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(Received 26 February 1999 and in revised form 4 June 2000)

An experimental and theoretical investigation of turbulent boundary layers developing
in a sink-flow pressure gradient was undertaken. Three flow cases were studied,
corresponding to different acceleration strengths. Mean-flow measurements were taken
for all three cases, while Reynolds stresses and spectra measurements were made for
two of the flow cases. In this study attention was focused on the evolution of the
layers to an equilibrium turbulent state. All the layers were found to attain a state
very close to precise equilibrium. This gave equilibrium sink flow data at higher
Reynolds numbers than in previous experiments. The mean velocity profiles were
found to collapse onto the conventional logarithmic law of the wall. However, for
profiles measured with the Pitot tube, a slight ‘kick-up’ from the logarithmic law was
observed near the buffer region, whereas the mean velocity profiles measured with
a normal hot wire did not exhibit this deviation from the logarithmic law. As the
layers approached equilibrium, the mean velocity profiles were found to approach the
pure wall profile and for the highest level of acceleration Π was very close to zero,
where Π is the Coles wake factor. This supports the proposition of Coles (1957), that
the equilibrium sink flow corresponds to pure wall flow. Particular interest was also
given to the evolutionary stages of the boundary layers, in order to test and further
develop the closure hypothesis of Perry, Marusic & Li (1994). Improved quantitative
agreement with the experimental results was found after slight modification of their
original closure equation.

1. Introduction
A sink-flow turbulent boundary layer is one with a pressure gradient that follows

that of a two-dimensional potential sink. Consider a sink flow as shown schematically
in figure 1; U0 is the reference free-stream velocity at some conveniently selected origin
(i.e. the beginning of the boundary layer) and at x = L there exists a potential sink
of strength Q, where x is the streamwise coordinate. From continuity and neglecting
boundary layer displacement effects the local free-stream velocity U1 can be shown
to be given by

U1

U0

=
1

1− x/L. (1.1)
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Figure 1. Sink flow.

A sink flow can be uniquely characterized by the acceleration parameter K which is
defined as

K =
ν

U2
1

dU1

dx
(1.2)

and for a sink flow K is a positive constant and is given by

K =
ν

U0L
(1.3)

where ν is the kinematic viscosity of the fluid.
In the literature, the sink-flow boundary layer often appears in discussions relating

to equilibrium concepts. This is because it is the only smooth wall boundary layer
that satisfies the required conditions for precise equilibrium and this was first shown
by Townsend (1956) and later by Rotta (1962). Here the definition of a precise
equilibrium layer is one where the mean defect velocity profiles and Reynolds stress
profiles are invariant with the streamwise coordinate, when they are scaled with the
correct velocity and length scales. Coles (1957) also identified this unique equilibrium
property of the sink flow. Further he made an important contribution by proposing
that the sink flow at equilibrium corresponds to pure wall flow, that is Π = 0, where
Π is the Coles wake strength factor. Coles (1957) provides several arguments to
support his hypothesis but there is no rigorous proof which shows Π = 0 for the sink
flow at equilibrium.

The unique properties of the sink flow make it an interesting layer to study.
Furthermore, it represents a favourable pressure gradient which is clearly defined
and can be produced simply in the laboratory as flow between converging plane
surfaces. Since a major motivation of the study was to test and further develop the
closure hypothesis proposed by Perry, Marusic & Li (1994) the sink flow provided a
convenient experimental test case. Hence the experiments serve not only to provide
information about the equilibrium state but also show the details of the evolution.

Limited experimental data have been taken in sink flows and much of what is
available is confined to low Reynolds number layers with the emphasis often being
on studying the relaminarization problem. Herring & Norbury (1967) were perhaps
the first to take measurements in a sink flow. They took mean flow measurements in
favourable pressure gradients of two different strengths. While they did not identify
their flows as being sink flows, a review of their pressure gradient reveals that they
follow very closely sink flows with approximate acceleration parameters K = 1.2×10−7

and K = 1.8×10−7. Unfortunately the length of development they observed was fairly
limited, their last measuring stations being at x/L = 0.25 for the lower K value and
x/L = 0.38 for the higher K value.

A more detailed experimental study of the sink flow was undertaken by Jones &
Launder (1972). They studied it at three different levels of acceleration:K = 1.5× 10−6,
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2.5×10−6 and 3.0×10−6. These levels of acceleration are characterized by low Reynolds
number boundary layers, their Reynolds numbers based on momentum thickness were
in the range 300 < Rθ < 700, here Rθ = U1θ/ν where θ is the momentum thickness.
They took both mean and turbulence measurements and the streamwise extent of
their measurements corresponded to x/L ≈ 0.55. From their results they concluded
that the flows with the two lowest values of K had reached equilibrium. Their non-
dimensional mean velocity profiles were found to have higher velocities than the
standard logarithmic law of the wall and the amount of excess increased with K .
In fact for the two higher values of K the profiles showed no discernible universal
logarithmic region.

Numerical simulations of sink-flow boundary layers, at equilibrium, were performed
by Spalart (1986). The values of the acceleration parameter chosen for Spalart’s
simulations corresponded to those of Jones & Launder (1972) and hence represent
low Reynolds number layers. The agreement with Jones & Launder’s (1972) results
was generally found to be good. However at the highest acceleration (K = 3.0×10−6)
Spalart found that no long-time turbulent solution could be generated. The mean
velocity profiles showed similar behaviour to those of Jones & Launder (1972) in that
as K was increased the profiles were displaced up from the standard log law and for
the simulation at the highest K no log law was observed.

The results presented in this paper are from experiments in sink flows at three
levels of acceleration: K = 2.70× 10−7, 3.59× 10−7 and 5.39× 10−7, which produced
significantly higher Reynolds numbers at equilibrium than previous studies (1800 <
Rθ < 3000). The evolution of the boundary layers from initial arbitrary conditions was
studied in detail and this allowed comparisons with the predicted solutions obtained
using the closure hypothesis of Perry et al. (1994). It is also important to capture the
equilibrium state of the layers, since the data may serve to reveal the structure of pure
wall flow. Measurements were therefore taken up to a maximum streamwise station
which corresponded to x/L = 0.65 and it was found that equilibrium was approached
at x/L ≈ 0.60.

