at nominally
the same Reynolds number (δ+ � 180) as it does in the channel, although some of the data features
seem to suggest that it may occur at a slightly higher value than in the channel, say δ+ � 200. In
either case, however, this starting δ+ value is distinctly different from the δ+ � 360 value found for
the boundary layer. Furthermore, examination of the existing literature indicates that the estimated
beginning of the four layer regime in pipe flow occurs well after the initial rapid rise in the skin
friction coefficient associated with the establishment of self-sustaining turbulent fluctuations. This
is also very similar to what happens in the channel, and different from the boundary layer, where
existing evidence indicates that the onset of the four layer regime nominally coincides with the δ+

at which the skin friction coefficient attains its maximum value.2

While exhibiting close similarities with channel flow, the present data also suggest some more
subtle differences. One of these is that y+

m exhibits effectively constant values over a range of δ+

during the transitional regime, while in channel flow y+
m continuously increases. A second is the

evidence that the slope of the W (y+) profile is slightly larger than found in the channel. This latter
observation is made more explicit by the comparison of Fig. 8, which shows pipe and channel flow
W profiles at δ+ � 1000. As indicated, the linear curve-fit of the W profile from the channel DNS
at δ+ = 1016 has a slope of about 0.623. According to Eq. (8), this corresponds to a von Kármán
coefficient of about 0.388, which is in very good agreement with the previous estimate found for
channel flow of 0.39.7, 22, 23 At present, our best hypothesis is that these differences, and indeed many
of the differences between boundary layers, pipes, and channels are attributable to the mechanisms
influencing the establishment of the outer region mean vorticity profile. Among the three flows, the
channel is arguably most effective at accommodating an outward flux of vorticity. The boundary
condition on this flow imposes a vorticity annihilation process that acts over a constant planar area
as y/δ → 1. On the other hand, while there is the same boundary condition in the pipe, the cylindrical
areas over which this inherently diffusive process must occur is getting smaller like the difference,
δ − y, as y/δ → 1. In contrast, the mean vorticity distribution in the boundary layer is governed by
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FIG. 8. Comparison of the linear portion of the W (y+) profiles from channel and pipe flow at δ+ � 1000. Data are from the
present simulation, δ+ = 1002, the pipe flow simulation of Wu and Moin,18 δ+ = 1142, and the channel flow simulation of
Kawamura et al.,21 δ+ = 1016.

the outward advection of vorticity, as modified by the entrainment of irrotational freestream fluid,
but without any vorticity annihilation explicitly imposed by the boundary conditions.
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