1.1. Closure hypothesis

As has already been mentioned a major motivation of the study was to test the
closure hypothesis of Perry et al. (1994); therefore a short review of it will be given
here.

An essential feature of the closure hypothesis is the expression for the total shear
stress profile. This was derived by Perry et al. (1994) assuming the mean velocity
profile is given by a Coles (1956) logarithmic law of the wall and law of the wake
formulation,

U

Uτ

=
1

κ
ln

[
zUτ

ν

]
+ A+

Π

κ
Wc[η,Π]. (1.4)

In the above U is the mean streamwise velocity, Uτ is the wall shear velocity, κ is
the Kármán constant, A is the universal smooth wall constant, Π is the Coles wake
factor, Wc is the Coles wake function and η = z/δc, where δc is the boundary layer
thickness and z is the wall-normal coordinate. It should be stated at the outset that
the logarithmic law of the wall is assumed valid right down to the wall, i.e. the
viscous sublayer and buffer zone are being neglected. It has been found (e.g. Perry et
al. 1994) that the inclusion of these zones has a negligible effect on the computation of
total shear stress and on the momentum and displacement thicknesses, see Appendix
B. Hence the effect on the overall momentum balance is small when these zones
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are neglected, for practical ranges of Reynolds number. Considering two-dimensional
flow in the mean, Perry et al. (1994) use the mean momentum equation and continuity
equation in conjunction with (1.4) to derive an expression for the total shear stress
which is given by

τ

τ0

= f1[η,Π, S] + g1[η,Π, S]ζ + g2[η,Π, S]β. (1.5)

In (1.5) τ is the local shear stress, τ0 is the wall shear stress, S = U1/Uτ, β is the
Clauser (1956) pressure gradient parameter given by

β =
δ∗

τ0

dp1

dx
, (1.6)

where δ∗ is the displacement thickness, p1 is the free-stream static pressure and ζ
represents a wake strength gradient parameter given by

ζ = Sδc
dΠ

dx
. (1.7)

The quantities f1[η,Π, S], g1[η,Π, S] and g2[η,Π, S] are known analytical functions
(found using Mathematica or Maple) and their forms depend on the wake function
used in (1.4).

When deriving (1.5) Perry et al. (1994) used the Lewkowicz (1982) wake function

Wc[η,Π] = 2η2(3− 2η)− 1

Π
η2(1− η)(1− 2η), (1.8)

where the polynomial pre-multiplied by 1/Π is included to ensure that (1.4) has zero
gradient at z = δc. Jones (1998) refers to this as the corner function and, strictly,
this function should not be included in the wake function. Further it was found that
inclusion of this corner function resulted in a poor fit of (1.4) to profiles that had low
values of Π . Therefore Jones (1998) used a logarithmic law of the wall and law of
the wake given by†

U

Uτ

=

Log-law of the wall︷ ︸︸ ︷
1

κ
ln

[
zUτ

ν

]
+ A − 1

3κ
η3︸ ︷︷ ︸

Pure wall flow

+

Pure wake component︷ ︸︸ ︷
Π

κ
2η2(3− 2η) (1.9)

to derive the functions f1[η,Π, S], g1[η,Π, S] and g2[η,Π, S] appearing in (1.5) and
these forms are used in all the following analysis. The term −η3/(3κ) included in
(1.9) is required to give the correct behaviour at the edge of the layer and this is
particularly important for profiles where Π → 0. Further in (1.9), the wake function
Wc is now more correctly a function of η alone and this functional form was first
proposed by Moses (1964). It should be noted that mean-flow parameters, S , Π , and
δc, were systematically determined based on a parametric fit of (1.9) to data. The
method used was to find S from the Clauser chart, measure the maximum deviation
from the logarithmic law which from (C 2) gives Π and then δc is found using (A 3)
and (B 1). These equations are found in the Appendices; note that alternative methods
for finding the above parameters could be devised. For the purpose of analysis the
log-law constants assumed the values κ = 0.41, and A = 5.0.

† This decomposition was suggested to the authors by Professor D. Coles of GALCIT, Caltech
(private communication).
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An important feature of the functions f1[η,Π, S], g1[η,Π, S] and g2[η,Π, S] is that
they become independent of S as S →∞. Using this Perry et al. (1994) formulated the
hypothesis that a given shear stress profile at finite S will match a unique shear stress
profile at S = ∞. Initially Perry et al. (1994) considered the closure hypothesis for
approximate equilibrium layers, where an approximate equilibrium layer is defined as
one which exhibits similarity in the mean defect profiles only and hence ζ = 0 but
the shear stress profiles are approximately matched for a given Π for all S (this is
consistent with eddy viscosity formulations). For such a class of layers Perry et al.
(1994) matched the shear stress profiles at η = 0.4 which results in the equation

β[Π, S] =
−f1[0.4, Π, S] + f1[0.4, Π,∞] + g2[0.4, Π,∞]βae[Π]

g2[0.4, Π, S]
. (1.10)

The function βae[Π] represents the asymptotic form of β for S →∞ for the restricted
case of approximate equilibrium layers and it is still to be determined from experi-
mental data. However for the purpose of computations Perry et al. (1994) used the
relationship

βae[Π] =

(
0.030

(
C2[Π]

C1[Π]

)2

− 1.25

)
, (1.11)

which was proposed by Green, Weeks & Brooman (1973); here C1[Π] and C2[Π] are
functions of Π that are given in Appendix A.

The equations that govern the evolution of an approximate equilibrium boundary
layer which is two-dimensional in the mean can be generated from the momentum
integral equation in conjunction with the log-law of the wall and law of the wake.
The momentum integral equation for two-dimensional flow in the mean is given by

dθ

dx
+

(H + 2)θ

U1

dU1

dx
= C ′f/2 (1.12)

where C ′f is the local skin friction coefficient and H = δ∗/θ. Using (1.9) expressions
for the mean integral parameters can be generated which when substituted into (1.12)
gives the evolution equation

SE[Π] exp [κS]
1

χ

dS

dRx
= R[S, β,Π], (1.13)

where χ = U1/U0, Rx = xU0/ν and the functional forms of E[Π] and R[S, β,Π] are
given in Appendix A. Using the log-law of the wall and law of the wake given by
(1.9), β can be expressed in the form of an auxiliary equation:

S2E[Π] exp [κS]
1

χ2

dχ

dRx
= − β

C1[Π]
. (1.14)

It is assumed that the evolution equation can be applied to flows where Π is
allowed to vary slowly with x provided the parameter ζ has a negligible effect on the
shear stress profiles, i.e.

g1[η,Π, S]ζ

f1[η,Π, S] + g2[η,Π, S]β
� 1 (1.15)

and such layers are referred to as quasi-equilibrium layers, to which the sink flow is
considered to belong, before it finally reaches precise equilibrium. Hence to solve the
evolution of such layers the effect of the parameter ζ is neglected and the evolution
equation (1.13) can be solved by using the auxiliary equation (1.14) in conjunction
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Figure 2. Evolution of mean flow parameters for sink flow, using the closure hypothesis of Perry
et al. (1994), after Jones (1998).

with the closure equation obtained using (1.10) and (1.11). Perry et al. (1994) did this
for layers developing under zero pressure gradient, sink-flow pressure gradient and
source-flow pressure gradient, where source flow is defined by a constant negative
value of K . Jones (1998) repeated these calculations for sink flows with acceleration
levels of K = 2.70 × 10−7, 3.59 × 10−7 and 5.39 × 10−7, and the evolution of S , Π ,
and δcU0/ν according to these calculations are given in figure 2. For the purpose of
these calculations the initial conditions have been specified by setting S0 = 19, where
S0 denotes the value of S at Rx = 0. This value of S0 is typical of layers soon after
transition and of sufficient Reynolds number to have a log law. Once S0 is chosen all
other initial conditions are fixed; this is a consequence of neglecting the parameter ζ
which constrains the solution to quasi-equilibrium.

2. Apparatus and experimental techniques
Experiments were performed in an open-return blower wind tunnel. The important

features of the tunnel are a settling chamber containing honeycomb and five screens
followed by a contraction with area ratio of 8.9 : 1 which leads into an initial working
section area 940 mm wide by 375 mm high with a working section length of 4.2 m.

Details of the working section are shown in figure 3. The smooth acrylic floor of
the working section provides the ‘smooth wall’ on which the boundary layer develops.
The trip wire was placed at x = 0 arbitrarily and the diameter d of the trip wire was
chosen so that U1d/ν fell within the range suggested by Erm & Joubert (1991) to give
a correctly stimulated boundary layer. The pressure gradient for all experiments was
controlled by a straight rigid ceiling hinged at the beginning of the working section.

The coefficient of pressure is given by

Cp =
p1 − p0

pt − p0

= 1−
(
U1

U0

)2

(2.1)

where p0 is the reference static pressure, p1 is the free-stream static pressure U0 is the
reference free-stream velocity and pt is the reference total pressure. For a sink flow
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assuming the boundary layer displacement effects are negligible, continuity gives the
coefficient of pressure along the wall as

Cp = 1− 1

(1− x/L)2
. (2.2)

The Cp distribution, as measured by wall tappings for a given reference velocity, is
shown in figure 4 and is seen to fit the desired Cp distribution (2.2) well. From a curve
fit of (2.2) to the data the parameter L was found to be given by L = 5.60 m. The Cp
distribution shown in figure 4 was measured with a reference velocity corresponding
to U0 = 10 m s−1. However it was found from cursory checks that the distribution
was invariant with Reynolds number (i.e. with U0). The geometry of the tunnel, and
hence the Cp distribution, was held fixed for all flows and the reference velocity U0

varied in order to obtain the range of acceleration parameters K to be investigated.
The nominal reference velocities were U0 = 10.0, 7.5 and 5.0 m s−1 which correspond
to acceleration strengths K = 2.70 × 10−7, 3.59 × 10−7 and 5.39 × 10−7 respectively.
However to ensure constant K was maintained (i.e. constant Reynolds number), for
a given flow case, U0 was adjusted to account for daily variations in fluid viscosity.

To check whether the flow could be considered two-dimensional in the mean,
traverses were taken over a spanwise distance of 500 mm centred about the measuring
station at a streamwise location x = 1200 mm. Two traverses were performed: one in
the free stream and one at a representative level within the boundary layer. For both
traverses V/U is less than ±0.005 and there is no preferred slope in the variation.
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Here V is the mean spanwise component of velocity. It was also found that the
variation in U was less than ±0.005 of the average U velocity across the span.

A MKS Baraton 170M-6C manometer with a type 310BH-1 sensor was used
to measure all pressure differences. A Pitot-static tube was used for mean-flow
measurements. The total tube had an external diameter of d = 1.00 mm and the static
tube had an external diameter of 2.00 mm. The Pitot tube was corrected for the effect
of shear using the MacMillan (1956) correction, which gives δ1/d = 0.15, where δ1 is
the effective location of the Pitot tube above its centreline. The wall shear velocity Uτ

was determined using two different methods: the Clauser chart and the Preston tube.
The Clauser chart values were found to agree better with momentum balances and
therefore all results presented use the values of Uτ calculated from the Clauser chart.

Constant-temperature hot-wire anemometers were used for the measurement of
turbulence quantities. The design of these anemometers is given in Perry (1982)
and Perry & Morrison (1971a). Both normal-wire and cross-wire probes were used.
The normal wire was used in preference to the cross-wire for the measurement of
streamwise turbulence intensities and streamwise spectra, since it allows closer wall
readings and reduces any errors associated with the effect of shear. The probes were
mounted in 4 mm diameter tubing. The tubing was supported in a chuck that allowed
accurate rotation though 90◦ and this enabled measurements to be taken in both the
U,W and U,V planes when the cross-wire was used. The prong tip separation on all
probes was 3.0 mm and the sensors were platinum Wollaston wire, etched to a length
of 1.0 mm with a diameter of 5 µm. For the cross-wire probes the wires were attached
at ±45◦ to the streamwise direction and the wires were separated by a distance of
1.0 mm.

The Pitot-static and hot-wire signals were sampled by an Analog Devices RTI-860
data acquisition board installed in a SKAI 386 IBM compatible personal computer.
Using 12-bit resolution the board was capable of sampling four channels simultane-
ously with a maximum sampling rate of 50 kHz per channel.

The dynamic calibration of Perry & Morrison (1971b) together with a nonlinear
static calibration was used to calibrate all hot wires and for a comprehensive account
of this technique the reader is referred to Perry (1982). When measuring broadband
turbulence intensities the hot-wire signals were low-pass filtered at a cut-off frequency
of 20 kHz, then bursts of 8000 samples were taken at a sampling frequency of
200 Hz. To get convergence of the data to within 0.5% four bursts were taken at
each z coordinate. For spectra measurements, uncalibrated hot wires were used.
In order to improve the frequency bandwidth of the spectrum the signals were
sampled at three different sampling frequencies: 500 Hz, 5 kHz and 40 kHz. Using
8-pole Butterworth filters the signals were low-pass filtered at 0.4 times the respective
sampling frequencies, thus avoiding aliasing when taking discrete Fourier transforms.
For measurements using normal wires, 25 bursts of 2048 samples were taken while for
cross-wire measurements, 100 bursts of 2048 samples were taken. The higher number
of bursts for the cross-wire was to ensure convergence of the cross-power spectra.

3. Mean flow results
For each flow case, mean profiles at 20 streamwise stations were measured, from

stations x = 400 to 3620 mm. Representative mean velocity profiles for each flow case
are shown in figure 5. Beyond the buffer region (zUτ/ν ≈ 100) the profiles are well
described by the logarithmic law of the wall and law of the wake given in (1.9).

The values of Uτ, Π and δc were determined based on a parametric curve fit of



Sink-flow turbulent boundary layers 9

10
10
10
10
10
10
12
14
16
18
20
22
24

10
10
10
10
10
10
12
14
16
18
20
22
24

10
10
10
10
10
10
12
14
16
18
20
22
24

10 102 103 104

10 102 103 104

10 102 103 104

K=5.39×10–7

K=3.59×10–7

K=2.70×10–7

x=800 mm
1600 mm
2200 mm
2800 mm
3280 mm
3580 mm

U
Uτ

U
Uτ

U
Uτ

zUτ/m

Figure 5. Mean velocity profiles, showing log-law with constants κ = 0.41, A = 5.0.

(1.9) to the data. As the profiles evolve the wake strength decays, whilst the Kármán
number (i.e. Kτ = δcUτ/ν) grows to its asymptotic value. Therefore the region of
collapse with the log-law increases as the profiles evolve and by the most downstream
stations the profiles are characterized by a log-law that extends almost to the edge of
the layer.

An interesting feature of the Pitot-tube mean profiles is the slight ‘kick-up’ from
the log-law which is observed near the buffer region. However this ‘kick-up’ region
is not observed in velocity profiles measured with a normal hot wire. Figure 6(a)
shows the discrepancy between hot-wire measurements and Pitot-tube measurements
which have been corrected for shear using the MacMillan (1956) correction. The
discrepancy suggests the Pitot-tube measurements may be suffering from turbulence
effects, which is a consequence of the nonlinear relationship between pressure (or
manometer output voltage) and the velocity. It has been shown by Jones (1998) that
when the Pitot-tube is corrected for both turbulence effects and shear effects the
agreement between the Pitot-tube profiles and normal-wire profiles is better and less
‘kick-up’ is observed, see figure 6(b). These results also confirm that the MacMillan
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measurement with no corrections and MacMillan (1956) correction alone; (b) Pitot-static measure-
ment with both MacMillan (1956) correction and turbulence correction. Insets show the deviation
from the log-law, i.e. ∆(U/Uτ) with constants κ = 0.41 and A = 5.0.

(1956) correction, which was developed for pipe flow, is valid, at least for the range
of Reynolds numbers encountered here.

3.1. Wall shear velocity

It must be remembered that the Clauser chart was used to determine the values of
Uτ, which effectively forces the profiles to collapse onto the log-law with the specified
constants. The validity of the Clauser chart values of Uτ must therefore be examined.
To facilitate this, use is made of the integral momentum equation. Unfortunately,
in general, the direct use of (1.12) to determine C ′f is inaccurate since it involves
differentiation of θ. However once the flow achieves a state of equilibrium then
Rθ = constant in which case (1.12) becomes

KRθ(H + 1) = C ′f/2. (3.1)

Using (3.1) Uτ was calculated for station x = 3580 mm and the results are compared
to both the Clauser chart values and the Preston tube values (obtained using the
Patel 1965 calibration) in table 1 and the agreement is found to be good. The good
agreement suggests that a universal law of the wall (upon which both the Clauser
chart and Preston tube methods are based) is valid, for the mild levels of acceleration
encountered in this study. This is consistent with the original finding of Patel (1965),
where the maximum error for a Preston tube was found to be < 3% when exposed to
a pressure gradient strength in the range 0 < ∆p < −0.005, where ∆p is the pressure
gradient parameter given by

∆p =
ν

ρU3
τ

dp1

dx
. (3.2)
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Clauser chart Preston tube
Momentum

K ∆p Uτ Uτ %ε Uτ %ε

2.70× 10−7 −3.29× 10−3 1.3337 1.3289 −0.4 1.3134 −1.5
3.59× 10−7 −3.95× 10−3 0.9722 0.9932 +2.2 0.9749 +0.3
5.39× 10−7 −5.35× 10−3 0.6949 0.7010 +0.9 0.6845 −1.5

Table 1. Wall shear velocity Uτ (m s−1) calculated from (3.1) compared with Clauser chart and
Preston tube values, for station x = 3580 mm and where %ε indicates the percentage difference.

For stations not in equilibrium, differentiation of θ can be avoided by integrating
(1.12) with respect to x between stations xa and x. Following the approach of Coles
(1956) the result of the integration can be expressed as

U2
1θ

U2
1aθa
− 1 +

1

2

∫ U2
1/U

2
1a

1

δ∗

θa
d

(
U2

1

U2
1a

)
= φ(x) (3.3)

where U1a = U1(xa) and θa = θ(xa) and the function φ(x) in (3.3) is given by

φ(x) =

∫ x

xa

U2
τ

θaU
2
1a

dx. (3.4)

For all flow cases φ(x) was calculated using the two independent methods, given by
(3.3) and (3.4). Sufficient conditions for these equations to agree are two-dimensional
flow in the mean and correctly determined values of C ′f . It is possible that (3.3) and
(3.4) would also balance if three-dimensional effects were exactly balanced by errors
in C ′f , although this would appear highly improbable. When evaluating (3.4) both the
Clauser chart and Preston tube values of Uτ were used and the results are shown in
figures 7(a) and 7(b) respectively. The agreement is very good, suggesting that the flow
is two-dimensional in the mean and that the Uτ values are accurate. The maximum
difference between the curves given in figure 7(a) would be consistent with the Clauser
chart overestimating Uτ by approximately 1.5%. Whereas figure 7(b) suggests that
the Preston tube may be slightly underestimating Uτ and this is most noticeable at
the highest level of acceleration (K = 5.39 × 10−7) where the difference between the
two curves would be indicative of an underestimation of approximately 2%.

4. Evolution of mean flow parameters
The evolution of the mean flow parameters S , Π and δc is shown in figure 8, for

each level of acceleration. Figure 9 shows the evolution of β.
The evolution of S is similar for the three acceleration parameters studied and

it can be seen that for all cases S is initially increasing. However for streamwise
coordinates x/L > 0.55 S appears to have reached a constant asymptotic value. This
would be consistent with the boundary layer attaining a state of equilibrium, since as
Rotta (1962) has shown S = constant is a required condition for precise equilibrium.

As the boundary layer evolves, the Coles wake strength factor Π decays. However
only for the flow with the highest acceleration parameter (K = 5.39 × 10−7) is ‘pure
wall’ flow attained, as conjectured by Coles (1957). For the other flow cases Π
shows a small but finite value at the most downstream station. However this does
not necessarily contradict the pure wall hypothesis of Coles (1957) but may instead
indicate that the layers have not quite reached the precise equilibrium state. It should
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Figure 7. Momentum balance (a) using Clauser chart values for Uτ. (b) Using Preston tube values
for Uτ.

be noted that there is difficulty involved in determining Π especially as Π → 0 and
this is reflected in the scatter present in figure 8.

The boundary layer thickness δc was determined such that the defect function
obtained using (1.9) gave the required displacement thickness δ∗ as determined from
experiment and therefore

δc =
δ∗S
C1[Π]

. (4.1)

For all flow cases the non-dimensional boundary layer thickness given by δcU0/ν
initially grows and reaches a maximum at around x/L = 0.4. Beyond this value the
boundary layer thickness proceeds to diminish. For precise equilibrium, it is required
that the gradient of the boundary layer thickness with respect to x becomes constant.
However it is not clear from the data whether this condition has been reached, due
to the experimental scatter inherent in dδc/dx. Figure 10 shows a comparison with
the length scale of Clauser (1954) which is given by

∆ = δ∗S. (4.2)

This is preferred since estimating ∆ has less experimental error associated with it
because the scatter in C1[Π] has been removed for Π → 0. As the virtual sink
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Figure 9. The evolution of β with non-dimensional streamwise coordinate x/L.

location is approached (i.e. x/L = 1.0) it would be expected that all length scales tend
to zero while all velocity scales approach infinity. This is required to ensure the local
Reynolds number, no matter how constructed, remains constant and thus precise
equilibrium is maintained. The data in figure 10, at stations x/L > 0.6 appears to be
consistent with this required gradient, but measurements further downstream would
be required to draw a firmer conclusion.

4.1. Comparison with predicted evolution

The experimental results of figure 8 are seen to agree only qualitatively with the
predicted solutions of figure 2. In what follows, several reasons for the lack of
quantitative agreement will be discussed.

The empirical input for the closure equation is the choice of βae[Π] and the
calculations given in figure 2 made use of the Green et al. (1973) function given
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Figure 11. Experimental data for βae from current study along with curve fits.

by (1.11). However it was found that this function represents a poor choice: first it
correlates data at finite S and secondly it is based on a data at values of Π higher than
those encountered in this study. The experimental values of β for given experimental
values of Π and S are mapped to infinite S using the matching technique given in
(1.10). The results of this mapping process are given in figure 11 and it can be seen
that (1.11) gives a poor fit to the experimental results. Jones (1998) proposes using
the curve fit

βae = −0.5 + 1.38Π + 0.13Π2, (4.3)

which correlates the low-Π data better as well as fitting approximate equilibrium data
at higher Π values. However it should be noted that while (4.3) gives a better general
fit to the data, the data do exhibit a high degree of scatter which may indicate that
although ζ does not play a strong part in the momentum balance it seems to have
an appreciable effect on the asymptotic form for β. It is interesting to note that for
precise equilibrium, i.e. dS/dRx = 0, (1.13) gives

β =
−C1[Π]S

2C1[Π]S − C2[Π]
(4.4)

and for S →∞ (4.4) then gives βae = −1/2. Assuming Π → 0, (4.3) is consistent with
this result.
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Figure 12. Solution to evolution equations using new formulation for βae (see equation (4.3)),
compared with data.

Using (4.3) in the closure equation (1.10) and with auxiliary equation (1.14) evo-
lution equation (1.13) was solved for the three levels of acceleration encountered
and the results are compared in figure 12. Note that for these calculations the evo-
lution equations are solved starting from the initial measured profile rather than
the trip wire. Here the comparison is better than the predictions given in figure 2.
Nevertheless it appears that the parameter ζa must be included when determining
the asymptotic behaviour of β, where ζa is the asymptotic value of ζ. That is, we
must consider βa[Π, ζa], where βa denotes the asymptotic behaviour of β for gen-
eral non-equilibrium flows; hence the subscript e has been dropped. Incorporating
the inclusion of the ζ parameter is considered in a paper currently under prepara-
tion.

4.2. Asymptotic solution

To investigate whether the boundary layers have reached a state of precise equilibrium,
the experimental results are compared to the predicted precise equilibrium solutions.
Making use of (1.9) expressions for Rθ and H can be generated in terms of the mean
flow parameters S and Π alone which when substituted into (3.1) give

S2E[Π] exp [κS]C1[Π]K(−2SC1[Π] + C2[Π]) + SC1[Π] = 0. (4.5)

Using the hypothesis of Coles (1957) that Π = 0 for an equilibrium sink flow,
the asymptotic solution for S as a function of K was determined from (4.5) and the
result is shown in figure 13. The average experimental value of S (beyond station
x/L = 0.58) is also plotted in figure 13 and it shows excellent agreement with the
predicted equilibrium solution.

The asymptotic values of S for the studies of Jones & Launder (1972) and Spalart
(1986) are also shown in figure 13 and their results do not agree with the current
prediction. However it should be kept in mind that the data at K = 2.5 × 10−6

correspond to a low Reynolds number boundary layer (Rθ ≈ 400) so that describing
the mean profile by the logarithmic law of the wall and law of the wake alone is no
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Figure 13. Precise equilibrium solution for S as a function of K , solution from (4.5).
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Figure 14. Precise equilibrium solution for Rθ as a function of K , solution using (4.5) and (4.6).

longer sufficiently accurate and inclusion of a buffer zone and sublayer is needed when
generating expressions for the required mean profile parameters. Actually a review
on the subject of relaminarization by Narasimha & Sreenivasan (1979) suggests that
the turbulent flow cannot be maintained for K values greater than about 2.5× 10−6

to 3.0× 10−6. Even for K values greater than about 1.0× 10−6 the mean profile shows
no discernible log law region (see Jones & Launder 1972).

Once S versus K has been found, all other asymptotic mean flow parameters can
be found using the log-law of the wall and law of the wake, for example Rθ which is
given by

Rθ = S exp [κS]E[Π]

(
C1[Π]

S
− C2[Π]

S2

)
. (4.6)

Using the solution from (4.5) and again assuming pure wall flow (i.e. Π = 0) (4.6) can
be solved to give the predicted equilibrium solution for Rθ as a function of K and
it is shown in figure 14, along with the experimental average value beyond station
x/L = 0.58. Again for the data of the current study agreement with the predicted
equilibrium solution is very good, suggesting the flows are close to precise equilibrium
at the most downstream stations.
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5. Reynolds stresses
Reynolds stress measurements were taken for flows K = 2.70 × 10−7 and K =

5.39× 10−7 at the streamwise stations x = 800, 1600, 2200, 2800, 3280 and 3580 mm.

5.1. Streamwise turbulence intensities

The evolution of the streamwise turbulence intensities is shown in figure 15. For each

value of K , the u2
1/U

2
τ profile shape is seen to become invariant with streamwise

distance for x > 3280 mm. This is shown more clearly in figure 16 and it can also be
seen that in the region z/δc > 0.08 the profiles for different values of K (i.e. Reynolds
number) show collapse. Further the profiles in this region are closely described by a
logarithmic profile. Once precise equilibrium is reached all local Reynolds numbers
become invariant with x and for stations x > 3280 mm both Kτ and Rθ appear to
be asymptoting to constant values which are consistent with predictions (e.g. see
figure 14). Hence if the equilibrium profiles are plotted using inner flow scaling,
similarity should also exist for a given value of K and this is shown in figure 17.
Here a comparison is also made with the sink-flow simulation of Spalart (1986). The
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Figure 17. Similarity profiles of streamwise turbulence intensities, using inner flow scaling. Also
shown is the simulation of Spalart (1986) for a sink flow with K = 1.5 × 10−6 (Rθ = 690 and
Kτ ≈ 550).

interesting feature is that the location and value of the maximum stress for the profile
of Spalart (1986) is very close to the experimental value, for the profile where it was
obtainable.

The existence of a region where u2
1 is described by a logarithmic function was first

suggested by Townsend (1976). Using the attached eddy hypothesis Townsend (1976)
showed that a logarithmic relationship would exist for the region δ1 � z � δ2, where
δ1 and δ2 are the length scales of the smallest and largest eddies respectively and this
condition essentially requires a sufficiently high Reynolds number layer.

Using the attached eddy model proposed by Perry & Chong (1982) in conjunction
with a dimensional argument, Perry, Henbest & Chong (1982) proposed spectral
scaling laws and turbulence intensity scaling laws applicable to the fully turbulent
wall region. The fully turbulent wall region is defined as the region where the mean
velocity profiles collapse onto the standard logarithmic law and in addition z � δc,
and here the limits proposed by Perry, Lim & Henbest (1987), of z+ > 100 and
z/δc < 0.15 for zero pressure gradient layers are adopted. Note that z+ = zUτ/ν. The
results of Perry et al. (1986) were further refined by Perry & Li (1990) leading to a
scaling law for the streamwise turbulence intensity given by

u2
1

U2
τ

= B1 − A1 ln

[
z

δc

]
− V [z+]. (5.1)

Here A1 is a universal constant while B1 is a large-scale characteristic constant and
the last term is the viscous correction term. From spectral data for the zero pressure
gradient layer Perry et al. (1987) find A1 = 1.03. In fact this value agrees very well

with the u2
1/U

2
τ log-law distributions in the more recent work of Marusic, Uddin &

Perry (1997) for Kτ from 2.5 × 103 to 2.3 × 104 or Rθ from 6 × 103 to 6 × 104 (see
Marusic et al. 1997, figure 6).

The function V [z+] is the viscous correction term, which was numerically computed
by Perry & Li (1990), assuming a zero pressure gradient layer and S. H. M. Hafez
(private communication) found their result could be described by the function

V [z+] = 5.58(1− z−0.9
+ )z

−1/2
+ . (5.2)

Further Hafez (1991) found that by fitting limited streamwise turbulence data to (5.1)
and in conjunction with (5.2), B1 can be correlated with Πc and suggests the relation

B1[Πc] = 0.41 + 3.7Πc − 0.76Π2
c ; (5.3)
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Figure 18. Streamwise turbulence intensities with fit of equation (5.1) given by the solid line for
z+ > 100, for station 3580 mm.

here Πc is the Coles wake factor using the traditional Coles (1956) log-law of the wall
and law of the wake, i.e. the corner function is not included when fitting (1.9) to data
(see Appendix C for the relation between Π and Πc). Figure 18 shows the fit of (5.1)
using A1 = 1.03, (5.2) and (5.3), for both flow cases, at the most downstream station
(i.e. x = 3580 mm). For the low Reynolds number case (K = 5.39× 10−7, Kτ = 1200)
the length of the fully turbulent wall region is relatively small, nevertheless (5.1) does
give a fairly good fit in this region. However for the higher Reynolds number case
(K = 2.70× 10−7, Kτ = 1891) the fit of (5.1) is poor. The deviation from (5.1) is most
pronounced as the lower bound of the fully turbulent wall region is approached, i.e.
z+ → 100 and this suggests the functional form of V [z+] as given by (5.2) may not
be correct. When deriving V [z+] Perry & Li (1990) assume that in the fully turbulent
wall region

−u1u3 ≈ U2
τ (5.4)

and further that dissipation equals production and this allows the Kolmogorov length
and velocity scales to be expressed in terms of wall variables. The assumptions
outlined above are true for the zero pressure gradient layer. However for the sink
flows of the current study the fully turbulent wall region does not correspond to a
region of constant Reynolds shear stress and thus (5.4) is not a valid assumption
unless z/δc is extremely small and the Reynolds number is sufficiently high.

5.2. Spanwise and normal turbulence intensities

The spanwise turbulence intensities are shown in figure 19 and for a given value
of K the profiles evolve to a self-similar state by the last two stations, where they
are characterized by a semi-logarithmic profile. In figure 20 the similarity profiles for
different values of K are compared and they are found to collapse beyond z/δc ≈ 0.15.

Based on the spectral scaling arguments of Perry et al. (1986) the expected spanwise
turbulence intensity in the fully turbulent wall region is given by Perry & Li (1990) as

u2
2

U2
τ

= B2 − A2 ln

[
z

δc

]
− V [z+], (5.5)

where B2 is a characteristic large-scale constant and A2 is a universal constant. From
spectral data Perry & Li (1990) propose that A2 = 0.475; further since V [z+] is
isotropic they also propose it will take the form given in (5.2). It was found by Jones
(1998) that (5.5) using A2 = 0.475 and (5.2) generally gave a poor fit to data in the
fully turbulent wall region. Again it is suggested that V [z+] as given in (5.2) is not
appropriate for the sink flows considered here.
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The behaviour of the normal turbulence intensity is very similar to that for the
spanwise turbulence intensity and is shown in figure 21 for completeness. For both
values of K the profiles evolve to the same self-similar profile, which is well described
by a logarithmic profile. Such a logarithmic profile is not predicted by the fully
turbulent wall-region scaling laws; in fact Perry & Li (1990) propose the scaling law

u2
3

U2
τ

= A3 − V [z+] (5.6)

in the fully turbulent wall region. However, it is expected that (5.6) would be valid
for z/δc < 0.1 and z+ > 100 but unfortunately, as the Reynolds shear stress profiles
show, there is likely to be a problem with X-wires in this region.

5.3. Reynolds shear stress

The Reynolds shear stress profiles are shown in figure 22 and their development
follows the same trends for both values of K . As the layers develop the profiles
become less full, evolving to a self-similar state at stations x = 3280 and x = 3580 mm.
The expression for the total shear stress, given in (1.5), is found to be in reasonable
agreement with the Reynolds shear stress measurements. By subtracting the viscous
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contribution from the total shear stress, predictions for the Reynolds shear stress are
then given by

−u1u3

U2
τ

=
τ

τ0

− d(U/Uτ)

d(zUτ/ν)
, (5.7)

where τ/τ0 is given by (1.5) and the viscous contribution is calculated using the
Reichardt (1951) mean velocity profile as given in Appendix B. A typical comparison
between the predicted Reynolds shear stress and data is shown in figure 22. The
agreement is seen to be quite good except that the measured stress is generally lower
than the prediction close to the wall but is higher in the outer part of the layer. The
results of Jones & Launder (1972) also show a similar trend when compared to the
prediction, although the magnitude of their discrepancies is much greater. On the
other hand when the results of the Spalart (1986) simulation are compared with the
predicted Reynolds shear stress profile the agreement is better. In figure 23 the profile
of Spalart (1986) is compared to the predicted Reynolds shear stress derived assuming
the log-law goes all the way to the wall (i.e. using (1.5) in conjunction with (5.7)) and
it is also compared to the Reynolds shear stress when a viscous/buffer profile is used
close to the wall when deriving (1.5). The results of Spalart (1986) tend to support
the validity of (1.5) and this suggests that the X-wire measurements may have higher
errors than usual. This may be due to the very high shear experienced across the
X-wire in this flow. At the present time, the authors are not aware of any existing
feasible correction scheme which could be applied. It is also worth noting that the
difference between the predicted curves in figure 23 indicates that the total shear stress
expression given by (1.5) should be accurate down to Kármán numbers of Kτ ≈ 600.

6. Spectra in the fully turbulent wall region
Spectra measurements were made at four stations: x = 1600, x = 2200, x = 2800

and x = 3280 mm for acceleration parameters K = 5.39× 10−7 and K = 2.70× 10−7.
Both normal wires and X-wires were used to obtain spectra measurements for all
three velocity components.

In the following the power spectral density φij[k1l] is defined as the spectrum per
unit non-dimensional wavenumber k1l, that is

φij[k1l] =
φij[k1]

l
(6.1)

where k1 is the wavenumber and l is some length scale.
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K Rθ Kτ Π S

5.39× 10−7 1670 1092 0.06 21.478
2.70× 10−7 2946 1757 0.12 22.978

Table 2. Mean flow parameters for station 3280 mm.
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Figure 24. Streamwise spectra in the fully turbulent wall region, with wall-variable scaling, station
x = 3280 mm.

Here attention will be focused on the streamwise spectra results in the fully tur-
bulent wall region for the most downstream station since these results represent
approximately pure wall flow, at two different Reynolds numbers, and table 2 sum-
marizes the mean flow parameters at this station. From the values of Π given in table
2 it can be seen that the lower Reynolds number results more closely approximate
pure wall flow.

Making use of the attached eddy hypothesis in conjunction with dimensional
analysis Perry et al. (1986) proposed that the streamwise spectra in the fully turbulent
wall region will collapse for moderate to high wavenumber motions, when scaled with
inner-flow variables z and Uτ as opposed to outer flow variables δc and Uτ. Using an
overlap region argument they show that the spectra in the region of collapse will be
described by two universal power laws: for moderate wavenumbers

φ11[k1z]

U2
τ

=
A1

k1z
(6.2)

and for higher wavenumbers

φ11[k1z]

U2
τ

=
1

κ2/3

K0

(k1z)5/3
, (6.3)

where K0 is the universal Kolmogorov constant. It should be noted that when deriving
the form of (6.3) Perry et al. (1986) assume −u1u3 ≈ U2

τ in the fully turbulent wall
region and this is nominally true for the zero pressure gradient layer. However for the
current results a constant Reynolds shear stress does not exist in the fully turbulent



24 M. B. Jones, I. Marusic and A. E. Perry

wall region and thus (6.3) would not necessarily be anticipated, whereas the form
of (6.2) does not rely on −u1u3 ≈ U2

τ and therefore should be valid for the current
results. However the streamwise spectra results show very limited regions of collapse,
see figure 24. For the lower Kármán number results little if any region of collapse
exists and certainly no −1 power law is apparent. The higher Kármán number results
do show a small region of collapse, however the short region does not allow any
convincing conclusions to be made concerning the existence of a −1 power law. The
current results do not necessarily imply that the −1 power law will not exists for sink
flows. It may be that the definition of the fully turbulent wall region is too liberal
and to satisfy the condition z/δc � 1.0 while z+ > 100 requires much higher Kármán
numbers, that is a larger separation between the smallest and largest eddies. This
observation is also supported by the attached eddy model predictions of Perry &
Marusic (1995) and Marusic & Perry (1995).

The spanwise and normal spectra also lack any convincing power laws as predicted
by Perry et al. (1986). Again it is believed this is due to the relatively low Kármán
numbers of the flows being considered.

7. Conclusions and discussion
Using the experimental results a new formulation describing the asymptotic be-

haviour of β for approximate equilibrium layers is proposed (i.e. βae). When this
function is incorporated in the closure hypothesis of Perry et al. (1994) the solutions
for the boundary layer evolution are found to give reasonably good agreement with
the experimentally observed evolution. Nevertheless it appears that for the cases
studied here the parameter ζ may have to be considered for the calculations to more
accurately predict the evolution.

The state of the layers by the most downstream stations agrees well with the pre-
dicted precise equilibrium solutions obtained using the integral momentum equation.
Also the mean profiles and Reynolds stress profiles, for a given flow case, were found
to reach a self-similar state by the most downstream stations. These observations
therefore suggest that the boundary layers attained a state very close to the a precise
equilibrium. Further the structure of the layers at the equilibrium stations was close
to pure wall flow, that is a low wake factor Π . However it is difficult to say from
experimental data whether a precise equilibrium sink flow corresponds exactly to pure
wall flow, i.e. Π = 0 at finite S . Calculations indicate that Π approaches a small but
positive value at finite S and β is slightly more negative than −1/2 as is indicated by
(4.4).

The mean velocity profiles are characterized by a log-law that extends almost to
the edge of the layer and the log-law constants were consistent with the conventional
values of κ = 0.41 and A = 5.0.

There was little evidence of the −1 and −5/3 power laws expected when considering
the spectra in the fully turbulent wall region and it is felt this is due to the relatively
low Reynolds numbers of the layers. Hence, while the mean profile shows a long
log-law this is not sufficient to ensure a fully turbulent wall region. However the
streamwise and spanwise Reynolds stress profiles did exhibit logarithmic behaviour
as predicted by the fully turbulent wall-region scaling laws but this may have been
fortuitous for these low Reynolds numbers.

The authors wish to acknowledge the financial assistance of the Australian Research
Council.
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Figure 25. Effect of low Reynolds number (i.e. Kármán number) when evaluating the displacement
and momentum thickness, assuming the logarithmic law is valid all the way to the wall compared
to assuming (B 3) close to the wall.

Appendix A. Functional forms

E[Π] = exp

[
−κ
(
A+

2Π

κ
− 1

3κ

)]
, (A 1)

R[S,Π, β] =
2C1βS + C1S − βC2

C1(κC1S2 − C2κS + C2)
, (A 2)

where

C1[Π] =

∫ 1

0

U1 −U
Uτ

dη = (Π + (3/4))/κ, (A 3)

C2[Π] =

∫ 1

0

(
U1 −U
Uτ

)2

dη = (1248Π2 + 2140Π + 1215)/(840κ2). (A 4)

Appendix B. Errors in δ∗ and θ for low Reynolds numbers
Expressions for the displacement thickness and momentum thickness are

δ∗

δc
=

1

S

∫ 1

0

U1 −U
Uτ

dη (B 1)

θ

δc
=

1

S

∫ 1

0

U1 −U
Uτ

dη − 1

S2

∫ 1

0

(
U1 −U
Uτ

)2

dη. (B 2)

For sufficiently high Reynolds numbers the contribution of the viscous and buffer
regions to the integrals appearing in the above is negligible and (1.9) can be assumed
valid all the way to the wall, in which case the integrals are universal functions of Π
alone as given in (A 3) and (A 4). However for low Reynolds numbers the viscous and
buffer regions must be included when evaluating the integrals which gives C1[Π,Kτ]
and C2[Π,Kτ]. Figure 25 shows the error introduced in δ∗ and θ as a function of
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Figure 26. Method for determining Π .

the Kármán number for different values of Π . In order to calculate C1 and C2 when
the viscous and buffer regions are included the Reichardt (1951) profile was used to
describe the law of the wall and it is given by

U

Uτ

=
1

κ
ln [1 + κz+] +

(
A− ln [κ]

κ

)(
1− exp

[−z+

11

]
− z+

11
exp [−0.33z+]

)
. (B 3)

Appendix C. The Coles wake factor
To determine Π the maximum deviation from the logarithmic law is determined

and is denoted by ∆(U/Uτ), see figure 26. Using a Coles traditional log-law of the
wall and law of the wake formulation (i.e. the corner function is omitted from (1.9))
it can be shown that

∆

(
U

Uτ

)
=

2Πc

κ
. (C 1)

However when the corner function is included it can be shown from (1.9) that

∆

(
U

Uτ

)
=

288Π3

κ(12Π + 1)2
. (C 2)

The above equations therefore give the relationship between traditional values of the
Coles wake factor (i.e. Πc) and those quoted in this paper (i.e. Π).
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